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ABSTRACT
Recently, distribution element trees (DETs) were introduced as an accurate and computationally efficient
method for density estimation. In this work, we demonstrate that the DET formulation promotes an easy
and inexpensive way to generate random samples similar to a smooth bootstrap. These samples can be
generated unconditionally, but also, without further complications, conditionally using available informa-
tion about certain probability-space components. This article is accompanied by the R codes thatwere used
to produce all simulation results. Supplementary material for this article is available online.

1. Introduction

Inmany statistical problems, resamplingmethods such as cross-
validation—used, for example, for the evaluation of regression
models, jackknife—applied for estimator bias reduction (Leger,
Politis, and Romano 1992; Chernick 2012), or bootstrap meth-
ods (Efron 1979) are applied. Bootstrapping is, for example,
applied to determine—based on an available ensemble of n inde-
pendent and identically distributed samples x1, x2, . . . , xn that
stem from an unknown d-dimensional probability density p(x)
with x ∈ �—the distribution of an estimator (Hinkley 1988).
The resulting distribution can be further used to evaluate stan-
dard errors and confidence intervals, or for hypothesis testing.

The basic concept behind the bootstrap is the use of simu-
lated bootstrap ensembles x∗

1, x∗
2, . . . , x∗

n that are, in the case of
the standard bootstrap, generated from the empirical distribu-
tion function pn(x) = 1

n
∑n

j=1 δ(x − x j) with the Dirac func-
tion δ. Alternatively, bootstrap ensembles may be obtained from
a parametric model (parametric bootstrap) or from a smoothed
density resulting typically from kernel density estimation (KDE;
Hesterberg 2015) (smoothed bootstrap). Based on the available
ensemble and the simulated bootstrap ensembles, the properties
of a statistical quantity, for example, a parameter estimator, can
be extracted. The standard and smoothed bootstraps enable
this extraction by means of Monte Carlo simulation without
further parametric assumptions about the underlying distribu-
tion p(x), which renders both bootstraps particularly useful.
Under certain conditions, Silverman and Young (1987) have
demonstrated that the smoothed bootstrap leads to parameter
estimates at reduced mean square errors compared to the
standard bootstrap. Hall, DiCiccio, and Romano (1989) have
shown that the smoothed bootstrap has an improved error con-
vergence for increasing n over the standard bootstrap, when the
statistical quantity of interest involves the probability density
such as when estimating quantiles. Moreover, smoothed boot-
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strapping is advantageous when applied for optimal bandwidth
selection in KDE (Leger, Politis, and Romano 1992; Taylor
1989).

In addition to existing density estimation methods such as
KDE (e.g., Silverman 1998; Botev, Grotowski, and Kroese 2010;
Scott 2015) or mixture-based approaches (e.g., Ferguson 1973;
Neal 2000;Wang andWang 2015), we recently introduced a new
nonparametric density estimator that is based on distribution
element trees (DETs; Meyer 2018a). Here, the d-dimensional
probability space � is decomposed into m disjoint cuboids Ck
with � =⋃m

k=1Ck. The density inside cuboid k is given by

pk(x) =

⎧⎪⎨
⎪⎩

n(Ck)

n

d∏
i=1

p[xi|θi(Ck)] ∀ x ∈ Ck,

0 otherwise,
(1)

and can be viewed as a simplest building block or atom of the
DET estimator

p̂(x) =
m∑
k=1

pk(x) ∀ x ∈ � (2)

of the unknown density p(x). In cuboid density (1), n(Ck)

counts the number of samples x j ∈ Ck with j ∈ {1, 2, . . . , n}
and p[xi|θi(Ck)] is a marginal polynomial density for compo-
nent xi of the d-dimensional probability space � (e.g., Meyer
2018a, Eqs. (3) and (4)). The density parameter vector θi(Ck)

