Skip to content
Snippets Groups Projects
Commit e7bf50db authored by Donjan Rodic's avatar Donjan Rodic
Browse files

added exercise 3 solution

parent 2fe41b12
No related branches found
No related tags found
No related merge requests found
Showing
with 1615 additions and 9 deletions
......@@ -116,16 +116,8 @@
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.8"
"version": "2.7.6"
}
},
"nbformat": 4,
......
magnetization.png: magnetization.txt
python3 plotmagn.py
magnetization.txt: trFieldIsingTimeEvolution.x
./trFieldIsingTimeEvolution.x > magnetization.txt
trFieldIsingTimeEvolution.x: trFieldIsingTimeEvolution.cpp
g++ -O2 -o trFieldIsingTimeEvolution.x trFieldIsingTimeEvolution.cpp
import numpy as np
import matplotlib.pyplot as plt
magn = np.loadtxt('magnetization.txt')
Nt = magn.shape[0]
N = magn.shape[1]
dt = 0.5
fig = plt.figure()
plt.pcolor(range(N+1),np.arange(Nt+1)*dt,magn)
plt.xlim([0,N])
plt.ylim([0,Nt*dt])
plt.xlabel('site')
plt.ylabel('time')
plt.colorbar()
plt.show()
fig.savefig('magnetization.png')
#include <valarray>
#include <vector>
#include <iostream>
#include <cmath>
#include <complex>
typedef std::valarray< std::complex<double> > state_vector_t;
typedef std::vector<double> param_vector_t;
typedef unsigned state_t;
const std::complex<double> I(0.,1.);
template <class Vector>
void tstep_transv(unsigned l, const param_vector_t& cosinesPrecomputed, const Vector& sinesPrecomputed, Vector& x, Vector& tmp)
{
state_t dim = 1 << l;
tmp *= 0;
for( int r = 0; r < l ; ++r )
{
// diagonal
for( state_t s = 0; s < dim; ++s )
tmp[s] = cosinesPrecomputed[r] * x[s];
// off-diagonal
for( state_t s = 0; s < dim; ++s )
tmp[s^(1<<r)] += sinesPrecomputed[r] * x[s];
std::swap(x,tmp);
}
}
param_vector_t precomputeCosines(const param_vector_t &hx, double dt){
param_vector_t res(hx.size(),double(0.0));
for(int r = 0; r<hx.size(); ++r){
res[r] = std::cos(dt*hx[r]);
}
return res;
}
template <class Vector>
Vector precomputeSines(const param_vector_t &hx, double dt){
Vector res(std::complex<double>(0.0,0.0), hx.size());
for(int r = 0; r<hx.size(); ++r){
res[r] = I * std::sin(dt*hx[r]);
}
return res;
}
template <class Vector>
void tstep_diag(unsigned l, const param_vector_t &j, double dt, Vector& x)
{
state_t dim = 1 << l;
for( state_t s = 0; s < dim; ++s )
{
double jtotal = 0.;
// +J for parallel, -J for antiparallel neighbors
for( int r = 0; r < l - 1; ++r )
{
jtotal += ((s >> r)^(s >> (r+1)))&1 ? -j[r] : j[r]; // check if spins are parallel at site r and r+1
}
x[s] *= std::exp(I*jtotal*dt);
}
}
template <class Vector>
void evolve(unsigned l, const param_vector_t &j, const param_vector_t &hx, double dt, unsigned n, Vector& x)
{
state_t dim = 1 << l;
state_vector_t tmp(x.size()); // memory for tstep_transv
param_vector_t cosinesPrecomputed = precomputeCosines(hx,dt);
Vector sinesPrecomputed = precomputeSines<Vector>(hx,dt);
tstep_diag(l,j,dt/2.,x);
for(int i=0 ; i<n-1 ; ++i){
tstep_transv(l,cosinesPrecomputed,sinesPrecomputed,x,tmp);
tstep_diag(l,j,dt,x);
}
tstep_transv(l,cosinesPrecomputed,sinesPrecomputed,x,tmp);
tstep_diag(l,j,dt/2.,x);
}
template <class Vector>
void printMagnetization(unsigned l, const Vector& v, std::ostream& outputStream)
{
state_t dim = 1 << l;
for(int r=0; r<l; r++){
double m(0);
for(long s=0; s<dim; s++){
m += std::norm(v[s]) * 2. * ( (bool)(s&(1 << r)) -0.5);
}
outputStream << m << "\t\t";
}
outputStream << std::endl;
}
int main(){
// ======== input
unsigned l = 11; // length of chain
param_vector_t j(l-1,1.0); // Ising coupling
param_vector_t hx(l,0.4); // transverse magnetic field
double tmax = 40.; // maximum time reached in time evolutin
double tmeas = 0.5; // time after which a measurment is performed
double dt = 0.1; // time step used for the evolution
unsigned nmeas = tmax/tmeas; // number of measurements
unsigned nstep = tmeas/dt; // number of steps between measurements
// ======== input
// Starting configuration
state_t initialInd = 1<<5;
state_vector_t x(0., 1 << l);
x[initialInd] = 1;
printMagnetization(l,x,std::cout);
// Do time evolution
for(int n=1; n<=nmeas; ++n){
evolve(l, j, hx, dt, nstep, x);
printMagnetization(l,x,std::cout);
}
return 0;
}
This diff is collapsed.
