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On the Choice of the Class Intervals in the Application of the
Chi-Square Test

1. Introduection

transformatio

(1.1) Hy: Flz) =Fyx) =2, 0251,
To apply the y2-test, the interval [0, 1] is divided into k different class intervals
by choosing the corresponding end points as

(1.2) O=ay <oy <<y <y, =1.

Suppose we have a sample of size » of the corresponding random variable X,
and let N,,i =1,2,..., % be the number of sample elements in the i™ class
interval, then the test statistic of the y2-test for A, is given by

k /AT e A2
—— ey ALV = T TT)"
(1.3) X AT
1‘:{ nm; ’
where
)
(1.4) N, =n,
i=1
(1.5} wo=x,— %, b=1,...,k.

[On the left side in (1.3) we used the common symbol for the statistic of the
y2-test introduced by CoCHRAN ]

Assuming that H, is true, X> has for large n a y>-distribution with & — 1
degrees for freedom. Therefore, one defines the y2-test by the rejection region
% \

{ . (n; — n ;)2 9
(16) R:é(nl,...,nk): x“=2T>1a’k_1€s

1
i J
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where z2 ,_; is the upper a-point of the y>-distribution with & — 1 degrees o
freedom.

From a practical point of view an important question is: When can » be con-
sidered large enough to use the y2-distribution for X2? For this question we

efer, for example, to VESSEREAU's [1] and SpaxTeER’s [2] papers. We are

4

more interested in the choice of £ and the n;.
In 1942 Maxx and Warp found that |

existed rules of thumb on the choice of £ and ;. Therefore they tried in their

paper [3] to formulate exact principles for this choice. f . I

z2-test is locally unbiased in the special case of

Let C(4) for 4> 0 be the class of alternative distributions withd (#,, F) = 4.
Let f(n, k, ) be the power of the y2-test for fixed n, k, and F under the condition
(1.7). Then we can summarize their results in the following

Theorem 1: Let
(1.10) Jon, k, 4y = inf f(n, k, F)

FEC(4)
and let k, be that k which mazimizes fy(n, k, 4). Then, for
5 4
1.11 A=a =2 =
(1.11) e
and
(1.12) &, =[4]/ = }
we have
P . , 1
(1.13) lim fy(n, k,, 4,) =5

R—=o0

where ¢, is the wpper a-point of the standardized normal distribution.

Theorem 1 says that for large » one can reach a power of about a half or more
against alternatives F; with a distance of at least 4, from F, by taking £, as
the number of class intervals. The choice (1.12) for the “optimal” k£ leads to a
rather high number of class intervals. For example, for n =200 and « = 0.05
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the formula {1.12) leads to k, = Wirsians [4] investigated formula (1.12),
and he found that ta.kincf .7<. as the opf'mal” number of class intervals

for n = 200 would not s 1floantlv deteriorate the power of the test, in practice.

N

Since in [5] it 18 not clearly defined how mall 1 may be in order to apply the
e of thumb, we refer for small n (< 50) to DLAKTER 8 paper [7] in which
power of the v2test for small » and small ratics »/k is investigated by Monte

instead of Manw and WALD’s notion (1.9).

2. Approximation of the distribution of X

We assume that the N, have a multinomial distribution with the probabilities
7t =1,2,..., k. Especially if H, is true we have p, ==, for1 =1,2,..., k.
A cumbersome but not difficult calculation leads to the following expressions

y 3

for the expectation and the variance of X2;

(2.1) E(X?) =k — 1+ nd2— 5 +Z’1
7=1 7
i3 00 L val A WA 4\ A a4y SO "’(IC—J') { Rl ! Iiz
(2.2} varid-} =2 — 1} +~4noe-— ———— 4 — +— —
V(] n "
with
(‘7 9) Vi =P — Ty, b =1,2 k
ko2 -
. Y7
(2.4) 01 = )=,
i=1 W

