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On the Citoict: of the Ciass lntervlzls in the -iippE-;cation of the 
Chi-Square Test 

1. Introduction 

(1.1) H n : F ( x )  = F o ( x )  = x ,  0 5 x 2  1. 

To apply the ~2-test ,  the interval [0, I] is divided into k different class intervals 
by choosing the corresponding end points as 

(1 2 )  0 = x o < x ~ < . . - < x , ~ - , < x ~  = i .  

Suppose w e  have a ssrnpie uf size 7~ uf  the c;orrespi)nding raiidom variable 3, 
and let N , ,  i = I ,  2 ,  . . . , k, be. the number of sample elements in the ith class 
interval, then the test statistic of the ~X-test for Hn is given by 

where 
k 

(1.5) ;zt = X ~ - - X ~ - ~ ,  I = 1  , . . ., k .  

[On the left side in (1.3) we used tile common symbol for the statistic of the 
~2- tes t  introducecl by COCHRAN.~ 

Assumins that H ,  is true, X' has for large n a ~2-distribution with k - 1 

degrees for freedom. Therefore, one defines the %'-test by the rejection region 

J )  CERN, 1211 Geneva 23, Switzerland. 



%-here x z , k - ,  is the upper a-poiilt of the  xklistribution with 1; - 1 degree; of 
freedom. 

From a practical point of view an iinportailt cluestion is: K h e n  can 72 be con- 
sidered large enough to use  he x'-distribution for I:? For this questjoiz we 
refer, f ~ r  example; t o  Vsssza~ac 's  [I] and SLAKTER'S [" papers JTf: are 
more interested in the choice of i, and the xi. 
In 1912 XTxv scd $J-AL-P_L~? fnliRC! thvt  in the 2tatiEtic?.! !itef2ture there on!\- 

existed rules of thumb on the choice of k and ,zi. Therefore they tried in their 
paper [:?I t,o formuiate exac:t principles - for this choice. Tnev first. proved that tile 
x2-test is locally unbiased in the special case of 

To find an opt,irn:ul choice of k under the condition (1 .7) :  tj!ley considered an 
. . nl+r\..-.-+:~rrr L - r - r \ C h n o , o  
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Let C ( d )  for A > 0 be the class of alternative distributions with d (F, ,  F L )  2 A .  
Let f (n, k ,  P i )  be the power of the  ~2 - t e s t  for fixed n, k ,  and F I  under the condition 
( i . 7 ) .  Then we can summarize their resuits in tile foliowing 

T h e o r e m  1: Let 

1 
(1 .13)  lim f, (?a, k l l ,  A,?) = - 

n-00 2 ' 

where c, is  the upper cc-point of the standardized normal distribz~tion. 
Theorem 1 says tha t  for large n one can reach a power of about a haif or more 

against alternat~ves F I  wlth a distance of a t  least A,, from F,  by talung Jc, as 
the number of class intervals. The choice (1.12) for the "opt~mal" k leads to a 
rather h ~ g h  number of class mtervals. Fo r  example, for n = 200 and cr = 0.05 
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the formula (1.12) leads to k, = 3 1. %-ILLIARIS [A] investigated formuliL j l  .I?): 
and .. Ilp f n ~ j ~ l r j  that  ta.ki112 L0.3 X.,,] tjle "nptirna!" nilmher of jnter7-a!s 
for n 2 200 m-odd not significant,lp deteriorate the power of the tes;, in pradice. 
In !97!3 BFIER-_FIT?CHLTR S~r2rsuu is] again tried t o  i-yL~rci-e &>;T and - - .  . - 5 1 - i ~ ~ ' ~  resu::,;. The j,i.;;;>: \?: thei;re;;; 1 is bi~&d ,?ii tlie as;iln;ptjoz t&t, for lariie 

d 

-x ,". T 2  h , ~  a 20rmi;l ;listriblitiGii, In Setter aur-jro~ii21ztion of tile &istri- - - * .  

hution of Xi  giver? by FATYAIK [6] U-ZLY used. BEIER-KCCHLER and I<~lr?i~al?;~ 
came to  the following R u l e  of t h u m b .  

