
Yggdrasil Specifications

Philip Müller, 13-928-304

April 19, 2019

1

meyerda
Sticky Note
general remarks:
- nice specs document!
- I like the idea with postponing a tree update (mark affected tree parts) until say a query request comes
- caching the tests (updatability) could be added later
- parallelizing the tests would be important when constructing the tree close to the root (please see dtalim in det.construct)
- cleanup the paragraphs and line indentation
- pay a bit more attention to spelling errors



Front Image Shows Yggdrasil the source is https://de.wikipedia.org/wiki/Yggdrasil#/media/File:
AM_738_4to_Yggdrasill.png.

2



1 Scope of This Document
The purpose of this document is to describes how the program will be implemented. This is done such that the
specifications are clear and an outline is available.

2 General Problem Analysis
Here we want to give an analysis of the problem.

2.1 Main Idea of the Method
The goal of the method is to estimate the probability density distribution (PDF) form a set of samples1. In
the following we assume that we have N many samples. The samples are distribution in a bounded domain
Ω ⊂ Rd. It is important to note that we assume that the domain Ω is a hypercube. In mathematical terms this
is given as.

Ω =

d∐
i=1

[
x
(l)
i , x

(u)
i

]
(1)

In equation (1)
∐

is the cross product2. x(l)i is the lowest value in the i component3 of all samples.
We then split the Ω into smaller hypercubes4 Ck, that do not overlap.

Ω =
m⊔

k=1

Ck (2)

The main advantages of this method is now, that inside such a small hypercube, Ck, we can use simple
method to approximate the density functions. Thus the samples that falls into one hypercube Ck and the one
in another hypercube Ck′ , have nothing to do with each other.

We strengthen this kind of reasoning even more. We have d dimensional samples. So if we have nk5 many
samples in cube Ck we have n · k many numbers.
Now we assume that we have pairwise independence of the dimensions. This is an approximation to mutual
independence. The reason for just considering pairwise instead of the much stronger mutual independence is,
that it is cheaper to test for.
This approximation allows us to consider each dimension separately from each other.

In conclusion this means, instead of considering N · d many samples at once. We have to consider only nk
many samples at once, but we have to do this m · d times.

2.1.1 Building of the Estimator

Start with some samples. Further we have a certain (simple) model in mind, how the distribution in a
distribution element (hypercube) should look like.

We then applies or model to all data in the current cube under consideration. We can do this for each
dimension separately.
Then we estimate how well the model explains or fit, the data. This can be tested with a goodness-of-fit (gof)
test, such as the χ2 test.

Especially at the beginning it is rather unlikely that the test will pass. But regarding what the current cube
is, a failing of the gof test, indicates that the model can not explain the data well enough. In this case we thus
split the current hypercube into a certain number of smaller cubes, that completely fill the old cube. For a
description of the procedure see section 2.1.2 on page 4.

This is applied recursively to the newly created cubes until the gof tests does not reject our model. To verify
that our second assumption, of the pairwise independence is justified, we apply independence tests. If they also
fail, we again split the cube in half and start anew. For a discussion of the steps of the test and splitting see
section 2.1.3 on page 4.

It is relatively clear that the result of this method is a tree that is called “The Distribution Element Tree”.
The internal nodes of this trees represents cuts along one dimension. The leaves or final nodes represents the
hypercubes that composes Ω.

1In the following we refer to them just as samples.
2LATEX does not have a big cross product.
3Dimension
4An other name for hypercubes in this contexts is “distribution element”.
5We define n(k) as the function that returns the numbers of samples that are located in hypercube k. when we write nk, then

we refer to “the number of samples in a hypercube in a general sense”, the contest should clarify its meaning.

3

meyerda
Cross-Out

meyerda
Inserted Text
function

meyerda
Comment on Text
please stick to the notation in the paper, superscript is used to enumerate the cuboid

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
n = sum_k=1^m n_k

meyerda
Sticky Note
introduce m as the number of hypercubes

meyerda
Cross-Out

meyerda
Inserted Text
n

meyerda
Cross-Out

meyerda
Inserted Text
n

meyerda
Cross-Out

meyerda
Inserted Text
, w

meyerda
Comment on Text
?

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Cross-Out

meyerda
Inserted Text
this

meyerda
Cross-Out

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
two

meyerda
Cross-Out

meyerda
Inserted Text
the most significantly dependent two directions (smallest p-value) and start anew

meyerda
Cross-Out



2.1.2 Splitting a Hypercube

Here we discuss the procedure if some of the gof tests where rejected. Since we assume independence it is very
suggestive to split the hypercube along the dimension, where the gof tests where rejected. Since this will only
affect the dimensions along which the test failed and act as a refinement step.