/.‘_/_f Jl i
o T= i
(2.5) E s
tdan—1m—2) VI _om 1) @2n — 3) 8
1 A JARY /,L':/-f n’_} \ 7\ / 3
r ’}/ &
R2=[4(n—1)(2—(§—’)——‘2k]ll-— _)7%]_):’—%
(2 6) i = T )izt b2
: i3 k
. 271_1“ 7 11—k
kN 2 L
i-1 T T
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TUunder the condition that all 7, = 1k, the expressions (2.1} and (2.2) are
o~

it Arl 4
MEiL l)llll':? IR0 AN
(2.7 E(X2) =42 — 1+ nd2— 92
QL A 2 ay Dy PR 1 N 2{\;{.—1 f sz < i £
(2.8} Var{X?) = 2k — 1} + 4 nd? — e G2
n n n
with
(20 P =27k {m 1y = 2 D/ 1YV (D2 — 2V A2
\.'_u) L1y =LA 8>\ia— ) _:}——"_\?'Lw*i(aw 3/‘\}
k
(2.10) R, =4 kn— 1) (n—2) Vb
i=1

Let us now consider the non-central y>-distribution with & — 1 degrees of
freedom and the non-central parameter A2, Its characteristic function is given by

et (1 ~2it)

fana 781 1 wa denote bv -2 ihe vandon variahle whirh correanonde to o (7 i
\ s LVJ, A Y U A/ LAV UL V\J“V L VIiiC L QuilivJlly YV ALiwrrivw YY i1l wuUL L VUI}UALMU i \l/ \l/ /’ v
s 3 . I:} 4 4N i1
y (<.11) thav

Setting

(2.14) A2 = nd?

and comparing (2.1), (2.2), or (2.7), (2.8) with (2.12) and (2.13), respectively, we
see that the first two terms coincide. Generally it is possible to show (see EIsEx-
HART [8]) that for

A .
pp=at—=, 4,20, i=1,2,...k,
Yn

and for n — oo the random variable X2 has a non-central y2-distribution with
k — 1 degrees of freedom and the non-central parameter

T

l
(S
15

o

i=1 T

In the special case where all 7; = 1/k, we can see by comparing (2.1), (2.2)
with (2.7), (2.8) that the approximation of the distribution of X? by the non-
central y2-distribution will be better, in general, than for arbitrary =;.

Indeed we know the characteristic function ¢(¢) of %°2, but the corresponding
distribution function can only be represented as a complicated infinite series.
Therefore it is more convenient for analytic investigations to approximate the
distribution of y"2 by a simple expression. There are several approximations in the

literature. We use the one given by Parxaix [6] which is also used in [5].
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362 B. SCHORR

for arbitrary and fixed 7, (1 = 1,2, ..., k). n, k£ and o > 0. To solve this problem
it is sufficient, because of the lemma of paragmph 2, to determine

and to insert it i t{ . To determine {3.3) it is not
I 1 i he distance {1.9) used by Max¥ and

hard to see that, anaxogouaiv to the case of

WaLD, it is sufficient to confine F € §{(p)—we now drop the index “1”—to the

(3.4) Fly=x €0, 1).
Since we are only interested in I > 0, we have another condition for g:
I
= 2 -
(3.5 —2—.}:761&‘_,
t=1

7| 74
X3
.Igy
ﬂy
I ! t -
X7 Az X3 Xg=T Fig. 1

oy

Under the hypothesis {3.4) we have for F € S{o):

1
(3.6) J[F)—aldr =p.
i
By partial integration and because of (1.5) we can write (3.6) as
T 1
(3.7) Y [ afmdr=——o
1=1 Z;_q et
Sinece f ig continuous and non-necative (\3 ’7) can he written as
E 1
(3.8) Yamsg e
P
where

(3.9) nuas£=s,
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and

i

iIi

of
1 OL

(3.12) S =1,
7 T
(313> Eng Eni) 7 :1727 7;‘7— 15
1=1 T=1
k 1
(3 14:) )_757?1 = > —Q,
=1 “

and (3.12) follow from the fact that the p, are prob-

1
abilities. Formula (3.13) follows from (3.4), and (3.14) from (3.6) and (3.8),

respectively.
Suppose that in (3.14) the &; are known constants, then problem A is a problem
of mathematical programming with the quadratic cbjective function §2 and the

afara oananially a
10re espeliany & P

linear vestrictions (3.11) through (3.14), and there n
convex programming for which the KvaN-TUCKER theorem (see KinNz1I et al. [9
gives necessary and sufficient conditions for the solution.