,> , \ -  71 ' I  I T P ,  = a : , , -  T171! : L O  -.,,r, n c ,  o,,,,,,! :LO P A w ; c , ; , C ~ ;  = l ~ ~ r a ~ s [ o s - t ~ .  ' ; ~ t . ~ ~ , y p c ~ ~ ~ c ~ e  
iJ " "."" 5"' " "'"L .'.% .a, L W " "  G L L U I ,  " '"V i l B V i i i -  -J """ J " " 

2L'?.077 7 declsio?zs. The choice of J !c ion large is n'isndra?ztageo!~s. 
Since in [5] i t  is not cietlrly defined how small 7% m s y  be in order to apply the 

r u i e  o f  t h u r n  b , we refer for smaii n (5 50) to  SLAKTER'S paper [7] in which 
the  pcwer of the  test for small n and small ratios n/k is inrestigtlted by Nonte 
Carlo siz-ililation. 

111 this paper we want to study the choice of the number of class i n t e r d s  by 
..c;,, C L r .  A ; n C n , r n l l  , . , . , , , ,g ,,LL%:, %*,.,U,",L,.~ 

2. Approximation of the distribution of XY 

JTe assume that  the Ni have a multinomial distribution wit'h the probabilities 
pi, i = 1, 2 ,  . . ., k. Especially if H,  is true we have pi = 7ti for i = 1, 2 ,  . . ., k. 

A cunlbersome lout not difficult calculation leads to  the following expressions 
i'ur tLe axpectaiioa and the ~ & ~ i ~ b i i c e  uf X ? ;  



k 

(2.10) R ,  =4X.?in - 1) (n- 2 )  Ey; .  
2 = 1 

Let us now consider the non-central ~2-distribution with E - 1 degrees of 
freedom and the non-central parameter 1'. I ts  c ta rac te r~s t~c  function is given by 

!-..#>A :&:'I 1: TT7c. 'LT7 ?I-.& --.,, 3?."%- -.?.,=. :,?Ll& xr7L;,>L ,s*?FFLx~~,n. ,~ ;e +.-. ,--!+' :- 
v v .  V I V  UDLIUYV Y-I VLXU I(*IIILLUILA Y U L L W U I U  VI I I I V I I  VUIL V U ~ V A L U U  Y V  y \ - j ,  ii 

is easy to derive from (2.11) that 

Setting 

(2.14) 2" n@ 

and comparing (2.1), ( B . S ) ,  or (2,7),  (2.8) with (2.12) and (2,13),  respectively, we 
see that  the first two terms coincide. Generally i t  is possible to show (see EISEN- 
HART [8]) that  for 

and for n i- rn the random variable ;Y? has a non-central  distribution with 
E - 1 degrees of freedom and the non-central parameter 

I n  the special ease where all xi = l/k, we can see by comparing ( 2 .  I), ( 2 . 2 )  
with (2 .7 ) ,  (2.8) that the approximation of the distribution of Xz by the non- 
central ;c'-distribution will be better, in general, than for arbit~rarp q. 

Indeed we know the characterist.ic function y ( t )  of ~ ' 2 ,  but, the corresponding 
distribution function can only be represented as a complicated infinite series. 
Therefore it is more convenient for anaiytic investigations to approximate the 
clistribution of ~ ' 2  bj7 a simple expression. There are several approximations in the 
literature. We use the one given by PATRAIK [6] which is also used in [ 5 ] .  





for arbitrary and fixed rr, ( i  = 1. 2 ,  . . . . k ) .  72, k and  p > O To solve this problem 
it is sufficient, because of the lemma of paragraph 2 ,  t o  determine 

~ (pi - .-..\- 
!? ?I, 1 ;  :,I :;-- s . :,c iiii . ' L 1 l  

\ " ' V /  F ,  E J @) PIES  (g) i2 Zi 

and to  insert it in (2.19);  taking into ~ C C ~ U E ~ ,  (3.l4): To di.termir?e (3 .3 )  it is not 
- 

ilard to see that, anaiogousiy to  the case of the distance ji .9j  used by 3 I a ~ s  a d  