is estimated from the n(Ck) samples in Ck. The cuboids Ck
and their densities pk(x), that form a so-called distribution
element (DE), are resulting from a tree-like subdivision process
with cuboids (tree nodes) being divided into subcuboids (tree
branches). Subdivisions are determined by a goodness-of-fit
test that evaluates locally the compatibility of density (1) with
the samples contained inCk. This subdivision criterion resolves
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termination issues of earlier tree-based methods (e.g., Wong
and Ma 2010; Ram and Gray 2011; Jiang et al. 2016) and leads
to a highly adaptive estimator with a density that is either piece-
wise constant, piecewise linear, etc., depending on the DE order
or more precisely the order of p[xi|θi(Ck)]. The performance
of the DET estimator was evaluated in a series of test cases of
different dimensionality involving Gaussian mixtures as well as
other densities including discontinuous ones. The linear DET
estimator was found to be more accurate and computationally
efficient than existing tree-based approaches such as density
trees (Ram and Gray 2011) and limited-lookahead optional
Pólya trees (Wong and Ma 2010; Jiang et al. 2016). Moreover,
compared to the highly cited adaptive KDE of Botev, Grotowski,
and Kroese (2010), that is based on the solution of a nonlinear
diffusion partial differential equation (PDE) and a fix-point
iteration involving a linear diffusion PDE, the linear DET
estimator displayed equal or superior mean integrated square
error (MISE) convergence rates and scaled favorably in terms
of computational costs for increasing n.

In this work, we are making use of the structure of the DET
estimator given by Equations (1) and (2) to formulate a smooth
bootstrap that allows for the simulation of (un)conditional
samples. The underlying formulation is outlined in
Section 2 followed by exemplary simulations presented in
Section 3.

2. Formulation

In the smoothed bootstrap resulting from KDE, a sample is
generated by (I) drawing a sample from the available ensem-
ble and by (II) adding noise to it, as implied by the kernel
located at the selected sample (Efron 1979, Eq. (3.11); Scott
2015, Sec. 3.9.1). Given the DET estimator (2), samples can
be generated based on a similar two-step procedure, as is out-
lined in a first step for the unconditional case in the following
section.

2.1. Unconditional Generation

Given DET estimator (2), the probability mass for a sample to
reside in cuboidCk is given by

∫
Ck

pk(x)dx = n(Ck)

n

∫
Ck

d∏
i=1

p[xi|θi(Ck)]dx

= n(Ck)

n

d∏
i=1

∫ xki,u

xki,l

p[xi|θi(Ck)]dxi = n(Ck)

n
,(3)

where, Equation (1) was introduced in the first step,
∫
Ck

. . . dx =
∫ xk1,u

xk1,l

∫ xk2,u

xk2,l

· · ·
∫ xkd,u

xkd,l

. . . dxd · · · dx2dx1,

cuboid k is defined as Ck =∏d
i=1[x

k
i,l, x

k
i,u] with lower and

upper bounds xki,l and xki,u, respectively, and the last step in
expression (3) is based on the normalization condition of the
marginal densities, that is,

∫ xki,u
xki,l

p[xi|θi(Ck)]dxi = 1.

Therefore, to generate a random sample x∗ based on an
existing DET estimator, first, we randomly pick a DECk accord-
ing to the probability masses n(Ck)/n. Inside the selected Ck,
components xi are statistically independent (see Equation (1)).
The x∗

i are thus generated in a second step based on uni-
formly distributed random numbers y∗

i ∈ [0, 1] and the inverse
cumulative distribution functions (CDF) of the marginal densi-
ties p[xi|θi(Ck)] as x∗

i = P(−1)[y∗
i |θi(Ck)]. For the constant and

linear marginal densities considered in our earlier work (Meyer
2018a), the inverse CDFs are available in analytical form.

