"Let us now expand the $(a+a^{\\dagger})^4$ using the commutator relation $[a,a^{\\dagger}] = a a^{\\dagger} - a^{\\dagger} a = 1$ and the identity $a^{\\dagger} a = \\hat n$:\n",
"\\begin{align}\n",
"$$\\begin{align}\n",
" ( a + a^{\\dagger})^4 &= (a a + a a^{\\dagger} + a^{\\dagger} a + a^{\\dagger} a^{\\dagger})^2 \\\\\n",
" &= ( a a + 2 a^{\\dagger} a + 1 + a^{\\dagger} a^{\\dagger})^2 \\\\\n",
" &= a^4 + 2 a a \\hat n + 2 a a + 2 \\hat n a a + 6 \\hat n^2 + 6 \\hat n + 3 + 2 \\hat n a^{\\dagger} a^{\\dagger} \\\\\n",
"Using $a | n \\rangle = \\sqrt{n} | n -1 \\rangle$, $ a^{\\dagger} | n \\rangle = \\sqrt{n+1} | n+1 \\rangle$ and $ \\langle m | n \\rangle = \\delta_{m,n}$\n",
"we obtain following non-zero matrix elements:\n",
"\\begin{align}\n",
"$$\\begin{align}\n",
" \\langle n | 6 \\hat n^2 + 6 \\hat n + 3 | n \\rangle &= 6 n^2 + 6 n + 3 \\\\\n",
" \\langle n + 2 | 2 \\hat n a^{\\dagger} a^{\\dagger} + 2 a^{\\dagger} a^{\\dagger} + 2 a^{\\dagger} a^{\\dagger} \\hat n | n \\rangle & = \\langle n | 2 a a \\hat n + 2 a a + 2 \\hat a a | n + 2\\rangle \\\\\n",
" & =(4 n + 6) \\sqrt{ (n+1) (n+2) } \\\\\n",
" \\langle n + 4 | (a^{\\dagger})^4 | n \\rangle & = \\langle n | a^4 | n+4 \\rangle \\\\\n",
"A solution code setting up and diagonalizing a matrix for a given cutoff $N$ is given below.\n",
"The dependence of the energy spectrum on the anharmonicity $K$ is shown in figure at the bottom.\n",
...
...
@@ -188,7 +188,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.4.3"
"version": "3.4.4"
}
},
"nbformat": 4,
...
...
%% Cell type:markdown id: tags:
# Anharmonic Oscillator
%% Cell type:markdown id: tags:
First we set $\hbar = m = 1$ to simplify the terms
\begin{eqnarray}
a=\sqrt{\frac{\omega}{2}} x + \frac{ip}{\sqrt{2\omega}} \\
a^{\dagger}=\sqrt{\frac{\omega}{2}} x - \frac{ip}{\sqrt{2\omega}} \, .
\end{eqnarray}
Adding the two operators results in
\begin{equation}
a + a^{\dagger} = \sqrt{2\omega} x \, ,
\end{equation}
hence the anharmonic part of the Hamiltonian is
\begin{equation}
H_{\text{anharmonic}} = \frac{K}{4\omega^2} (a + a^{\dagger})^4 \, .
\end{equation}
Let us now expand the $(a+a^{\dagger})^4$ using the commutator relation $[a,a^{\dagger}] = a a^{\dagger} - a^{\dagger} a = 1$ and the identity $a^{\dagger} a = \hat n$:
\begin{align}
$$\begin{align}
( a + a^{\dagger})^4 &= (a a + a a^{\dagger} + a^{\dagger} a + a^{\dagger} a^{\dagger})^2 \\
&= ( a a + 2 a^{\dagger} a + 1 + a^{\dagger} a^{\dagger})^2 \\
&= a^4 + 2 a a \hat n + 2 a a + 2 \hat n a a + 6 \hat n^2 + 6 \hat n + 3 + 2 \hat n a^{\dagger} a^{\dagger} \\
Using $a | n \rangle = \sqrt{n} | n -1 \rangle$, $ a^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$ and $ \langle m | n \rangle = \delta_{m,n}$
we obtain following non-zero matrix elements:
\begin{align}
$$\begin{align}
\langle n | 6 \hat n^2 + 6 \hat n + 3 | n \rangle &= 6 n^2 + 6 n + 3 \\
\langle n + 2 | 2 \hat n a^{\dagger} a^{\dagger} + 2 a^{\dagger} a^{\dagger} + 2 a^{\dagger} a^{\dagger} \hat n | n \rangle & = \langle n | 2 a a \hat n + 2 a a + 2 \hat a a | n + 2\rangle \\
& =(4 n + 6) \sqrt{ (n+1) (n+2) } \\
\langle n + 4 | (a^{\dagger})^4 | n \rangle & = \langle n | a^4 | n+4 \rangle \\
A solution code setting up and diagonalizing a matrix for a given cutoff $N$ is given below.
The dependence of the energy spectrum on the anharmonicity $K$ is shown in figure at the bottom.
We observe the expected equally spaced energy spectrum of the harmonic oscillator at $K=0$.
For the anharmonic oscillator ($K > 0$) the difference between two consecutive energy levels grows with increasing anharmonicity and increasing energy.
While for three lowest energy states ($E_0, E_1, E_2$) a cutoff of $N = 20$ eigen-states of the harmonic oscillator yields good approximations for $K < 5$, we need to use at least $N=60$ eigen-states to approximate the 3rd and 4th excited state properly.