WALD, it is sufficient t o  confine k; E S(r,)--we now drop the index "1"-to the 
case where, Gar essi2iDle, 

Since we are only interested in I > O, we have another colldition for r, 

is e ~ y  $0 gee from Fig. i, where the hadowP; area is the value of' the left 
side of (3,s) for k = 4, 

i 

- 
4'1 Fig. 1 

-- - ,-. - ,  under the hypothesis (3.4 j we have for Lc' t is (r, j : 

1 

(3.6) J [ F ( x j  - z ] d x  2 ~ .  
0 

By partial integration and because of (1.5) we can write (3.6) as 



Priihlrrn A :  
Find pi for i = i j  2 ,  . . . , E such that  

7-7 . -..- 
VY LGLG the ti satisfy (3 .9 ) .  

The conditions (3,111 and. ( 3 , 1 )  follow from the fact that  the p, are prob- 
abilities. Formula (3.13) follows from (3 .4) ,  and (3.14) from (3 .6)  and (3 .8) ,  
respectively. 

Suppose that in (3 .14)  the E, are known constants, then problem A is a problem 
of mathematical programming with the quadratic objective function 8' and the 
!inem reat~rictiaiis (3 .11)  through (3.14),  and t h e r ~ f ~ r e  especial!:; a problem of 
convex programming for which the KGHN-TUCKER theorem (see KCNZI et al. [9]) 
gives necessary and sufficient conditions for the solution. 

Therefbre we first determine the ti. Suppose we hav6 a step function, such as, 
for example, that  shown in Fig. 2, which with p:, pz,  . . . , p i  yields the minimum 
of 8' where in (3 .6 )  the equality sign is valid. Such p: always exist for every Q 
with 0 < ,o < i,!2. Tilei1 we can show that this step function is the only diairibiition 
f3d:2ctiGn for which 8' takes its minilxcnl the given con&t,i~n:. For, a 
distribution functior? F with 

" i 
(3.15) p : =  dF, i = l , 2  , . . . ,  k ,  

zi- 1 

which lies under the step function as in Fig. 2 Bas p (z, F) < Q. The function F 
cannot lie above the step function, because of the monotollicity of a distribution 
function. 



Therefore we can see that the density funct~ons J' of the c1str:butmn fux:ctions 
F E A'(?) wh~ch lead to the mfimum of 62 must be concentrated in the 1m1t mto 
the left end points of the mtervals ( x , - ~ ,  x?). Consequently in the limit me nlust 
have 

4 

Fig. 2 

T T T . i l  I n a n \  1 1  7 7 v. ir,n ( 3 ,  L O >  we m w  iis~p_ i11 prcfblem A the prugmnirrkg prrjuxril aireaciv 
mentioned. sizali denote j y  projlgm -4, the e~eciz i  of nrnhiem -4 %rilere r---- 
all the ni = Ilk. The solution of - problem A, will be given in theorem 2. Theorem 3 
gives the solution of problem A, but only for the case where the zi are all in a 
certain neighbourhood of Ilk. We conjecture that  the given solution is even valid 
for arbitrary rr, - for k = 2 t,his can easily be shown - but the exact proof is st'ill 
lacking. 

T h e ~ r e m  2 .  
The solution of problem A, is given by 

for i = I ,  2, . . ., r ;  

(3.18) pi=O for i = r + l ,  . . . ;  k :  

where r = r ( Q )  is a positive integer, deterniineci by 

1 
(3.19) r = ? c  for T ; ; r < ? < L , j k ) ,  - .- 
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The minimum of i' is given by 

E 2  - T ( T  - 1) 2 
Tn - - 1 . -  !- 2 /c?  k - r  ( 4E' r ( , k - ~ ) 2 - & : 3 1  - ,  13 .22 i  n; ,  =, -- ii - - E ,  I , ?  - 

: I 7 ,  2 T ( T  - 1 )  3 b2 1 1  - . -  2 ,  

Proving theorem 2 we shall formally do the steps for arbitrary xi. I n  this way 
we can immediately give the proof for theorem 3 which is t o  be formulated later. 
The proof is given in three stages: 

I. we solve problems A and An. respectively, without considering the conditions 
(3.11) and (3.13) :  

-- il. fQr,rrnula (3.13) is taken !=to a~co i jn t  ; 
1x1. );.rxu!a ( 3 , l i )  is t&e!l into accognt. 

The proof of stage (I) ieads to a probiem which can be soiveci by the rietjllod 
, . ,. ,C I ,  - i -  ,r,: - 7 l i  ,,, Ls::zayaz muit:::rers. Let ,I.,: ,I..> be the zzlr!ni:ern. I R ~ ) E  COI~Y!C.~T Z P , ~  

Lazz~xoz 5mction 

The application of the well-known LAGRANGE method leads, after some calcula- 
t ~ o n ,  to the equations 

(3.25) p ? = ~ ~ ( i + A ~ + x ~ - ~ & ) ,  i = i : 2  : . . . ,  k ,  

The determinant of the system of equations (3.'26), (3.27) is given by 

D, 1s always pos~tive, for it can be wrltten as 

Simple geometric arguments lead to  



Using (3.30j in (3.29) i t  is easily seen that D, > 0.  Especially for problem 
& A :.. LT7 

-7,) , L'k ii' ,%I " rll LJ? 

Solving the system (3.26),  (3 .27)  and inserting the soiution into ( 3 . 2 5 )  yieids the 
s o i ~ ~ t ~ o n  nf  smge (1) of problem A as 

f o r i  = i : 2  : . . . ,  k. 
Since 6' is a positive definite quadratic form in the pi, (3.32) furnishes the 

absolute minimum of 6' for stage (I) of problem A. 
To treat stage (11) ~f problem A we must find out whether (3 .32)  satisfies 

coildt;on (3.13,). TTT i ,  e ;,,sol , -  -... - .C (3 .32)  lilLo (3 .13 ) a d ,  t a h g  irito itccoul:t that  D, ;> !? 

and because of (3 .5);  it can easily be seen that (3.13) in this case is equivalent to 

for r = I! 2 ,  . . ., k - 1. Let us first take ni = l jk ,  i.e.? xi = i lk .  Then a rather 
;imi->ln i?n.li-;;i;n,tinn QhnTb-Q t,F,&t {?  22 \  is Pni2i_n.!ent 4.-. 7. > '" fc-;.;ir 7 = " 
--A - - - - - - - - - - - - - - - - - - . . - ,-.--, A- -ul La-* ." - . --- - 7- - ? 

- i, A j  ~ ~ .. ,L, L. 

which is always true. Since the left side of (3 .33)  is continuous in the xi, (3 .33)  
must also be true for all xi which are in a certain neighbourhood of I lk .  Thus 
stage (11) of pro"ueiTL 8, is treate& 

We now come to  stage (111) of problem A. JJTe have to check whether t'lie pi 
in (3.32) are non-negative for all ,o which are less than 112 and which satisfy t,he 
condition (3 .5) .  

It is immediately seen that the pi in (3.32) are monotonically decreasing in fi. 
Especially we have the fact that if p, 2 0; then pi > 0 for i = 1, 2 ,  . . . , k - 1. 
1 ' ," 0 0 ,  .- ~ a ~ l u g  lii !.3,aa! pk 2 O leads, after some calculation, to the conditioii 

Dk 1 
li 

(3.34) P 5 k f T -  z x j - l n j .  
xk-1 - xj-1 Zj 

- j=1 

j = 1 

Setting in (3.34) ni = 1/k for a11 i = 1, 2 ,  . . . , k yields 

Summarizing what we have proved until now, we can say that for 
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(3 .38)  po > O for ?: = 1 . . . ,  r  

(3 .39)  p,  = O  for i = r , r + l  . . . . ,  k ,  

takes its minimum under the conditions 

The  solution of t h ~ s  probiem 1s again obtamed by the method of LAGRANGE 
milltipl~ws After cumbersome calculations we have : 

For problem 8, we have 

Again because of (3.45) and since D, is continuous in the x,, we have D, > 0 a t  
least for all xi in a certain neighbourhood of l!k. 