Therefore we first determine the &;,. Suppose we havé a step function, such as,
for example, that shown in Fig. 2, which with p%, p%, . . ., p} yields the minimum
of 42 where in (3.6) the equality sign is valid. Such pf always exist for every o
with 0 < p < 1/2. Then we can show that this step function is the only distribution
en conditions. For, a

a

o
<

—

function for Wh ch 42 takes its minimum under th

ol
=]

distribution function F with

25
(3.15) pi= [ dF, i=1,2,.. .k,
zi-1
which lies under the step function as in Fig. 2 has o (z, F) < ¢. The function F
cannot lie above the step function, because of the monotonicity of a distribution

function.
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Therefore we can see that the density functions f of the distribution functions
F < S{p) which lead to the infimum of 62 must be concentrated in the limit into
the left end points of the intervals (z,_,, z;). Consequently in the limit we must
have

}
7 T
N
2
7
p*‘l Ve
el
7
* /
; Lot -
X7 Xz X3 Xg=T7 Fig. 2
2.18) £ =12 2
AV S Vi.i 3 =y i
XXT .1 16 4 DN - - 1,,,, 1T A 21 T
With {3.16) we now havs in problem A the programming problem already
mentioned. We shall denote by problem A, the epecial case of problem A where
all the &; == 1/k. The solution of problem A, will be given in theorem 2. Theorem 3

gives the solution of problem A, but only for the case where the z; are all in a
certain neighbourhood of 1/k. We conjecture that the given solution is even valid
for arbitrary m; — for & = 2 this can easily be shown — but the exact proofis still
lacking.

Theorem 2:
The solution of problem Ay is given by

o 1 {4 H 2(k T) ro s H -4\ 2 2 1
Di =7 l‘i‘r, Ty L2 ) — o]
3.17) o R
19 6 k2 ki—1r 7'—1) Ly o -
r(r-—-—l) T2k (r - 21)
fori =1,2,...,r;

(3.18) p;, =0 for i1 =r4+1,... k,

where r = r(p) is a positive integer, determined by
(3.19) r="% for

(320) r g L‘ — 1 for L{)(r + 1) g o < Ln(?’)

with

(3]
A

(3.21)  Lo(r) = =27
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The minimum of 62 is given by

(3.22) 52 roi 2 k2 k—r{. 42 T (h—rm2+ kT

0.xZ - - — — i — 0 — : '
! .k k Dy x k {r\ ma > 12 {

B Voo [ - By

with

¥Y LWLl

(9 99 D “M_‘ﬁ“—l} _ D 9 L

{3.23) o TV

Proving theorem 2 we shall formally do the steps for arbitrary x;. In this way
we can immediately give the proof for theorem 3 which is to be formulated later.
The proof is given in three stages:

1. we solve problems A and A,, respectively, without considering the conditions

e 1% i et
{3.11) and (3.13)

I1. f 3.13) is ccount;
IIT, formm 3.11)is account

The f stage leads to a problem which can be solved by the method
()f EA» muzrlln ’j_,i he +he multinliere Then wa cor sirler the

; i i be the multipliers. Then we consider the
T LGRANGE faneation
daAr AN Luwlivulvil
D AN s ) LI i~,‘§\»‘w.“—]"‘7, 4\i\fl-;|{!\_l—;—7A1 I 1\|
(3.24) p(pr P s ha) =020 2 pe— M+ 2h| L S hiteT g )
i1 i-1

The application of the well-known LaGRANGE method leads, after some calcula-
tion, to the equations

(3.25) oy =1+ A Fxg A, b

l
IS

k
(3.26) A+ (Exi._ln,%g =0,
\s

1
[k \ [k 1 3
£y Lwd =
(3.27) Kgxi—l Tﬂi) A+ K > iy ﬂi} =5 —0— PIE T
i=1 1=1 i=1

The determinant of the system of equations (3.26), (3.27) is given by

/ k 2
N
L1 7 — "yxi—l ﬂi)-

‘=1

o

b

—

3.28) D, =

=

D, s always positive, for it can be written as

& / E \2
. &£ / & \
(3.29) D, = 21/ %y m\x,»_l — ‘21' :c]-_lrrj) .
1= 7=

Simple geometric arguments lead to

vo| -
gl
3,

I
1]~
!

0

(3.30)

Xy 7

[
]
—_
.
i
uy
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TUsing (3.30) in (3.29) it is easily seen that D, > 0. Especially for problem
A Y i ritran her -
Sy, J_’k i %1\4\1‘11 Ly
B -1
(2 21 D =0 = > 9
\Gege i R R 12%2 7 =

Solving the system (3.26

), (3.27) and inserting the solution into (3.25) yvields the
solution of stage (I) of prob

A as

3.32) P =

{
\

fore =1,2,..., k.

Since 62 is a positive definite quadratic form in the p;, (3.32) furnishes the
absolute minimum of 62 for stage (I) of problem A

mg into account th at Dk > 0

:/k. Then a rather
2 Lo 1

i,

3 Dy s s 3 5

; u11at107 V3iIeNv T0 £
is a.lway true. Slnce the left 51d f (3.33) is contmuous in the 7;, (3.33)
must also be true for all z; which are in a certain neighbourhood of 1/k. Thus

wd o orn A~ 1.
stage (1I) of problem A, is treated.

We now come to stage (IIT) of problem A. We have to check whether the p;
in (3.32) are non-negative for all p which are less than 1/2 and which satisfy the
condition (3.5).

It is immediately seen that the p, in (3.32) are monotonically decreasing in 4.

pecially we have the fact that if p, = 0, then p,> 0 fori =1,2,.. .,k — L.

Es 2
g P T, - [ D T 0 Y I [ i A A“Al, Yot Ay Al ams _11. OTi
Taking in (3.32) p, = 0 leads, after some calculation, to the conditior
D, 1 E
o
(3.34) 0= 7 + 5 21/ Ti_1 7
j:

Setting in (3.34) n;, = 1/kforall i =1, 2, ..., k yields

k+4
Tl L),

(3.35) o=

2 I
U

Summarizing what we have proved until now, we can say that for

1 D k
(3.36) —— 2 4 m<e< £ +—— D x_yw,
oot Tpo1— X 17 =t
= .
and for
1
(3.37) — < o < Lylk)
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in the special case, (3.32) vields the solution of problem for zz; in the neighbour-
'k, ially the solution of problem Ay, In addition, we can say
that if (3.36) is valid, all p, in (3.32) are positive. Therefore taking 7, = 1/k in

80 ) 1 ) o 4 - 1 ~ -
(3.32) we obtain (3.17) in theorem 2 for r =&

To prove the remainder of theorem 2 we first make a guess at how the solution
of problem A counld behave 1f ¢ is larger than in condition (3.36). We observe
that p, = 0 if s is equal to the right side of {3.36). In addition, geometric argu-

for 1 =k —1,k—2,...,3 T
the solution is of the form:

Ny ks
ments give us a hint that step by step, with oincreasing, all the p, should vanish
e assumption that

o
o3
B
[
r+
o]
ry
@
=
[}
jou)
o
3
©
Y
[«
ot
5

(3.38) p, >0 for v =1,...,r
{(3.39) pi:O for ¢ =r,r+1,...,k,

where 7 is dependent ou g. We want to solve problem A under this assumption,
" . .
p )

into account that the

takes its minimum under the conditions

(3.41) M p=1,
i=1

o] =

b2
(342)  Na,pi=——o
i=1

The solution of this problem is again obtained by the method of LAGRANGE
multipliers. After cumbersome calculations we have:

1 L4
pi=m|l + = {(Ex)—lﬂ Z, xi-l) (9 -3 + .Zx‘—lni)

(3.43) ; ]
ﬁL‘(l—xr)(Z'fw “(y ) z—l)}
j=1 J
fori =1,2,...,7wit
(3.44) D, =z, M & 7 — (Zme).
it1 ist

For problem A, we have

2 (r2— 1)

_— 2
= T 3

(345) D, =D,

Again because of (3.45) and since D, is continuous in the =;, we have D, > 0 at
least for all =, in a certain neighbourhood of 1/%.
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Thus stage (1) is treated.
Stage (I1) is expressed by the condition
8 s
(3.46) o= Ma, for s =1,2 r—1
=1 i=1
Here we first take only the special case n, = 1/k for ¢ =1, 2 k. Inserting
(3.43) in this case inte (3.48) leuds, after some calculation, to the following con-

(3.47) 0=

Stage (I1I) says that in (3.43) all the p; must be positive. Again we first take
a; = 1/k and insert them into (3.43), which leads to (3.17) in theorem 2. For this

that the
a

(3.49) o< =

after some calculation.
We now have to show the compatibility of the three conditions (3.47), (3.48),
and (3.49). We first see that for r = & (3.47) and (3.49) yield (3.19), our previous

result. In addition, for continuity we have to require that

(3.50) Lo(r + 1) S 0 < Lo(r),

ie. i ; o
opposite direction, i.e. if ¢ is given then » must be such that (3.50) is satisfied.

It now remains to show that the validity of the left inequality of (3.50) implies
both inequalities (3.47) and (3.48). But this can easily be done by simple calcu-
lation.

Summarizing we can say that (3.17) through (3.20) in theorem 2 are proved
under the condition that our assumption that the solution is of the form (3.38),

To show that this assumption holds, we use the earlier mentioned Kumw-
TrckER theorem (see [9]) for convex programming. A rather formal but cumber-
some calculation shows that the expressions given in theorem 2 satisfv the
necessary and sufficient conditions of the KveEN-TUCKER theorem for the solution.

Finally, when we insert {3.17) and (3.18) into 52 we obtain {3.22) and the proof
of theorem 2 is completed. But we have shown more; namely, that for all &, in
a certain neighbourhood of 1/k, (3.43) together with p;, =0fori=r-+1,...,%k
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o formulate the condition

.
t
"ng hptnppn r and .

solve problem A. However, for problem A
equivalent to (3.50) which determines th
1

= il T alll

e relati
ead to the condition

e

arguments to those which gave us (3.50)

{3.51) Lir=—-1y=Z=g< Lir) for r =23 Lk —1
with
Liry = - "'D
‘ p L
!
-~ Ty 1 Tp — E%]-lnr l r
{3.52) i=1
1 r
Ty Exi—lﬂj‘
2 A
Insprtmrr (3 43) and 101 =0fori =r + 1, ..., kinto 6% and denoting the result
1
he followin

o ’ 7 V2 &
L (1 -z, [Zx_ln—(z.] LT \]m 1]} T‘i“f“,_)jﬂz%

\j=1 / i i=rsl

From theorem 2 we can derive the following corollary for the approximation
of the distribution of X2 by a non-central y2-distribution.

Corollary:

For all n; = 1/k and for
PP ks
B35 g es

we have B, = 0 in (2.8) if the p, are given by (3.17).

The proof of this corollary is easy and may be omitted. Our corollary indicates
that the approximation of the distribution of X* by a non-central y>-distribution
in this particular case may be even better than for arbitrary p;.

Since, according to EisENmART {8], X? follows a non-central y
only for small 62 and for large n, we shall confine the rest of the pap
where o satisfies the inequality (3.36) and 1ts special case ’3 37 espeotively, for
iy, = _L//u This means that we are ucaung in ] i
r = k. This implies a fairly simple form of 67 = ;. It is easily seen that we then

obtain

]
l

distribution

(S
o}
i
jon
(W]
@]
jos
e
R
s
e
ot
&
et

(3.55) L Lt SRS

24 Math. OF Stat., Bd. 5, H. 4/3
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for arbitrary =,, and
5 > 2
.56) O =0, =———|o—=—
(3.56) k Bk m_1 (9 5 )

in the special case of =; = 1/£.
For wmpambm' with the resuits of MaxNx and WALD we cite the corresponding
EXDTGS&Ou for u,. I3 if §2 is minimized with Fe:oeut to t“le ass O l,‘—’ } of distribution

£, 8

Iunctions, Which is defined in Section 1 immediately ai"te formula (1.9). It turns

14,2
[ ey 9 2 [ LR
(3.57) 0; v = Oy = \a-—»—)
> k
Formulae (3.56) and {3.57) are of the same type (at least for large k) with respect
to the dependence of the different distances ¢ and A, respectively.

will brm0 us to our goal
The minimized power function §, (&
k, 0). We assume « and n to be gi

the error of the second kind. Since

}is de pendent on the four parameters («, »,
. In addition, let 8 be the probability of

[
< .-—
D
=]

(4.1) B =1—p(Hy)
under the condition that H, is true, we obtain a functional relationship o = ¢ (k),
when we fix the three parameters («, 8, n).

_l.n & numer Cazl C&J.C’ummon Tzlle IOLlOWIng CLlIIeI'enD COIﬂUlIld;DlUHb } lave b een

selected:
(4.2) « = 0.01, 0.05, 0.10,

(4.3) B =0.50, 0.40, 0.30, 0.20, 0.10, 0.05,

(4.4) n =50 (50) 1000; 1100 (100) 1500; 2000.

For each combination (e, ,/5’, n} of values from (4.2) through (4.4) the curves
o =@(k) for £ =10, 11, ..., 90 have been calculated, and for each of the 468

different curves the k-va 1 e which yields the minimum ¢, = gy, (%, 8, #) haves
been determined. Table 1 shows the different optimal k-values. In Table 2 one

can find the corresponding values of g,;,. Table 3 shows the op
which follow from MaxN and Warp’s formula given in (1.12). A comparison of
these values with the corresponding values of Table 1 for § = 0.5 shows that
MaxN and WALD’s values are higher than our values but not drastically so.