2.2. Conditional Generation

In a next step, a sample x∗ shall be generated under the con-
dition that components xq+1, xq+2, . . . , xd with 1 ≤ q ≤ d
take known prescribed values. Here, q = d corresponds to the
unconditional case discussed in the previous section, whereas
with q = 1 all but one, or more precisely, all but the first com-
ponent of x∗ are known. It is pointed out that the ordering of
components xi with known components following unknown
components serves the sole purpose of a simplified notation.
The conditional density of the remaining random components
x1, x2, . . . , xq is then given by

p(x′|xc) = p(x1, x2, . . . , xq︸ ︷︷ ︸
= x′

| xq+1, xq+2, . . . , xd︸ ︷︷ ︸
= xc

)

= p(x1, x2, . . . , xd )
p(xq+1, xq+2, . . . , xd )

= p(x)
p(xc)

, (4)

where

x =
(
x′

xc

)
, p(xc) =

∫ x1,u

x1,l

∫ x2,u

x2,l
· · ·
∫ xq,u

xq,l
p(x) dxq · · · dx2dx1

is a normalization constant, and xi,l and xi,u are the lower and
upper bounds, respectively, of component xi of the probability
space �. Similarly to derivation (3) in the unconditional case,
the probability mass for a sample to reside in cuboid Ck—with
Ck honoring condition

xi ∈ [xki,l, x
k
i,u] ∀ i ∈ {q + 1, q + 2, . . . , d}, (5)

which accounts for the known prescribed components—is
given by
∫ xk1,u

xk1,l

∫ xk2,u

xk2,l

· · ·
∫ xkq,u

xkq,l

p(x′|xc) dxq · · · dx2dx1

= 1
p(xc)

∫ xk1,u

xk1,l

∫ xk2,u

xk2,l

· · ·
∫ xkq,u

xkq,l

p(x) dxq · · · dx2dx1

= 1
p(xc)

∫ xk1,u

xk1,l

∫ xk2,u

xk2,l

· · ·
∫ xkq,u

xkq,l

n(Ck)

n

d∏
i=1

p[xi|θi(Ck)] dxq · · ·

dx2dx1

= 1
p(xc)

n(Ck)

n

d∏
i=q+1

p[xi|θi(Ck)]
q∏

i=1

∫ xki,u

xki,l

p[xi|θi(Ck)] dxi

= 1
p(xc)

n(Ck)

n

d∏
i=q+1

p[xi|θi(Ck)]. (6)
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Figure . The ensemble with 106 samples resulting from the Gaussian density () is shown in x1-x2-x3 probability space. Conditioning x1-x2-planes at x3 = 0 (blue dashed)
and  (red dash-dotted) are provided as well.

This result is based on Equations (1), (2), and (4). Therefore in
the conditional case, the probability masses from the uncon-
ditional case n(Ck)/n are modified by the constant 1/p(xc)
and a factor. The latter involves the marginal DE densities
evaluated at the prescribed values and thus differs among the
DEs that intersect with the conditions xc or more precisely
satisfy condition (5).

In summary, to generate a sample x∗ with components
xq+1, xq+2, . . . , xd prescribed, the cuboids or DEs satisfying
condition (5) are identified and oneDE from this set is randomly
picked according to the probabilities (6). Based on the marginal
densities of the selected DE, components x1, x2, . . . , xq of x∗

are determined in a second step based on uniformly distributed
random numbers y∗

1, y∗
2, . . . , y∗

m and inverse CDFs like in
the unconditional case (see last paragraph of the previous
section). Given the tree-based arrangement of the DEs intro-
duced in our earlier work (Meyer 2018a, sec. 2.2), the DEs
that honor condition (5) can be identified efficiently. To this
end, we start at the tree root (cuboid corresponding to �) and
navigate along branches keeping track of cuboids that satisfy
condition (5).

3. Simulations

As an illustration of the outlined (conditional) DET-based
sample generation method, we provide three different examples
involving linear DEs.