Stage (111) says that in ( 3 . 4 3 )  all the pi must be positive. Again we first take 
zi = 1  Ik and insert them into ( 3 . 4 3 ) ,  which leads to (3.1'7) in theorem 2 .  For this 
formula me first look for a contiition for p such that  the pi are monotonicallp 
dPcrPsinn q ~ t n  i. Forma! differentiation ..;ith r p ~ n p p f  to 1: e t t i ~ n  tinp APTITTI- 

t3 ' r--- 
. . 6 -"- '"""" '" 

t:ye less t"li.2 zero leads t c  the cor,&tior, 

Assume that g satisfies ( 3 . 4 8 )  for given r .  Then, if p,. > 0 ,  all the pi are greater 
, ,  

,a,,, -,-, ??.,i - '- ' ' i z  ,.. . 
u r l l u r l  ~ G L L I .  u u u 2jr ) V YeiiiS Lile C O l I a i C i G Z  

after some calculation. 
We now have to show the compatibility of the three conditions ( 3 . 4 7 ) ,  ( 3 .48 ) ,  

iiiid ( 3 . 4 9 ) .  TTT.. Y Y  c; i l l a t  c:-,, 363 that for 7 = k ( 3 . 1 7 )  and ( 3 . 4 9 )  yield ( 3 . 1 3 ) ,  our previous 
result. I n  addition, for continuity we have to require that 

( 3 . 5 0 )  Lo ( r  + 1 )  5 Q < Lo (r), 
fGr git7en r &st2ynCe ((3.50); =r, we csn interpret i t  the . 

opposite direction, i.e. if Q is given then r must be such that  ( 3 . 5 0 )  is satisfied. 
It now remains to show that  the validity of the left inequality of ( 3 . 5 0 )  implies 

both inequalities ( 3 . 4 7 )  and ( 3 . 4 8 ) .  But this can easily be done by simple calcu- 
lation. 

Summarizing we can say that (3 .17 )  through ( 3 . 2 0 )  in theorem 2 are proved 
under the condition that our assumption that the solution is of the form ( 3 . 3 8 ) ,  
( 3 . 3 9 )  is true. 

To show that this assumption holds, me use the earlier mentioned KCHN- 
TTJCHER theorem (see [ Y ]  j for convex programming. A rather formai but cumber- 
some calculation shows t'hat the expressions given in theorem 2 satisfy the 
necessary and sufficient conclitions of the KCHN-TUCKER theorem for the solution. 

Finally, w h e ~  we insert ( 3 . 1 7 )  and (3 .18 )  into 6' we obtain ( 3 . 2 2 )  and the proof 
of theorem 2 is completed. But we have shown more; namely, that  for all ni in 
a certain neighbourhood of iik, ( 3 . 4 3 )  together with pi = 0  for i = 7 + 1, . . . , k 
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solve problem A. Xowever. fbr problex 4 we still Bai-e to forinuls;e the colldir;ion 
eqij.i~a.lei?t to  (3.50) xhich det~rinines the relation.; ,Y ;lll$k ,?, >Ana!oeous - 
arguments to those srhich gave us (3.50) lead to  the condition 

7 .  - .  
(3..5i! L i r -  i j  5 ? < L \ Y )  for T = 2 , s : ,  , , , k -  i 

with 

Inserting (3.43) and pi = 0 for i = r + 1, . . . , k int,o 8' and denoting the result 
L I,? - 6: we finally can foi-niillate the hllowing theorem. 

71 
I h e n r e m  3 :  -- A* - - A - *A-  

rJ'?s&r t,?? c9zdl:tioa tjzrlt ~ 2 ;  t ] & ~  - . . r e  i?% 2 c g r t s ? ~  ?2c i :a j jbn : ! r f?~~d qI,T" 1 ' I<  (2  &:?\ 
'"2 I - >  \ - - - I  

to~yethe~ with pi = 0 k r  i = r f i: . . . k yieicis the soiz~tion o j  probierfi A! where 
- .  - 

7 = k i f  ( 3 . 3 6 )  is l)ahd and 2 2 7 2 ,? - 1 i? i'2 , K i  'i is sclt&i.F;o.;' 
"' . , 

"' ? V . V " !  
I ' N 0 'Ill l ll l rY", , I  'I", ,l r 

J 5 - - ""L". ."" ,,.. .," ..-- ".." iJ 
2" ; O  .-.,',,,A, T i " ,  
11-  1 0  y 0°C; I" v y  

From theorem 2 we can de r~ve  the followmg corollary for the approulmatlon 
of the &strihllt~nn of Y3 hv a non-central /V v l - d ~ s t ~ l h ~ ~ t ~ n p  

C o r o l l a r y :  
P o r  all iz, = 1,'k and for 

,we lzccve R, = 0 in ( 2 . 8 )  ,if the pi are given by  (3.17).  
The proof of this corollary is easy and may be omitted. Our corollary indicates 

thitt the  approxiination of the distribution of S' by a, non-central ~2-distribution 
in this particular case may be even better than for arbitrary p,. 

Since, according to EISEXEART [Y], 9 2  follows a non-centrai ~2-distribution 
oniy for smail 6' atid h r  i:i,rge .YL, we silaii curdir~e t he  rest of tlig paper to the case 
where g satisfies the ineq~iality (3 .36 )  and its special case (3.371, respectively, for 
- ,,  , 7 7 .  . , 7  

".ci = I lk ,  This iileails tiiat we are iieaiing iii tileoreins 2 and 3 with the case 
r = k. This implies a fairly simple form of 6: = 62. It is easily seen tha t  we then 
obtain 

24 Xath. O F  Stat., Ed. 5 ,  H. 415 



for arbit,rary z, , anc! 

Formulae (3.56) and (3.57) are of the same type (at least for large k) with respect 
to the dependence of the differen: &stsnces an4 J, r e c n ~ o t ( ~ ~ l i -  r"-"- L A  J .  

- 
It, ~ 7 1 1 .  o~xl find r,:it, hn-;;. t ~ i  C : ~ Q ~ S P  ill ~ ~ ~ ~ i . . r i : i i ) ~  the n:iEbsr of class intsr;l-ais -- 0-- 

IVL c- - g;yrjn - . -- - a and ?i in order to reach a certain power and m d i e s t  distance Q.  A 
nxmericel investigation of approximate power function & (Hi) defined by (2.20) 
will bring us to our goal. 

The minimized power function$, (Hi) is dependent on the four paraineters (a ,  72, 

E ,  Q). We assume a and n, to he given. In addition, kt ,R he the probabilitp of 
the error of the second kind. Since 

under the condition that H I  is true, we obtain a functional relationship Q = Q (k) ,  
when we fix the three parameters (a, j3, 72). 

I n  a numericai calcuiation the following different cornbinations have been 
selected : 

For each combination ( a , ,  12) of values from (1.2) through (4.4) the c u r e s  
. . 

= Q (k)  far /;: = 10, 11, . . . , 90 have been calculated, and far each of the 458 
different curves the k-value which yields the minimum pmin = emin ( a ,  /3, n) h v a s  
been determined. Table 1 shows the different optimal E-values. I n  Tsble 2 one 

,.. ,, 7 .  - , . can Illid tiie correspori~ng vahes of emin. ,iable 3 shows tiie optinzai k-cal-ues 

which follow from MANN and WALD'S formula given in (1.12). ,4 comparison of 
these values with the corresponding values of Table I for P = 0.5 shows that 

and   AD'S ~ a l u e s  are higher than our values b l ~ t  not dmstically so. 
NOW the 468 curves all show a rather flat behaviour in the neighbourliood of 

tile k-values given in Table 1. This indicates that one may reduce the k-values 
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Table 2 

BETA 

50 
r nn 
I .'. I 

I50 
200 
250 
300 
350 
400 
450 

:fin J ' J W  

550 
n A 

OVV 

650 
.- - 

1 ilic 
7-50 

800 
850 
900 
950 

1000 
1100 
1200 
1300 
1-43:! 

1500 
nnn 
- " W C  

without changing the corresponding pvalues too much. Keeping this in mind 
and in addition being willing to  have simple rules for the choice of k, the class 
of 468 curves mas s u b b i d e d  into seven different groups, dependent only on n. 
3 fixed k-value was assigned to each group, to be considered as the optiinal k in 
practice. The criterion used to sclcct the groups and the corresponding k was that 
the relative error e,  satisfied the inequality 

This procedure led to the following Rule 
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Iii order to satisfy (4 .5 )  one may choose 

i: for n between 

In Table 4 one zao find the relative errors e,  corresponcling t~ this rule. We 
see that  only for cc = 0.01 and ,4 = 0.50, 0.40, e, is higher than 0.05. It can also 
be seen that et is increasing with increasing a. I n  other rvords, for cc = 0.01 or 
0.05 we may even slightly reduce it. in the different groups without ~ioia t ing (4.5 j 
rrery mcch. 

For .iz up to 306 our rule is almost the same as the rule of thumb given by - ::~TFR-KT?CULXR and ItT~i;~uyx i_~;, [3j Ln ad&tii_sa nilr r~lp.  is alsci ir: p o d  agree- - - - - -. - - - 
men6 with t T 7 n ~ ~ 3 ~ 9  [4] reaults d x c h  we mentioned in Section 1. 

To have an impression of the order of magnitude of the distances 9 ,  an example 
may be useful. Let 

be two distribution functions of the normal type. Then 

can be evaluated by first differentiating Q = Q ( 2 6 )  with respect t,o ZL = m ; ' ~  and 
then integrating from 0 to Z L ,  using that Q (0) = 0. The result is 

Table 5 shows some values of C, for different zi. 
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Summary 

- - >kax and WALD pj have given, for the first time, a formula for the choice of tile 
optima! number k of equi-pobab!e class inter..-als for the X"t,est. This forrr?da leac1.s to 
relatively high k for different numbers of the sample size. For the determination of k 
they used the supremum norm in the space of distribution functions as distance notion. 
BEIER-K~CHLER and N E U ~ A X N  [5] have improved these results and they found out that 
k can be reduced. In our paper a different norm in the space of distribution functions 
was used and the results are in good agreement with those of BEIER-KWCHLER and  YE^- 
MANN. 
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?&r;s et WALO [3] Btaient ies premiers qni ont donn6 une formule pour ie choiv du 
nnm_hm ~ p t i m a i  E des classes 6quiprobitbies pour ie test d'sjustement &i 2 .  Les vaieurs 
pour k qui proviennent cie eetts farmde sont re1ativemer:t g r a d e s  PO-ur diffkrents nnmbres - .  . - .. ... . . 
. r , ! - 7 - - - - * : i l - - -  T,-.-- AA+---.-,.- ,A .$- -..+ ..+, #,*- 2.- m , , n ~ A - ~ ~ -  onmma n n + ; n m  A D  

LI OCII~I I I ILII 'JL~O>.  i r l  Ui U n C . U C , I I I V L L Y I  ,b 1113 V l l U  U Y I I L O V  I a  rlVLLLIV UI* I _ ~ U ~ A  VAYI-I -----A+- Y.- "&"I- uv 

distance dans i'espace des fonct.i~ns de r6part.ition; BEIER-X~:?C~LER et NEUMANN [6j 
. . . - .  . . . -  

o~i r .  er~6i ini .8  ces r8sdtats e t  11s allt troiiv8 fiur: I'on peut redu:re 1s zaixsre !c, Hans notre 
rapport; nnus avons utiiis6 u a  antre norme tians i'espace dks fonctions de rQpartitioii et 
nos r6suitats, en pratique, confirment les r6sultats de BEIER-KUCHLER et NECMANN. 
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