To prevent exponential grow of the elements, we will not consider all failed tests, but only two. This implies
that each cube will only be split in at most 4 smaller cubes.

Since we perform a statistical test, we will get p-values from them. Let be pj the p-value that resulted from
the test of dimension j. We will reject the null hypotheses6 for dimension j if pj is below a certain value.
The smaller pj is the stronger was the rejection of the null hypothesis. This means that it makes sense to split
along these axis first which has had a small p-value. Let be j0 be the dimension which has the smallest p-value
and j1 the dimension with the second smallest value.
Since we are in a computer we must be prepared of p-values that are very close, so close that they are from
a numerical point of view have to be considered equal. To handle such cases we need a tie breaker. We have
chosen a scheme which also consider the geometrical properties of an element. Figuring out exactly what is
done.

Not As I see the thing now, function dimtosplit only splits along one dimension, see line 222, which contains
a break.

The splitting is now done the following way.

1. We split the current cube along dimension j0 into two pieces. This results in two new cubes C(L)
k for the

left7 and C(R)
k , for the samples on the right.

2. In the case that we have to split along a second dimension, j1. In that case we split both cubes C(R)
k and

C
(L)
k again, but this time along dimension j1. Thus we have created 4 cubes.

2.1.3 Testing for Independence

When the gof tests accepts our prameteric model8 then we have to verify, that the dimensions are pairwise
independent with each other. This means we have to perform d · (d− 1)/2 many independence tests.

In the case that they are not rejected we are done with the element and consider the element as final.
However in the case when some tests fails, we have to split again.

In a first step we determine which of the pairwise tests was rejected the most, meaning has the smallest
p-value. As tie breaker we again use the geometry of the elements.

The interesting observation now is, that we have to do two splits, since two dimensions are involved Figuring
out the order in which we split. .

We then start to process the 4 new elements.

2.1.4 Finding the Split Position

We now want also discuss how we determine the position where we split. In this discussion we assume that we
split along dimension j.

Size Based This is the simplest way of spiting. Assume that the hypercube occupies the interval
[
x
(l)
j , x

(u)
j

]
,

in dimension j. So now we simply cut it in halve. Lets define x(m)
j :=

x
(u)
j −x

(l)
j

2 , then the left hypercube spans[
x
(l)
j , x

(m)
j

[
and the right one

[
x
(m)
j , x

(u)
j

]
.

Score Based The scheme that we outlined above, is simple but it does not considers the distribution of the
samples. So the other, still simple approach is, to determine the split location x

(m)
j such, that the numbers

of samples in both hypercubes is similar. Now lets denote xij the jth component of of the ith samples in the
hypercube under consideration. Then we define x(m)

j simply by the median.

x
(m)
j := median

(
{xij }

n(k)

i=1

)
(3)

6Our simple parametric model of the cube.
7All samples that are smaller than the splitting point.
8In all dimensions.

4

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
the most significant gof test (smallest p-value) or the two dimensions of the rejecting independence test with smallest p-value.

meyerda
Cross-Out

meyerda
Inserted Text
significance level \alpha_g

meyerda
Cross-Out

meyerda
Inserted Text
A

meyerda
Cross-Out

meyerda
Inserted Text
implies a 

meyerda
Cross-Out

meyerda
Comment on Text
see order on line 219 and the size statement on line 204

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
 in all dimensions

meyerda
Cross-Out

meyerda
Inserted Text
none of them is

meyerda
Comment on Text
see line 247, dimension with smaller gof p-value first

meyerda
Cross-Out

meyerda
Sticky Note
point comes after the equation, which is part of the sentence



2.1.5 Inserting

The method presented in the original paper did not discuss inserting of new samples, there the data is static.
We will now discuss how the insertions of samples works in principle.

First of all a sample is just a point, so it is determined from the very beginning in which hypercube the
samples belongs to. So a first idea would be to just recheck the cube where the sample is finally inserted and
perform further splits as needed.

However there is a problem to this approach, to be blunt it is wrong. The tree is build, by testing if the
samples fit into a certain parametric model and that they are independent. Thus a sample could have a very
strong impact on the cuts. It could for examples shift the p values in such a way that now different cuts have
to be performed as before.

To find the hypercube where we insert the sample we traverse the tree. At each internal node we check if
we have to go to the right or to the left. Instead of just following the path further down the tree, we have to
perform the gof test on all samples below that node and on the additional new sample. If the test still produces
the same result, we can go to the next node. Until we come to a final node where we can insert the samples. In
order to do the test, we have also to recompute the parametric model of that node9.
We have to do this until we reach the leaf to which this samples belongs to. We then have to perform two tests!
First of all we must redo the gof test to see if the samples can still be sufficiently explained by the parametric
model. If the model is accepted we have also to redo the independence test.

However there is also the possibility that the test that formed the split did not fail or is not the one that
is rejected the most. In that case we have to reject the sub tree that is below this cut in its entirely. From
a conceptional point of view, we merge all hypercubes below that split10 and start anew. This means we test
if the parametric model is sufficient for explaining the data and split if needed. Then we finally perform the
independence tests. Is there anything special when only one test fails or the second dimension that is selected
for splitting changes?

What happens if a new sample lies outside the box, then we will need to change a lot.

2.2 Main Observations
In section 2.1 we have outlined the method. Now we want to summarize some important points that are
important constraints for choosing the appropriate implementation strategy. They will be collected here such
that they can be addressed later.

1. The main observation is that we have a tree structure. Further we note that subtrees which are truly
distinct11 does not influence each other.
This means refining one part of the tree12 does not influences other parts, which are not subtrees.

2. During normal operations, we do not need all the samples. Instead we just need the samples that are
located in the current cube.

3. Except from splitting or merging cubes we do not work with the a complete sample, meaning the d
numbers that forms the sample vector. Instead we work with the components of the samples, but with
all samples at one.
Putting it differently, instead of thinking of nk vectors of dimension d, it is more natural to think of d
vectors of dimension nk.

4. Inserting a new sample could trigger a complete rebuild of the tree. But all parts that roost at splits
which are passed13 are unaffected by this.

5. The operations that forms a split, meaning the determining of the location are only determined by a
single dimension per split.

3 Implementation; A High Level Overview
In this section we want to give a high level description about the implementation. It is important to note that
this section, does not discusses the actual implementation, rather it discusses the strategies of the implementa-
tion. More important it outlies the strength and the weaknesses of the approaches.

9As before this involves all samples that are below the node and the new sample.
10In a sense we undo all the splits.
11I came up with this term myself, is there a correct one? It means that neither of the trees is a subtree off one of the others.

Meaning that the disjunction of the two vertex sets is always empty.
12Meaning performing a split.
13The test result is still the same.

5

meyerda
Cross-Out

meyerda
Inserted Text
t

meyerda
Inserted Text
and the independence tests are accepted as well, 

meyerda
Cross-Out

meyerda
Comment on Text
need to shift bound(s) of certain cuboids (and rescale normalized x-values of samples in these cuboids)

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
as outlined in the previous sections.

meyerda
Cross-Out

meyerda
Inserted Text
 There are no interconnections or cross-over branches.

meyerda
Cross-Out

meyerda
Inserted Text
are located

meyerda
Cross-Out

meyerda
Inserted Text
possible



3.1 General Restrictions
First of all we will here present the general restrictions. That arises purely form technical reasons.

Fundamental Data Types We store and process everything in double, why this we mean the type that is
used when we write double in C or C++. At the majority of the systems this corresponds to double precision
which usually occupies 64 bits.

However to allow changing we will use a typedef declaration, to change this data type.

Counting For counting we will use the size_t type from C. This is usually a unsigned integer that is 8 bytes
long. The standard guarantees that this value suffices to index any array.

We do not guarantee that the implementation will be able to handle that many samples, even in the presence
of sufficient memory.

Address Space We require that the address space of the user space is less than 54 bits. The consequences
of this is, that for user space code the highest 8 bits of an address are always zero.

Note that is usually fulfilled.

Numbers of Dimensions We work with vectors that have a certain length. We restrict the number of
dimensions a sample can have to 256 = 28. This choice allows us to store the length of the vector inside the
pointer.

Language The implementation will be, for many reasons be C++. The version is at least C++11. This is done
to use the bindings to python and R.

External Dependencies For establishing the binding to python PyBind11 is used. The bindings to R are
implemented with Rcpp11. These are dependencies that are required.

The consequences of not using them, would be that an imense amount of time would be needed to using the
old14 native C interfaces. This time will be lost and could have been used for other features, as the paged array.

For several reasons I would like to have Boost. Since we targeting scientist, so assuming they do not have
Boost is like we assume that they do not have fftw.

3.2 Specific Considerations
In this section we will discuss the implementation in much more detail and we will focusses on specific aspects.

3.2.1 Storage of the Samples

Where we will only discuss the memory order we use. How and more importantly where we store the samples
is discussed in section 3.2.2 on page 7. The samples could be seen as a matrix, but there are two ways to lay a
matrix into memory, row-major or column-major.

For us this means, store we the samples consecutive or store we the dimensions consecutive in memory.
As we have noticed in point 3 of the summary in section 2.2 on page 5, the only point where we have to

access the whole sample at one15 is when we split. At all other occasions, we do not need one samples, we only
need one component of a sample.
So the idea of storing the dimension consecutive suggests itself.

The advantages are the following

• When we compute the statistics we have access to the data in a form as we need it for processing. This
means that each memory load contains only data we need.
Assume we have an 8 dimensional samples. Then we would need to load all 8 double but we need only
one.

• We enable a form of potential parallelism. We assume that the the dimensions of the samples are inde-
pendent of each other. This means that we can process each dimension in parallel. This would eliminate
the need for synchronization.

However we also have an disadvantage16 that arises from this choice.
14Ugly
15Actually we can also lift that requirement.
16I thought about it, but I did not find another one. If somebody sees one, please inform me.

6

meyerda
Cross-Out

meyerda
Inserted Text
 t

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
with

meyerda
Inserted Text
sample as a

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out



• When we split17 we have to move data around. When we keep the sample in one piece, then we can
process a sample at once and we are done. If we split it, then we have to move something around for each
iteration.

• Accessing a whole sample is relatively expensive, since it involved d memory accesses.

Discussion of Disadvantages It is true that we can process a sample at once. Data movement is expensive
and slow. In order to move one sample at its final location we need to load d double from memory and write d
double back. Assuming that memory will be our bottleneck we have to wait until we finished the transaction.
If we split the samples, the moving only involves 2 double. This means that the CPU is not blocked long.

The location where we put a sample is deterministic and can be computed for all samples in advance. It is
also so, that this decision is the same for all dimensions.
So we can precomputed it and optimize it. Then this plan can be executed for all dimensions, at once.

It is true that accessing a single sample, in its entirely becomes relatively expensive. But we do not need
that capability. So it is like complaining that a toaster can not make coffee.

3.2.2 Organization of the Samples

How do we organizing the samples? The R code uses one array, that is reordered upon spiting. This is nice
since one has only to store two numbers for each leaf, the positions where the samples start and how many18.

This simple scheme starts to fail miserably as soon as we want to insert a sample. To see this consider the
situation where you want to insert the sample. You can not swap it in, since this would changes all offset of
leafs that are stored after the position. You have to update it, every single reference. You also have to put there
a heavy look and nobody can do anything, since the data is inconsistent, and it is in a way that hinders you to
do any thing else.
Also inserting empty spots into the array will not save it. Because what you do when the free space is used?
You have to update it, you have to lock it you have to pay for it.

The next idea would be, that each leaf stores more information. Instead of just the start and the end of the
range of samples that belongs to it. It stores the indexes of all samples that belongs to that leaf.
The problem is that, then we do not have consecutive memory of the sample inside the array. Which can
severely hinder performance. But it allows to insert samples without costly synchronization.

What is also a downside of having some single point of reference is, that when we have to grow this structure.
Then we have to make sure that nothing accesses the structure such that we can update it.

The discussion above shows that a very important requirement that is imposed by the ability to add samples,
is, that one can manipulate the sample storage without much cost and at the same time, does not hinder other
entities.

Going with the idea of the tree, we split the sample array into many small arrays. We then establish a 1
to 1 correspondence between an array and a leaf node. Choosing this implementation, results in the following
advantages.

• The samples of different subtrees are completely decoupled, since they are in different arrays. So one can
reorganized different subtrees in parallel, without synchronization.

• When we have to expand an array, we do not need to allocate a very big array coping all the samples
around and then deleting the old array and lock it.

• As long as we are alone in a subtree, we know that we do not have race conditions with threads that works
in another subtree. We can basically do anything we want there without synchronizing.

• We can merge all leafs beneath an inner node, without synchronization. If you have one array then
everything is blocked.

• after the first step, when we work with smaller sizes, then we need less additional memory.

We want to stress that the single and biggest advantages of this method is that subtrees are completely decoupled.
As before we now comes to the disadvantages of this implementation.

• In the initial step, we will need at twice as much memory as we would need.

• Merging involves coping of many data.

• The data is not localized anymore and could involves a lot of loads.
17Merging is easy regardless how we do it.
18One could also store where it ends.

7

meyerda
Inserted Text
l

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
c

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
A

meyerda
Inserted Text
 (split of the root cuboid)

meyerda
Sticky Note
how to do the first split without doubling the memory? this needs to be done in a clever way (maybe reshuffling)

meyerda
Cross-Out

meyerda
Sticky Note
treat the initial splits separately by reshuffling?

meyerda
Inserted Text
y

meyerda
Cross-Out



Discussion of the Disadvantages Now we want to discuss the disadvantages from above, as we have did it
before.

First of all merging involves always the movement of data. But if we do not decouple the data, then we will
have to make sure that nobody else is working on the array. This is needed that when we updates all references,
we have no inconsistency of merges that runs parallel. I agree we have to move more data, but we can do it
parallel.

It is true that when we perform a split or a merge, there is a certain time span, where we need twice as
much memory, as when we just would work with one array. However when we would grow the array, we also
would need that much memory, to be honest even more.

It is true that something distributed is costlier. However there is also a trade of that one has to consider,
since it allows to remove complexity form the implementation. To address this issue one could use preallocation
for the nodes.
Another approach is that one does not store everything in the node itself. The node just caries enough infor-
mation, that it can be used, like the split location, together with the dimension. This way only the necessary
information is loaded. If more is needed the payload can be loaded.

3.2.3 Paged Array

This is an approach that will smaller the impact of the problems that are discussed above. I consider this as
an important step in the implementation, but not the first one, and I would prefer that we consider this as a
secondary goal.

The main idea is the same as the virtual memory system. For a program the memory looks like a continuous
array, but this is not true. In order to allow multitasking the memory is split into so called pages, a page has
usually a size of 4 KB. When the user allocates memory, for example by using the new operator or malloc, for
example 1 Byte. The operation system does not return one byte. Instead it returns a full page, the C library
then manages the memory inside a page.

The idea of the paged array is now to mimic this behaviour. Instead of having a plain array for a set of
samples, we would have many pages. Arrays would be just convenient interfaces to them. This would make
merging very cheap, in a first approximation, since it contains only of merging the references.

As I said I consider this as a secondary goal. The first goal should be a working prototype, that uses classical
arrays. But if this goal is reached, the paged array should be something that comes very soon afterwards.

However for domains where we have not so much samples, then we will have some waist.

Consequences There is a consequences, a very important one too. The memory is not consecutive, it looks
only as if, with some help. To enable this, in a reasonable way, we need C++, since it allows to implement
iterators, that are not mere pointers. The compiler will optimize a lot of the over head away, if done right19.

3.2.4 Inserting

Inserting is something that we want to do. As we have seen inserting can be rather costly, since it can triggers
the rebuilding of the whole tree. So checking the whole tree after each insertion might not be a good idea.
Assume a for loop that inserts samples one by one and each time the entire tree is rebuild. It would be much
more intelligent to just insert them, or store them in some temporary structure. And after the insertion is
completed one can simply trigger one bigger update.

This would mean that the estimator can now be in some dirty or inconsistent state, but this is only a
technicality. When one has to insert that single sample and then to make an estimate, then we have no choice,
we have to do it. But if one knows that we have to add a million samples, and during that, we does not have
to make a query to the tree, there is no read operation that depends on these new samples, there is just now
reason to reprocess the tree after every single insertion.

Another statement we have to made is that inserting is serial in some sense. Building the tree should be
used by employing the parallelism of the system. By that we mean that we not support threads that inserting
data in a concurrent way. Many threads could potentially insert data, but they will be completely serialized20

by a lock.
It is important that we just have to test the nodes that where touched by the search for the final location.

The inserting of new samples basically works in the following fashion.
When we insert we walk down the tree, as we wanted to search for the leaf to which this samples belongs to.
We will mark each internal node as “dirty” as we walk down. When we have found the leaf we will insert the
new sample there.
When we want to rebuild or update the tree then we just have to redo the tests that are associated to nodes,

19This means using the Boost iterator library.
20I have a very simple idea that could help here, but this is something for later.

8

meyerda
Cross-Out

meyerda
Inserted Text
one

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
in

meyerda
Cross-Out

meyerda
Inserted Text
as

meyerda
Inserted Text
in 

meyerda
Inserted Text
f

meyerda
Cross-Out

meyerda
Inserted Text
reduce

meyerda
Cross-Out

meyerda
Inserted Text
in fact this is not how its stored

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
k

meyerda
Cross-Out

meyerda
Inserted Text
don't

meyerda
Cross-Out

meyerda
Cross-Out



which where touched during the insertion. We can do this by recursively go down. We also see that here we
have another form of parallelism there. As soon as we found a split which does not result in the same result as
before we stop. We can then merge all leafs below that split, turn it into a single big leaf, that was one there
and then start the splitting process that was discussed in section 2.1.1 on page 3.

We also see that there is a problem to this idea. It involves the recomputation of every test statistics in the
tree. Since we have not direct access to them21, it is not a simple for loop any more22. However mathematics
has some iterative nature. When we look at some test statistics then we see that they process each sample at
once and that some does not have to know the exact numbers of samples in advance23. The trick is that we
have to store the statistic in a form that allows to update the statistics when new samples become available.

The advantages of these scheme are the following.

• It is cheap and conservative. We obviously do not rebuild the tree if we do not need it.

• The checking results in a natural parallelism, that is task based.

• We have to use tests that are updatable, such that we have to store them. This does not simply involves
the statistics, but also has to hold for the parametric models.

As before we the approaches also results in some disadvantages.

• The estimator can be in an inconstant state. This means that the samples not necessarily corresponds to
the estimator.

• Since we cache the model and the statistic at each node, we will increase the storage.

Discussion of the Disadvantages I have to agree that this is true, but as it was explained above, if we do
not care if the tree is consistent or nor this does not matter and is completely irrelevant. To address concerns,
one could set the default to “update always” and the user has specifically to request that no update is performed.

It is true that we increase the storage, requirements of the node. But at the same time we also potentially
lower the computational need. So we have to trade.

3.2.5 The Degree of Parallelism

Here we want to discuss the parallelism that we are exploited. As we have seen in the construction of the
estimator, section 2.1.1 on page 3, that it is a recursive way. We have a form of parallelism that is called “task
based” parallelism.

By that we mean we have a potential leaf, so the work flow is that we create a task, job or assignment for
“checking leaf xy”, we can then simply inserting this into a queue. A thread will then grab this task from the
queue and execute this. Meaning performing the gof tests and if they are passed the independence test. If the
tests are completed, we are done.
In the case of a failing, meaning that the null hypothesis is rejected. The thread will perform the splitting24, and
generate the four new tentative leafs. Instead of performing the tests on them itself, the thread will generate
jobs for the four tests and inserting it into the queue.

Performing the update of the tree, after some insertion can also be decomposed into tasks.
As was mentioned before since the dimensions are independent they could also be processed in parallel.

However they are not really task based, they can be seen as task based, but there arises dependency. Since
one can not continue until all are completed. So it would be more appropriate to use a simple #pargma omp
parallel for.

So the best way to implement this is a pool of threads that pull tasks from a queue. Each of these POSIX
threads25, has some omp threads.
As the reader might have noticed I explicitly wrote POSIX thread for the thread pool. openMP offers task but
for me they are an enigma. openMP is good when you have a small loop that you want to parallelize, but for
anything that is more complex it is just the wrong way. I will try to use them in a first step, since they are
platform independent in theory, but I think that they are not the right choice.
By the way Boost offers thread pools.

Now we again comes to the advantages of choosing the approach outlined above.

• We exploit the inherent parallelism of the method.
21They are still in a format that allows access them easily.
22But it is only slightly more complicated, see below.
23An example is the mean, where one only has to store the sum of all samples and the number of all samples that we have

processed yet. We can simply update this statistic.
24This could also be done a job, but I does not like the idea.
25C++11 introduced the std::thread class, which offers an operating system independent interface to threads.

9

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
t

meyerda
Sticky Note
please have a look at the chi^2 test with the contingency table that categorizes the samples

meyerda
Cross-Out

meyerda
Inserted Text
ing

meyerda
Cross-Out

meyerda
Sticky Note
when constructing the tree from scratch, at the root we should at least parallelize the testing over the different dimensions or how could we parallelize things there?

meyerda
Cross-Out



• At least the parts that uses openMP are very portable at least as openMP is.

Also it has some disadvantages.

• As I have stated above, I consider openMP good for simple loop but wrong for anything more complex. So
when we have to roll out our own, which is not completely impossible, but will take its time. We should
use something that is offered by Boost, which is also portable.

• Inserting26 is serial. This is discussed further down.

Discussion of the Disadvantages As I have said, I will try to use openMP first, but as I have written several
time, I do not like it.

What is not parallel Here we want to give a small discussion about what is parallel in the first place. We
have stated that building and update as some natural form of parallelism, that is also exploited here.

Density queries can also be done in parallel. Since they are only read access and thus we will not have a
data race. So many threads can potentially access the data.

What is not parallel is the process of adding new data. This will be protected by a lock. The reason for
doing that is that it lowers the requirements on the update function of both the test statistic and the parametric
models.
One could improve that, by turning the insertion into a task and then just issue the task. Behind the scene
the process will still be serialized, but for the user it looks as if the process would work concurrently. One also
has to synchronize that with the updating, meaning that the update is postponed until all insertions has taken
place.

3.2.6 Test statistics

As we have seen to speed up the update process, we should be able to update the test statistics. As far as I
can tell this is possible to some degree for the χ2 test. What is also important is, that we must save the result
such that we can compare it with the new result.

So the interface of the test statistics will have a function which only adds the new samples to the underling
data, that composes the test statistic. This is similar to the postponed updating, this means that the test
statistic also can be in an inconsistent state.
Then after all insertions have taken place and we updating the tree, the interface also has to provide, a function
to do it. This is as performing the last step of computing the p-value out of the test statistics. In order to
potentially allow test statistics which are not updatable, we will also pass all the data, to this function such
that the statistics could be computed.

It is important to note that the splits only have to cache the gof test statistics. However the leafs have to
cache27 the independent test.

It ia also very important that the test statistic should not operate on simple arrays, but on subtrees. Subtrees
allows an interface to all the leaf. The iterator concept of C++ will allow to write it in a nice way28.

Please note that we also have to interact with the parametric model.
The advantages.

• The updatable concept allows us, to cache the statistic and avoids a costly recomputing of the whole
statistics.

• The updatable and commit concept, which we apply joins our tentative concept of the interface.

Now the disadvantages.

• Since we have to cache the test statistics, we have to store more data in the inner nodes.

• The test statistic has the bo slightly complicated than necessary, since it needs to operate on subtrees
instead of arrays. There must also be logic for the update.

Discussion of the Disadvantages Here we again discuss the disadvantages of the choices.
The decision is we cache or not, has some balance aspect in it. It is only worth if the space that is needed

is not to large and if recomputing is to expensive. I think that at some point one has to disable it, for example
a leaf does not really need it. But this is a point where only tests can show us the result.

The important word here is slightly. Since we have to operate on subtrees instead of arrays. When done
right, with iterator (provided by boost), the overhead is there but it is not that large. As I have explained
above, it turns a single loop into a two folded loop.

26Only the act of adding data, not the updating.
27If they do.
28It is a two folded loop, looping over all the leafs and in the inner loop over all the samples.

10

meyerda
Inserted Text
s

meyerda
Comment on Text
given my correction in section 2.1 this does not seem right, I would expect that both gof and indep. test stats. need to be stored at split level

meyerda
Comment on Text
I don't understand



Used Statistics In this work we focuses on the χ2, it is also the only test that is implemented. However
when we designing the test, we will make sure, that potentially other statistics could be used. This is done by
implementing a general interface and a factory like approach to create the instances.

Note on Thread Safety It is required that the object is thread safe when considering the dimensions. This
means that it should should be safe to call multiple modifying functions at the same time, iff they act on
separate dimensions. So calling some modifying function concurrently on the same dimension will result in a
data race and undefined behaviour.

3.2.7 Implementation Hint

The best way to ensure that is that object does not have a state, and the state is passed as an argument. And
the state is owned by a node. This could be done by employing the strategy pattern, which is complete state
less.

Note on Parallelism As we have explained above, we have some sort of parallelism in the testing. Since we
can potentially test in parallel. We thus allow that the function which performs the tests, can spawn threads
with openMP. However the implementation of the object is not allowed to set the limit by itself. It should be
a parameter.

3.2.8 Parametric model

The model is coupled with the implementation of the test statistic, but we will try to keep this coupling small.
But much of the design choices that governs the test statistics should be also applied here.

The basic functionality that we need is that we are able to evaluate the model at some point. We also allow
that the model does not have to ensure that the argument lies in the hypercube that is governed by the model.
This means if ~x 6∈ Ck then we have unified behaviour. However implementations are encouraged to check at
least if the result is plausible.

As we have seen with the test statistics we have to enable tentative update scheme. Since we have to redo the
gof test each time an update is performed at any node that was touched by the insertion, each node, regardless
if it is a leaf or not has to store the parametric model, that represents the results of all the samples beneath it.
We also see that the model also need to be updatable.
As before this update should not take effect immediately, but only after the update of the tree was triggered.

We also see that the implementation should, at least in a first state, not relies on arrays but on subtrees
instead. As it was explained above this increases the complexity only by a very small factor.

The advantages and disadvantages are essentially the same as for the tests, so we redirect the reader to these
sections.

Note on Thread Safety As before we require that calling non modifying functions should be thread safe in
any case. Another requirement is modifing function should not result in a data race when the dimensions that
are modified are different.

Note on Parallelism As we have explained above, we have some sort of parallelism in computing the model
parameter. Since they only depends on one dimension. We thus allow that the function which computes the
parameter, can spawn threads with openMP. However the implementation of the object is not allowed to set
the limit by itself. It should be a parameter.

3.2.9 Summary

In this section we want to summarize the discussion from above.

• The data structure which is employed is a tree. The samples are stored inside the leafs.
There is no FORTRAN style array politics.

• Parallelism is only in the building process. The usage case is that a single entity uses the object.
However by design the functions which does not involves modification29 should be technically able to be
used concurrently.

• Inserting is implemented in a transaction based fashion. Meaning that we add new data and the tree
will be in an inconsistent state. When the adding is finished, the changes are committed and the tree is
rebuild.

29By this we mark all function which are declared const.

11

meyerda
Cross-Out

meyerda
Comment on Text
?

meyerda
Comment on Text
perhaps you can even decouple this, it would be better

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Cross-Out



• During rebuilding the tree can not be used. Before the rebuilding is initiated, all accessed has to be
finished. Violation of this rule will not be checked for, and results in undefined behaviour.

• The tests and models must be implemented in an updatable way.

• Until the implementation of the paged array, we consider subtrees as the highest collection of data. And
objects that interacts with data must be able to operate on them.

• The parallelism that is used is task based. For that openMP should be used30.

• This is only a side note, but the program will make use of the pimpl idiom.

4 Project Outline
In this section we will discusses the next steps that are needed to do. Also we will outline some functionality
that needs to be implemented. This is only the main functionality. The majority of code, will then be used to
glue the parts together.

4.1 Main Classes
In this section we will describe the main classes that are needed to be implemented.

4.1.1 Node

The node is one of the most important classes. As we have explained above, we should design that it is as
small as possible, such that loading it can happens fast.

The data that is also stored in the node is then accessed in a second step, by means of a pointer. This avoids
the loading of unnecessary data.

4.1.2 Tree

This class is responsible as an interface, of the functionality of the library. It methods to access that samples
and handle queries.

It is also responsible for the data that is global for the whole tree.

4.1.3 Subtree

This class is similar to a tree, but it is different in the way that it does not won the data It is an interface that
allows to virtual merges the leaf into one. This is done by providing iterators.

4.1.4 Parametric Models and Tests

We have described the tests and the parametric models in detail above. Here we just want to say that they
needed to be updatable.

4.2 Bindings
In this section we will shortly discusses the bindings. However we have discussed them before, but just shortly.

I strongly recommend to use some tested, well known methods to create the bindings. Both languages offers
a C interface, but especially in the case of R, they are old, outdate, hard to use and error prone. Using them
will waist a lot of time.

4.2.1 Python

For the python bindings one should use pybind11, https://github.com/pybind/pybind11. It is very easy to
use and the integration is good, I have already tested it.

And it is written by a guy who understand python why more better than I do. Probably also C++.
30I would not, but we will see.

12

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
be done.

meyerda
Inserted Text
offers 

meyerda
Cross-Out

meyerda
Inserted Text
the

meyerda
Cross-Out

meyerda
Inserted Text
own

meyerda
Inserted Text
.

meyerda
Cross-Out



4.2.2 R

The R C-interface is very ugly and I strogly advivise against it. Instead I propose to use Rcpp11. It seams the
interface between R and C++. There is a great deal of documentation, even a book!.

It is designed similarly to the python interface, but does not offers this much functionality. But it works,
the interface will not look that clean as in python, but it will work. It is written by someone who understand
R far more better than I do.

4.3 Roadmap for the Implementation
In this section we want propose a roadmap that shows the steps of the implementation.

1. First a simple serial implementation. This involves implementing a framework that is designed such, that
it can be further improved. It is important that not jet all of the strategies to tackles the disadvantages
are implemented.
Also inserting is not yet implemented.

2. Then we set up some testing framework, to see if the implementation behaves as expected. I think that
we do not have to redo the full tests that are shown in the paper, but some of them should be fine.

3. Until this point we have basically ported the code from R to C++.

4. We then implement the inserting routines. This is still the dump version, that does not use the paged
array, but operates on sub trees. It depends on ow it is going if we already implement caching or not.
This should be decided if one has some more experience, with the tests.

5. We then implement the bindings to R and python.

6. In this step we implement parallelism into the building process.

7. In this step we implement the paged array. We think that from all of the explained tricks this will be the
most valuable.

8. In a last step we implement some other tweaks to improve performance.

4.4 Recommendations
My recommendations are we implement it as I have proposed in this document. Further I propose that we
make boost to our dependency. As I have said, boost is not small, but . . ..

I also recommend to lift the requirement from C++11 to C++14. The reason is quite simple, since C++14 is
basically all the stuff they forget to add in C++11 and made wrong the first time.

13

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
 a

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Cross-Out

meyerda
Inserted Text
h

meyerda
Cross-Out

meyerda
Inserted Text
o