Now the 468 curves all show a rather flat behaviour in the neighbourhood of
the k-values given in Table 1. This indicates that one may reduce the k-values

waral Torraliioo
Licki A=V alUts
£
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Table 3
Optimal & for « = 0.01, 0.05, 0.1;
g =05andn = 50,..., 2000 M{axNN-Wazp formula)
ALPHA 01 .05 .10
BETA 50 .30 .50
50 15 17 19
100 20 23 26
150 24 27 30
200 27 31 34
250 29 34 37
300 32 36 40
350 34 3 43
400 35 41 45
430 37 43 47
500 39 45 49
550 40 46 A1
650 43 50 55
700 45 51 57
750 46 53 58
800 47 54 60
850 48 55 61
900 49 57 63
950 30 38 64
1000 51 59 65
1100 53 61 68
1200 55 G4 70
1300 57 66 73
1400 598 68 75
1500 61 70 77
260 68 78 88

without changing the corresponding o-values too much. Keeping this in mind
and in addition being willing to have simple rules for the choice of k, the class
of 468 curves was subdivided into seven different groups, dependent only on n.
A fixed k-value was assigned to each group, to be considered as the optimal £ in
practice. The criterion used to select the groups and the corresponding £ was that

the relative error e, satisfied the inequality

s o, Byn) — Omi
(4.5) o, = dFimBn Zenin g o5

r 2, .
Ymin

This procedure led to the following Rule:
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~

In order to satisfy (£.3) one may choose

k for n between
50— 150
200—350
550—800
33 850 —1000
36 1100—1300
40 1400—2000
In Table 4 one can find the relative errors e, corresponding to this rule. We

see that only for « = 0.01 and 6 == 0.50, 0.40, ¢, is higher than 0.05. It can also
be seen that e, is increasing with increasing «. In other words, for « = 0.01 or

IA

0.05 we may even slightly reduce & in the different groups without violating (4.5)

.
very much.

To
may be useful. Let

have an impression o

(4.6) Fo(z) =® (%
(4.7) F,(z) =& (m————

—_
S

Q:

lt:

oo
(T TN . L e
(Lo, £y) i 14T}
i J \
oo

can be evaluated by first differentiating o0 = p(u) with respect to v =m/o and
then integrating from 0 to u, using that o (0) = 0. The result is

P

1 u
{4.9) ¢ =7 erf (7)
with

(4.10) erf(z) = —2: fe—“ de.

= o

Table 5 shows some values of o for different u.
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w2

Final Remark

.
B, (H ) with respect to =; for fixed k and given ¢. However, this can only be done

numerically since the corresponding optimization problem is toe complicated to

Analogously to BEIER-KUCHLER and NETMANY [3] one can try to maximize
e e

be solved analytically.

Table 5
Distances between two normal distributions

lw |1 2 |3 |4 |5 |6 |7 |8 .9 1.0 |
| o | .023].056 | .084 | .112 | .138 | .164 | .189 | .214 | .238 | .251 |
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Summary
Maxy and Warp [3] have given, for the first time, a formula for the choice of the
optimal num be k of equi-probable V]__q ss intervals for the y2-test. This formula leads to

relatively high % for different numbers of the sample size. For the determination of %
they used the supremum norm in the space of distribution functions as distance notion.
Brier-KUceLER and NEUMANN [5] have improved these results and they found out that
k can be reduced. In our paper a different norm in the space of distribution functions
was used and the results are in good agreement with those of BErer-KUcELER and NEU-

MANN.
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Zusammenfassung

Jahl der optimalen
Anpassungstest gegeben. Diese Formel
N .

Mawx und Warp {31 haben n
Anzah k gleichwahuscheinlicher Kliassen beim y

T

DEIER-
und he"ausgefunden, dalBl %k reduziers Werden kann. In unserer Arbe'n rurde eine andere
Yorm im Raum der Verteilungsfunktionen verwandt und unsere Resultate stimmen mit

denen von BEIER-KUCELER und NEUMANN gut (iberein.

ilisé la norme du suprémum comme notion de
épartition. BEIER-KUCHLER et NEUMANN [5]

ot D

rapport n

nos résult
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