import numpy as np
import matplotlib.pyplot as plt
from cmath import exp
from math import sin, cos
def evolve(l, j, hx, v, dt, n):
""" Evolve the state v in time by n * dt """
dim = 1 << l
def tstep_diag(x, dt):
# Apply diagonal part
for s in range(dim):
jtotal = 0.
for r in range(l-1):
jtotal += -j[r] if ((s >> r)^(s >> (r+1)))&1 else j[r]
x[s] = exp(-1.j*jtotal*dt)*x[s]
return x
def tstep_transv(x, dt):
# Apply transverse part succesively for each site
y = np.zeros_like(x)
for r in range(l):
cos_v = cos(dt*hx[r])
sin_v = sin(dt*hx[r])
# diagonal
for s in range(dim):
y[s] = cos_v * x[s]
# off-diagonal
for s in range(dim):
y[s^(1<<r)] += 1.j*sin_v * x[s]
# swap vectors
tmp = x
x = y
y = tmp
return x
v = tstep_diag(v, dt/2.)
for i in range(int(n-1)):
v = tstep_transv(v, dt)
v = tstep_diag(v, dt)
v = tstep_transv(v, dt)
v = tstep_diag(v, dt/2.)
return v
def magnetization(v, l):
""" Measure the magnetization per site for the state v """
dim = 1 << l
m = np.zeros((l))
for r in range(l):
for s in range(dim):
m[r] += abs(v[s])**2 * 2. * ( bool(s&(1 << r)) -0.5)
return m
l = 9
dim = 1 << l
j = 1.00*np.ones((l-1)) # Ising coupling
hx = 0.40*np.ones((l)) # transverse field strength Gamma
# Starting configuration
ind = int('0000001000000',base=2) # specify spin configuration: 0 = down, 1 = up
v = np.zeros((dim),dtype=complex)
v[ind] = 1.
# Parameters for time evolution
tend = 20. # duration of the time evolution
tmeas = 0.5 # time after which a measurment is performed
dt = 0.1 # time step used for the evolution
nmeas = int((tend)/tmeas) # number of measurements
nstep = int((tmeas)/dt) # number of steps between measurments
# measure magnetization
m=np.zeros((nmeas,l));
m[0,:] = magnetization(v, l)
# Do time evolution
for t in range(1,nmeas):
print(t*tmeas)
v=evolve(l,j,hx,v,dt,nstep)
m[t,:] = magnetization(v, l)
# plot magnetization
plt.pcolor(np.array(range(l+1)),np.linspace(0.,tend,nmeas),m,
vmin=-1.0, vmax=1.0)
plt.xlabel('site')
plt.ylabel('time')
plt.axis([0,l,0,tend])
plt.title("Magnetisation, J = "+str(j[0])+" , hx = "+str(hx[0]))
plt.colorbar()
plt.show()
# ---- CQP FS16, Ex3.1 skeleton ----
# ----------------------------------
import numpy as np
import matplotlib.pyplot as plt
def evolve(l, j, hx, v, dt, n):
""" Evolve the state v in time by n * dt
Parameters:
l length of chain
j Ising coupling for each neighbors, 1-d numpy array with length at least l-1
hx transverse field for each site, 1-d numpy array with length at least l
v the state at time t, complex 1-d numpy array with length at least 1 << l
dt timestep
n number of consecutive timesteps
Return:
v the state at time t+n*dt
"""
# Implement the time evolution of the state v here.
# Use the split-operator scheme we discussed in the
# exercise class.
return v
def magnetization(v, l):
""" Measure the magnetization per site for the state v
Parameters:
v the state to be measured, complex 1-d numpy array with length at least 1 << l
l length of chain
Return:
m the magnetization at each site, 1-d numpy array with length l
"""
# Implement the measurement of the magnetization here.
return m
l = 9 # length of chain
dim = 1 << l
j = 1.00*np.ones((l)) # Ising coupling
hx = 0.40*np.ones((l-1)) # transverse field strength Gamma
# Starting configuration
ind = int('000010000',base=2) # specify spin configuration: 0 = down, 1 = up
v = np.zeros((dim),dtype=complex)
v[ind] = 1. # start time evolution with a single basis state
# Parameters for time evolution
tend = 10. # duration of the time evolution
tmeas = 0.5 # time after which a measurment is performed
dt = 0.1 # time step used for the evolution
nmeas = int((tend)/tmeas) # number of measurements
nstep = int((tmeas)/dt) # number of steps between measurements
# measure magnetization
m=np.zeros((nmeas,l));
m[0,:] = magnetization(v, l)
# Do time evolution
for t in range(1,nmeas):
print(t*tmeas)
v=evolve(l,j,hx,v,dt,nstep)
m[t,:] = magnetization(v, l)
# plot magnetization
plt.pcolor(np.array(range(l+1)),np.linspace(0.,tend,nmeas),m,
vmin=-1.0, vmax=1.0)
plt.xlabel('site')
plt.ylabel('time')
plt.axis([0,l,0,tend])
plt.title("Magnetisation, J = "+str(j[0])+" , hx = "+str(hx[0]))
plt.colorbar()
plt.show()
Source diff could not be displayed: it is too large. Options to address this: view the blob.
Source diff could not be displayed: it is too large. Options to address this: view the blob.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment