YGGDRASIL Manual

Philip Miiller, 13-928-304

July 13, 2019

meyerda
Sticky Note
general remarks:
- read what you wrote at least once, better twice, three times, ... !
- add a contents section

Front Image Shows YGGDRASIL the source is https://de.wikipedia.org/wiki/Yggdrasil#/media/File:
AM_738_4to_Yggdrasill.png.

1 Scope of This Document

The purpose of this document is to describes some of the fundamental aspects of the usage of YGGDRASIL. This
manual is not complete, it only describes some fundamental usages of the library. However the source code is
considered to be a good documentation, after all it’s what YGGDRASIL itself is look—to-when-decidingwhat—to
to-do-next! However it is relatively big and not such a good starting point. This manual is considered a better
starting point, but it will/can cover only the most basic usages.

2 Used Terminology and Definitions

In this section we will present the used terminology] inside YGGDRASIL and this documentation.

Global Data space Also known as original data space. This is the data space, where the data was recorded.
This is the domain that you passed to the constructor of the tree or was estimated from the data.

Root Data Space Also known as rescaled root data space. When the tree gets the samples, they can occupy
almost any given volume of data space. Before the tree is generated, the samples are rescaled. The rescaling is
such that the samples now reside in the unit hyper cube.

Node Data Space Nodes, especially leafs, need to know their size. So each node caries a hyper cube, that
can be accessed with getDomain(). This cubes describes which part of the space g node occupy
It is important that this cube is relative to the root data space and not to the global data space.

Rescaled Root Data Space It is important that there is a distinction between rescaled node data space and
just mode data space, but not in the case of the root data space, where both are synonyms.
We do rescaling for stability, so all samples that lies in a certain node are scaled such that they lie in a unit

hyper cube. This is true for all leafs. Onesaysthatthesample lies inside the rescaled node data space, but the
leaf occupies the node data space'.

Interval In YGGDRASIL an interval is a right open mathematical interval. This means [a, b[, the end point js
not included. If not specified otherwise, or given from the contegt, an interval means a right open interval.

Leaf A leaf in a a density element tree is a final node. This means that the both kind of tests, the GOF| test,
and the independence tests, were accepted.

As a side note, in YGGDRASIL it is possible that +he tests are not accepted but the leaf svag not further split,
The reason is that one dimension of the domain has fallen bellow the threshold length. However this happens
only at depth above 100.

True Split A true split is a special kind of internal node. Such a split was directly created by the rejection
of a test. It has an associated model and test instances, which azq fitted and gested, but the test, were rejected.
See also the design specification for a further and more involved discussion.

Indirect Split An indirect split is not directly caused by the rejection of a test. It is always associated to a
true split.

Indirect splits are created if a (tentative) leaf was split in, more than one sub leafs. They are special in the sense
that they have no fitted model associated to them. In a sense they are an effect of the requirement that we only
have a binary tree.

Gang Of Four YGGDRASIL made use of several design pattern, in its internal design. Fex the name the
terminology het—is—ased—n the Gang of For book is used. The Wikipedia page is quite good.

INote it is possible that some commensts in the code does not reflect this distinction correctly, the user has to take care in such
situations.

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
 used

meyerda
Inserted Text
 the

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
the

meyerda
Cross-Out

meyerda
Inserted Text
ies

meyerda
Inserted Text
to note

meyerda
Inserted Text
measured

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
S

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
b

meyerda
Cross-Out

meyerda
Inserted Text
x

meyerda
Cross-Out

meyerda
Inserted Text
goodness-of-fit (

meyerda
Inserted Text
)

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
is

meyerda
Cross-Out

meyerda
Inserted Text
some

meyerda
Inserted Text
.

meyerda
Cross-Out

meyerda
Inserted Text
were

meyerda
Inserted Text
have been

meyerda
Cross-Out

meyerda
Inserted Text
certain

meyerda
Inserted Text
s

meyerda
Inserted Text
to

meyerda
Cross-Out

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
Here,

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
of

meyerda
Comment on Text
could add a citation with an URL using BibTeX

3 Testing of the Code

The code was tested by writing several small programs that shows the correct working of their intended func-
tionality. Also a scaling experiment was conducted, similar to the one that is presented in the paper.
However no guarantee is given that the code will work correctly. I think it works correctly but all responsibility
is rejected.

It is your responsibility alone to make sure that the output is correct. The best way is to redo the scal-
ing experiments and extend them by new distributions or new incarnations of distributions that are already
implemented.

4 Licence

The code that was written by Philip Miiller is licenced under the GNU GPL version 3 or newer. This should
be understood as an encouragement to anyone for improving this manual or the code base and share the
improvements.

meyerda
Cross-Out

5 General Organization of the Code

The code is written in an object oriented fashion. This does not mean that we use virtual function dynamic
dispatch everywhere. It means that general concepts of our thoughts maps to classes. The classes tries to do
just one thing, but good. Instead of inheritance, composition was used to combine different functionality that
belongs together, but putting them into one single class is not such a good idea.

As a small example, YGGDRASIL provides an interval class, that represents an interval. Everywhere in the code
every interaction that uses an interval operation actually uses an interval object. This allows us to change the
behaviour at one single location and-the-efeet—willtake effect everywhere.

As a mater of fact the code was designed to be self monitoring. This means that code is clustered with
asserts that enforces preconditions. However they are only activated in the debug mode. For checks that are
so important that they should be done and enforced pll the time exceptions are used.

5.1 Folder Structure

The code is organized into different folderg—Fhefelderseparating different aspect of the program. We have not
separated the header and the code files, they simply reside in the same folder. Generally one header file declares
one class, there are some rare exception, but then there are helper classes. Some function of +he classes are
implemented directly in the header file. Some other, most, longer functions, are implemented in a separate .cpp
file. If a class is large, then there are many .cpp files, which are split according to their functionality?.

5.1.1 util

This folder contains all the utility code. For example the interval and the hyper cube are implemented there.
This is code forms an important part of the internal structure of YGGDRASIL but is so general that it should
not depend on any thing else.

However this folder also hosts code that is exclusively used by the statistical tests. For example the class
that is used for creating the frequency table or the binning is implemented here.

5.1.2 interfaces

In general YGGDRASIL does not use dynamic dispatches, with some small exception where it makes sense®. The
parametric model and the statistical test, goodness-off-fit (gof) and the independence test, are both implemented
as an interface. This means that it is easy to change the underling implementation.

The interfaces offers a factory method, which allows an easy integration of new tests and models into the
code base.

New Implementation If a new model or test should be integrated into the code base the user must implement
the corresponding interface. Eor+that a new class which inherent, from the interface and all abstract functions
must be implemented. The interface defines the specification which must be followed.

5.1.3 core

This folder provides some fundamental typedefs that are used in YGGDRASIL. It also hosts the constant file,
which define some constants that are used to control some aspects of the behaviour of YGGDRASIL.
If YGGDRASIL is extended it is a very good idea to read the files.

5.1.4 samples
This folder contains some fundamental classes that deals with the storage of the sample. All of them are

sophisticated wrappers around a vector?.

Sample This class is basically one single sample. It is implemented since in some contest one works with a
sample. It is not very space efficient and should be only used when one single sample, or very few of them are
needed to be processed.

2For example all constructors are gathered in one file and tree traveling function, in a different one.

3At least from g engineering point of view.

4If we use the term vector in this document, we generally mean a class which conforms to the implementation requirements of
the standard vector class. If the meaning is different it is mentioned or should be clear from the context.

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
having an

meyerda
Inserted Text
the

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
at

meyerda
Inserted Text
s,

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
 that separate

meyerda
Inserted Text
s

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
certain

meyerda
Inserted Text
ly

meyerda
Cross-Out

meyerda
Inserted Text
with

meyerda
Cross-Out

meyerda
Inserted Text
traversing

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
t

meyerda
Inserted Text
n

meyerda
Cross-Out

meyerda
Inserted Text
,

meyerda
Cross-Out

meyerda
Inserted Text
To this end,

meyerda
Inserted Text
s

meyerda
Cross-Out

Dimensional Array A dimensional array is the building block of YGGDRASIL. As we have stated the in
the specification, the method uses independent dimension, so the dimensions are also stored independently. A
dimensional array stores one single component of many samples®.

Sample Collection As the name implies this class stores a collection of many (complete) samples. It is
implemented as a vector of dimensional array. It allows access to a single dimensions. It is also possible to
access a single sample, but this is not so efficient.

This is the structure that is used to store the sample inside a node.

Sample List A sample list is just a typedef of a vector of type samples. It is a convenient data structure
that allows fast access to a single sample, but not access to a single dimension. It is mostly used as interface.
It is also not very space efficient, since it is a vector of vectors and has a lot of over head.

Sample Array This is a space efficient structure to store many sample, it is the recommend to use instead
of the sample list. It is basically one single array # allows access to a sample.
5.1.5 factory
This folder contains the factory method of the tests, the parametric model and the splitting strategy. It also
contains the builder object which offers a nice way to simplify construction of a tree. The building object is
basically a simple way to introduce named arguments to the constructor of the tree.

If new implementation, are added the user should first xead, the files in this folder. This should thes enable
to integrate t+he new functionality.
5.1.6 stat_tests
This folder contains al the implementation of the statistical tests. Currently this are only the ones that uses
the x? tests.
5.1.7 param_models
This folder contains the implementation of the parametric models. Currently only the constant and the linear
model are implemented.
5.1.8 split_scheme

This folder contains the split scheme.

5.1.9 random

This folder is primarily needed for the testing infrastructure. It contains an interface, for the generation of
random samples that obeys a certain distribution.
The interface also implements a factory method. The function is implemented in the stdDistribution file.

5.1.10 verification

: sofa scaling experiment. However it only offers the
functlon to do thls %h&‘e actual drlver is located in the prog folder, see section 5.1.14.

The Standard Scaling Experiment YGGDRASIL has a standard scaling experiment. The scaling experiment
involves fitting a tree for many different sizes. YGGDRASIL uses 20 different sizes, that are indexed from 0 up
to 19. Each experiment is repeated several times, the standard configuration is 6 times. This is done to get
meaningful averages. The process is repeated for each combination of model and splitter as well.

1. Generate a set of N random samples from the selected distribution. The number of samples is given as
I
N = N(i) = 10*"1 where i is the size index.

2. Then a tree is generated, using the given configuration.
3. The tree is validated. This is done by checking if the tree is consistent.
4. We generate a set of N; = IV - f, where f is the so called MISE factor, which has a value of 9.

5The component is the same for all samples.

meyerda
Cross-Out

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
that

meyerda
Inserted Text
s

meyerda
Inserted Text
to be

meyerda
Cross-Out

meyerda
Inserted Text
study

meyerda
Cross-Out

meyerda
Inserted Text
 him

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
This folder contains the bulk of the code needed to conduct the

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Inserted Text
the

meyerda
Inserted Text
sample

5. We evaluate the tree at the N, many sample points and record the PDF value there.

6. We compute the MISE. For that Monte Carlo approximation is used.

5.1.11 tests

This folder hosts all the unit test functions. These are small function that performs some supper-simple
computations and then checks the result.
If you extend the functionality, please also offers unit tests.

5.1.12 pyygdrasil

This folder contains the code of PYYGGDRASIL this is the wrapper that allows to use YGGDRASIL from within
python. The interface is created with the help of the pybind11 library, see section 11.1 for more information.

5.1.13 pybindil

This folder contains the library that s used to build the interface. It is a submodule of the YGGDRASIL
repository. It is set up to follow the stable branch of https://github.com/pybind/pybind11.

5.1.14 prog

This folder contains some more involved programs. They will also be described later in more detail, see section
8 on page 11.

5.1.15 tree_geni

This folder contains the code that allows the sampling from the tree. It basically implements the second paper,

6 Implementation Notes

In this section we will present ans,list some important differences between the R and the C++-Implementation.
Some of them where already discussed in the specification, so only a small note is provided here.

e The tree is now implemented as a real tree. This was done for providing the separation needed for
insertion® of new samples and the parallelism.

e The bins gre not determined by sorting. They are now computed from the theoretical distribution.
Previously the bins where spaced such that they are uniformly according to the empirical quantiles.
However now they are spaced uniformly according to the theoretical quantiles.

This is actually the correct behaviour, according to the referenced paper.

e In R the number of samples was given by the number of samples after a unique was applied to a single
dimension. A first effect is that the number of bins can differ in each dimensions. However, except for
certain extreme cases, this should not matter much, since the numbers of bins grows very slowly.

e The application of unique also solved the problem of delta like distributions. The samples where simply
removed.
Y GGDRASIL handles such cases quite differently. It continues to split the domain until a length of a domain
falls below under a certain value. It then considers the domain as done, regardless of how bad the test is.
Note that technically the rescaling would allow for infinity long split sequences, we still have to carry the
size of the domain, relative to the unit cube. This means that we have to stop at a certain point, since
this value will at some point reach zero. Note that technically the R code is also affected by this, however
no checks are performed to detect such a situation”.

e YGGDRASIL only allows for 254 dimensions.
You have to modify the tagged pointer if you want to increase the number.

e The tree that is generated by YGGDRASIL can not be copied. It is also not possible to save it.

e In Python deepcopy relies on Pickle support® however PYYGGDRASIL does not implement pickle support.
Some classes implement explicitly a copy constructor, this can be used like a copy constructor in C++.

6Which is not jmplemented.
7Y caprasiL does this.
8Which is understandable.

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
-

meyerda
Cross-Out

meyerda
Inserted Text
i

meyerda
Inserted Text
 could add some bibliographic details to be able to identify that paper

meyerda
Cross-Out

meyerda
Inserted Text
d

meyerda
Cross-Out

meyerda
Inserted Text
, however,

meyerda
Inserted Text
yet

meyerda
Inserted Text
for the Chi^2 tests

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
ely

e In the R code the split order in the case of a rejection of the independence test, which is composed of two
splits, is determined by the p-value of the GOF test. YGGDRASIL does not use such an ordering step, the
order is unspecific.

e The R code does not keeps the samples after the tree is constructed, but YGGDRASIL keeps them. The
reason is that they are needed for the incremental building and YGGDRASIL was designed to provide that
feature at some point.

e The R code is able to rotate the sample first such that they are more suited for axes aligned bounding
boxes. This is not implemented in YGGDRASIL.

meyerda
Cross-Out

7 Compiling

This section explains how to compile the library and programs. As build system CMAKE is used. Before you
can compile the library you have to meet some fairly low requirements®.

7.1 Requirements

This section lists all the tools that are needed for compiling YGGDRASIL.
e You need a compiler that is able to support C++11. GCC supports this fully since version 4.8.119.
e You need boost.
e You need Eigen 3.
e You will need HDF5. Currently it is not needed but it can be added any time.
e Optionally openMP.

e You need CMake, at least in version 3.13. It may be possible to lower the requirements, but there is no
guarantee.

e You need pybindi1, if you want to build the Python bindings. This dependency is a submodule of the
Y GGDRASIL project. So if Microsoft did not screw up and the project is still on github and you have
cloned the project with the submodules, this dependency is no problem.

7.2 CMake Switches

The CMake file supports some switches that allows to change the behaviour at compile time. They can be
used by -D[NAME]=(ON|OFF), where name is one of the following switches.

YGGDRASIL_USE_OPENMP The default is OFF. This switch will enable the openMP support of YGGDRASIL. Note
that the support is only very simple.
However it is possible to activate only specific tasks, see next options.

YGGDRASIL_OPENMP_GOF The default is ON. This flag it can be controlled if the GOF tests are performed in
parallel. This means if the dimensions are tested one after another or in parallel.

YGGDRASIL_OPENMP_INDEP_PRE The default is ON. This flag controls if the preprocessing of the dimension in
the independence test is done in parallel or serial.

YGGDRASIL_OPENMP_INDEP_TESTS The default is ON. It controls if the actual independence tests, the interaction
between all dimensions, is done in parallel or serial.

YGGDRASIL_OPENMP_FIT The default is ON. With this flag it can be controlled if the fitting of the different
dimensions of a model is done serial or in parallel.

YGGDRASIL_OPENMP_PDF_EVAL The default is ON. This flag controls is the evaluation of pdf queries in the tree
are done in parallel or not.

YGGDRASIL_NO_MINIMAL_SIZE The default is OFF, setting this switch to ON is considered very dangerous. It will
set the minimal length of the domain to zero, this means that the splitting is not stopped at a certain
point. Setting the minimum length of a dimension will most likely result in the construction of an invalid
domain and the termination of the code.

YGGDRASIL_COMPILE_COMMANDS Setting this flag to ON will instruct CMake to generate the file compile_comand. json.
This file contains the compile commands. This flag is useful for inspecting the flags.

CMAKE_BUILD_TYPE=MODE This sets the compile mode. The default is Debug, this is not optimized code, but it
is useful for debugging. Assertions are enabled.
For production it is recommended to use the Release mode. There the code is optimized and the asserts
are disabled. However some checking is still performed.

91f your OS does not meet this requirements, consider installing a real operating system.
10T have version 8.

meyerda
Cross-Out

YGGDRASIL_WARN_SIZE_LIMIT=0N When this option is set to ON, the code will output if a test was accepted
because its size was too small. It will inform in which test it happens and which dimension was affected.
Note this option only works in Debug mode.

YGGDRASIL_MAKE_PYYGGDRASIL=0N With this flag, which is by default set to ON PYYGGDRASIL is build. Note
PYYGGDRASIL is not build the pybind11 is not needed to be present.

7.3 Compiling the Library and Test Program
In this section it is explained how to build the library!'!

1. First you have to go to the code folder. This is most likely in ${GIT_ROOT}/code/cpp.

2. CMake should be configured such that it not allows to perform in source build. For that reason you first
have to create a folder. This is traditionally named build, which is also ignored by git. After you have
done that enter the folder.

The command to do that is: mkdir build ; cd build

3. Now you must call CMake. For that use the line
cmake .. [YOUR_FLAGS]

4. Now you can build the code. You can do this by issuing the following code:
make -j N

By giving the -j flag, you instruct make to use up to N cores. Note omitting N will start all, which is not
recommended.

Now you have build the library. CMake will build a static library which reside in the build folder, its name
should be 1ibYggdrasil.a. This library can then be linked into other projects.

7.4 Compiling PYYGGDRASIL

This section explains how PYYGGDRASIL is compiled and integrated in your Python application. For that
proceed as it is explained above where for the normal compilations—see-seetion—#3. Of course you have to set
the switch for building PYYGGDRASIL to ON which is the default.

After the build has finished, the build folder will contain several subfolders. One of them, which is only
present if PYYGGDRASIL is build, will be called pyyggdrasil.
It will contain a shared module with a very technical name. On my system'? the resulted object is named
pyYggdrasil.cpython-37m-x86_64-linux-gnu.so. First part, up to first dot, should be the same on all
platforms. The second part is platform dependent as you might have guessed.

11Not yet Python.
12A GNU+Linux system, with CPython.

10

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
t

meyerda
Cross-Out

meyerda
Inserted Text
ing

8 The C++ Programs

This section briefly explains the usage of the important C++ programs. They are all implemented in the progs
folder.
Assuming you have followed the building steps in section 7.3, then the build folder will contain a progs
folder, that contains the generated executables. They can be called with the following syntax . /progs/NAME_OF_PROGRAM,
assuming you are inside the build folder.

8.1 Scaling Experiments

This program allows to performs the scaling experiments. It basically reproduces the experiment needed to
redo some of the plots that are seen in the paper. If a new distribution or a new kind'? is added to YGGDRASIL it
must be adapted here. Note that the program is basically a wrapper function around the functions implemented
in the verification folder, see section 5.1.10 on page 6.

It performs runs the experiments on all the different known distribution'.
It supports a number of arguments, the most important ones are. The arguments are parsed in UNIX
manor. The switches for the distribution can also be preceded with a no to disable them.

--save-dir=DIR The results are saved in this folder. If the path exists it must be a folder, if the path does not
exists it will be created.

--dir=DIR An alias to --save-dir.

--none Disable the testing of all distribution. This option is only useful when it is the first argument and
specific distributions are turned on with later switches.

--all Activate the handling of all distributions. This switch is implicitly specified.

--gauss Enables the testing on Normally distributed samples. You can deactivate them by using the -no-gauss
switch.

--dirichlet This switch enables the testing of samples that re distributed according to a Dirichlet distribution.
Can also be turned of by specifying the --no-dirichlet switch.

--outlier This enables the testing of the outlier distribution.
--uniform This switch enables the testing for the uniform distribution.
--gamma This switch enables the testing of the gamma distribution.

--beta This enables the beta distribution.

8.1.1 See Also

If you observe slow convergence when the median splitter is used see also section 13.2.1 on page 34 for further
information.

8.2 Dump Loader

This program is provided for debugging obscure errors. The scaling experiments dumps its state, and this
program can load it, such that a debugging is possible.
If you need this program, then read the source.

8.3 Plot Runner

This program was originally developed for generating the input for the plotting routine, but has evolved to a
simple testing program. It supports a lot of flags and its output can give a rough estimate on the performance
on the code.

It supports all the distribution flags that are also mentioned in the description of the scaling experiment
program, see section 8.1. It only allows to run one single distribution at a time, so it does not support the no
flags for disabling.

13Version of a distribution, see section 12.
14¥You have to specify them in the file directly.

11

8.3.1 Main Output

This program generates generally three output files that are needed/used by the plotting routines.
sample_x This is a file which contains the sample locations. Each row is a single sample.

pad_ex This is the file that contains the exact pdf values of at the sample locations. Each row contains one
value, the ordering is the same as in the sample file.

pdf_est This file contains the pdf that were estimated using the tree. Its ordering is the same as the ordering
of the other pdf file.

8.3.2 Flags

The flags, additionally to the distribution flags witch are listed in section 8.1, the program supports the following
flags.

--fitN SIZE The program generates SIZE many samples for generating the tree.
--LinMod The tree uses the linear model as parametric model.
--ConstMod The constant model is used for the tree.

--Median The median splitter is used, for determining the split location. This splitter is also known as “score”
based splitter.

--Size This is the size based splitter, that cuts each domain in half.

--kind With the distribution switches you select the distribution you want to test. But which distribution you
want to use from this family. This is selected with this switch, see section 12 for a list of the canonical
distributions. Note, this number can also be negative.

--print [FILE] With this flag the generated tree will be outputted to the screen. This is for a visual inspection,
but for greater trees it is not very useful. If the optional argument FILE is specified, the tree will not be
outputted to the screen, but the output is written to FILE instead.

--grid This option affects how the query samples'® are generated and also the output. This option has only
an effect if the dimension of the underling distribution is one or two. If not specified the query samples
are generated from the underling distribution.

If the dimension is larger the switch is disabled automatically.
See also section 8.3.3 and 8.3.4 for more information.

--no-write If this switch is given, then output, described in section 8.3.1, is not generated.

--gPoint1 N This argument controls the number of query points, for outputting and calculating the MISE.
In grid mode this is the number of grid points used in the first dimension. In non grid mode the total
number of query points is given by this number and the one specified by the --gPoint2 switch.

--gPoint2 N This is the number of points for the second dimension. If not specified it will have the same value
as the first dimension.

--save-dir DIR The output files are saved into that folder. Actually not correct, in this folder a subdirectory
is created, where the final files are finally located.

--exp-Name This is the name of the experiment. If empty or not given, the canonical name is used.

8.3.3 Output in Grid Mode

When the grid mode is selected and applicable'® then the samples are generated on a grid. This allows to
perform numerical integration. The pdf of the theoretical distribution and the estimated one is computed. As
well as the MISE is outputted.

Note that due to the restriction to a finite sample domain, the theoretical distribution must not necessary
integrate to one. Since some part is striped. However the estimated distribution is constructed in a way that it
should always integrate to one.

15The samples that are generated for computing the MISE.
16Meaning the underling distribution has a dimension of two or less.

12

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Comment on Text
these are now the query points used for the extraction of the density estimate (not the data points used for the tree construction)

8.3.4 Output in None-Grid Mode

In non grid mode, the samples are not generated on a grid, but are generated by the distribution object. The
MISE is then calculated by an important sampling scheme.

There no integration is performed but the mass is calculated. The mass is technically a scaled mean value of
the pdf value, (pdf). The value of the mass is pointless, however the mass of the estimated distribution should
be similarly to the one of the exact distribution.

9 Plotting

Y GGDRASIL provides some very rudimentary plotting support. They are done in python. You can find the
code in ${GIT_ROOT}/code/plotting.

9.1 Scaling Plot

The script for generating the scaling plots is implemented in the file scallingPlotter.py. It expects as
argument the path to a folder which contains results form the scaling program, which was described in section
8.1 on page 11.

9.2 1D Plotter

The plot runner program, that was presented in section 8.3 on page 11, can be used to dump the estimated
tree. The script Plotter1D.py can be used to visualize this. Currently only 1D plots are supported.