3.1. Trivariate Gaussian

The first case deals with an available ensemble with n = 106
samples that stems from the Gaussian density

p(x) = exp
[− 1

2 (x − μ)�C−1(x − μ)
]

√
(2π)d det(C)

(7)

with d = 3, x = (x1, x2, x3)�, mean vector μ = (0, 0, 0)�, and
arbitrarily chosen covariance matrix

C =
⎛
⎝ 0.35 0.25 0.5
0.25 0.4 0.6
0.5 0.6 1

⎞
⎠ .

The degree of statistical dependence among the components xi
is illustrated in Figure 1, where the available ensemble is
depicted. Given the data and using the DET implementation
(Meyer 2018b), a linear DET was constructed with equal-size
cuboid splits (for details see Meyer 2018a, sec. 2.2.1). Cross-
sections at x3 = 0 and 2 of the resulting density estimate are
compared in Figure 2 against the reference density (7). Based
on the DET and using the previously outlined methodology,
105 samples x∗ were resampled under the condition that x3 = 0
or 2. The resulting conditional densities p(x∗

1, x∗
2 |x3), estimated

again with a linear DET, are depicted in Figure 2. One can
observe that at x3 = 0, where the marginal density p(x3) is
larger (like the local sample frequency) compared to p(x3 = 2),
the statistical error is locally smaller in the DET estimator used
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Figure. Conditional density anddensity estimatesof p(x1, x2|x3) resulting fromthe jointGaussian () (left column), theDETestimator (center) resulting fromtheensemble
with 106 samples (x∗

1 , x
∗
2 , x

∗
3 )� , and the DET estimator (right) based on 105 resampled (x∗

1 , x
∗
2 )� conditional on x3 are shown. Densities and density estimates for x3 = 0

and  are depicted in the top and bottom rows, respectively.

Figure . (a) BivariateDirichlet density ()with parametersα1 = 1.25,α2 = 2, andα3 = 0.75, and (b) the corresponding ensemblewithn = 105 samplesx∗ . The horizontal
lines mark conditioning locations at x2 = 0.3 and .. (c) Linear DET estimator resulting from the data shown in panel (b).

Figure . Conditional density and density estimates of p(x1|x2) resulting from the Dirichlet density () (black solid), the DET estimator (blue dashed) resulting from an
ensemble with 105 samples (x∗

1 , x
∗
2 )� , and the DET estimator (red dash-dotted) based on 105 resampled x∗

1 conditional on x2 are shown. Densities and density estimates
for x2 = 0.3 and . are depicted in panels (a) and (b), respectively.
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Figure . An ensemble with 103 samples stemming from copula density () is shown in x1-x2-x3-x4 probability space. Conditioning x1-x2-planes at (x3, x4) = (0.5, 0.5)
(blue dashed), (0.1, 0.3) (red dash-dotted), and (0.9, 0.3) (green dotted) are depicted as well.

Figure . Conditional density and density estimates of p(x1, x2|x3, x4) resulting from the copula density () (left column) and DET estimators (center and right) obtained
from ensembles with 105 bootstrap samples (x∗

1 , x
∗
2 )� resampled conditionally on x3 and x4 as indicated (rows). For the central column, the DET estimator for resampling

was computed based on an available ensemble with 106 samples, while for the right column 103 samples were used.
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for resampling, and consequently the agreement between the
reference density (first column in Figure 2) and the resulting
resampled data (last column) is better.

3.2. Bivariate Dirichlet Distribution

In a second case, the bivariate Dirichlet density

p(x1, x2) =⎧⎪⎨
⎪⎩

xα1−1
1 xα2−1

2 (1 − x1 − x2)α3−1�(α1 + α2 + α3)

�(α1)�(α2)�(α3)

∀ x1 ≥ 0 ∨ x2 ≥ 0
∨ 1 − x1 − x2 ≥ 0,

0 otherwise,
(8)

with parameters α1 = 1.25, α2 = 2, and α3 = 0.75 is con-
sidered. This parameter set leads, differently to the previous
Gaussian case, to a discontinuity along the line x2 = 1 − x1 as
is depicted in Figure 3(a), where density (8) is plotted. To fur-
ther illustrate the resampling method outlined in Section 2,
an ensemble with n = 105 samples stemming from the Dirich-
let density (8) and shown in Figure 3(b) was used as a basis,
and the linear DET estimator depicted in Figure 3(c) was con-
structed. Estimates of the conditional density p(x1|x2) for x2 =
0.3 and 0.7 resulting from the DET are plotted in Figure 4 (blue
dashed lines) and can be compared with the conditional densi-
ties derived from reference density (8). Based on the DET esti-
mator, ensembles with 105 samples x∗

1 were resampled given
the condition x2 = 0.3 or 0.7. DET-based density estimates
from the resampled data are provided in Figure 4 as well (red
dash-dotted lines) and compare well against the reference den-
sity (8) (black lines). A closer look at the DET estimators, that
is, the one from the available ensemble x∗ = (x∗

1, x∗
2 )

� (blue
dashed) and the DET from the conditionally resampled x∗

1
data (red dash-dotted), illustrates that the resampled data emu-
lates as expected the underlying DET given by the blue dashed
lines.

3.3. Four-Dimensional Copula

Finally, conditional simulations involving a four-dimensional
Gauss copula shall be presented. The copula density is given by

p(x1, x2, x3, x4)

= 1√
det(R)

exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2

⎡
⎢⎢⎢⎣

�(−1)(x1)
...

�(−1)(x4)

⎤
⎥⎥⎥⎦

�

(R−1 − I)

⎡
⎢⎢⎢⎣

�(−1)(x1)
...

�(−1)(x4)

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,(9)

where �(−1) is the inverse of the standard normal CDF, I is the
identity matrix, and the randomly selected correlation matrix R
is defined as

R =

⎛
⎜⎜⎝

1 −0.344 0.141 −0.486
−0.344 1 0.586 0.244
0.141 0.586 1 −0.544

−0.486 0.244 −0.544 1

⎞
⎟⎟⎠ .

Matrix R depicts different extents of correlation among the
components xi with i = 1, . . . , 4. To assess the performance
of the DET-based bootstrap with sparse data, original ensem-
bles with n = 103 and n = 106 samples x∗ were considered.

In Figure 5, the smaller ensemble is depicted together with
three sets of conditions involving components x3 and x4 (lines).
These sets explore different forms of the conditional density
p(x1, x2|x3, x4) as is shown in the first column of Figure 6. The
depicted p(x1, x2|x3, x4) serve as references for DET estimates
(second and third columns) that were computed from boot-
strap samples (x∗

1, x∗
2 )

�, which in turn were resampled condi-
tional on x3 and x4. The bootstrap samples in the second col-
umn of Figure 6 resulted from DETs based on original ensem-
bles with 106 samples x∗, while in the third column only 103
samples x∗ were used as a basis. For all three condition sets
(rows), the agreement between the resampled data (x∗

1, x∗
2 )

� (or
more specifically its DET estimates) and the reference density
p(x1, x2|x3, x4) is better for the large original ensemble (central
column). Nevertheless, the modes in p(x1, x2|x3, x4) are cap-
tured reasonably well given an original ensemble with just 103
samples.

The presented simulations, including DET generation and
resampling, were performed with the R scripts listed in Sec-
tion 3.3. All scripts make use of the detpack library that is avail-
able on CRAN (Meyer 2018b). An equivalent library for Matlab
is available on the MathWorks File Exchange (Meyer 2018c).

Supplementary Materials
The following R scripts are contained in the supplementary package
detrnd_test.zip:

• detrnd_test_1.R script for the trivariate Gaussian case
discussed in Section 3.1

• detrnd_test_2.R script for the bivariate Dirichlet case
discussed in Section 3.2

• detrnd_test_3.R script for the four-dimensional copula case
discussed in Section 3.3
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