As argument it expects the path to a folder which contains the main output, see section 8.3.1 on page 12.
The calling syntax is:

python3 ./Plotter1D.py [ops] FOLDER_TO_DUMP
It also supports some arguments:
-x The z axis will be plotted in logarithmic scale.
-y The y axis will be plotted in logarithmic scale.

--x-start Defines a range where the plotting should begin. Must be specified together with --x-end.

--x-end Set the end of the plotting range.

--name This is the name of the distribution. Must not contain spaces or other funny names, will be part of the
filename.

--savedir DIR Specify the folder where the plot should be saved. If not specified the current directory (. in
UNIX speak) is used.

13

10 The C++ Interface

Y GGDRASIL is designed as a C++ library. As such it provides an interface that allows to use its functionality in
other programs. The programs presented in section 8 on page 11 are implemented that way.

It is recommended to use the C++ interface for various reasons. One of them is that it allows a much more
specific control and access to the representation of the tree.

Also a Python interface is provided, which is called PYYGGDRASIL. Since it is anticipated that YGGDRASIL
is used primary through its Python interface, only PYYGGDRASIL will be documented in this manual. However
PYYGGDRASIL was designed to mimic the C++ interface, so this document is also a good starting point even in
the case the C++ interface will be used in the end. Some important deviations between the two interfaces are
documented. However a cross check with the actual source is recommended.

10.1 Additional Documentation

The C++ code is documented with Doxygen. Thus an excellent documentation can be created by running
Doxygen. It is advised to first read the Python section before diving into the Doxygen documentation.

10.2 Implementing new Models and Tests

It is quite easy to extend YGGDRASIL with new models and new tests. This section is not a complete guide

how to do it. However for a skilled software developer the provided information should be enough to extend
the program.
The tree does not known about models and tests. The only thing it knows are interfaces'”. To extend YG-
GDRASIL with a new functionality the respective interface must be implemented. The interface is extensively
commented. It defines contracts that the implementation must fulfil. In order to be able to inform YGGDRASIL
about the new functionality, it must be integrated into the builder process. All functionality related to the
building processes is implemented in the folder factory, see section 5.1.5 for more information. The code in
that section is mostly self explanatory.

10.2.1 Note On Python

Note that the C++ builder concept was designed for extensibility. The Python Builder concept is not, the
wrapper has to be adapted for that.

11 Python Interface

This section explains how the Python interface works and how it can be used. As it was stated in the section
about the C++ interface the Python interface mimic the C++ interface. It is object oriented and makes extensive
use of the Duck-Typing system that Python have by providing lots of overloads.

The interface is called PYYGGDRASIL.

11.1 Implementation

PYYGGDRASIL is implemented with the help of the pybindi1 library'®. The code is located in the folder
pyyggdrasil, see section 5.1.12 and 5.1.13 for more information.

11.1.1 Design Principles

PYYGGDRASIL is designed to be object oriented. This means that there is no requirement to create an array
in an obscure fashion fill it with values in a certain way and hope that you do not screw up and passed it as the
right argument'® to a function that takes several arguments of the same type, and with a complete nonsensical
order that nobody can remember. Instead there is a class for each and every concept that you encounter in
PYYGGDRASIL. The underljng type system?®” will enforce the correct order.

The second aspect is that PYYGGDRASIL follows the doctrine that trust is good, but (exerting tight) control is
better. This is different from YGGDRASIL on the C++ level, where the creation of semi invalid object is easily
possible and exerting control happens only when the object is actually used.

17See also section 5.1.2 on page 5 for more information.

18See https://github.com/pybind.

19This is more a problem in C++ than in Python, at least if you use named arguments.

20Keep in mind that you actually use C++ so you have a type system, that is not perfect, but you have one.

14

meyerda
Inserted Text
y

meyerda
Cross-Out

11.2 Documentation

First of all the oral history is your friend and best source of documentation. This manual provides a generally
introduction to PYYGGDRASIL. It basically lists what is there and what is possible to do with it. It does
not really explain things by providing cute little examples, after all it is written in C++ and this is a Spartan
language?!, it explain things by listing the classes and their intent and also some of the important methods.
pybind11 also provides an easy access to the integrated documentation system of Python. So you can
simply write help(NAME_OF_PYYGGDRASIL_CLASS), inside the interpreter after importing PYYGGDRASIL, to
get a list of all functions of an object and what they do. It also works with the whole module, by writing
help(pyYggdrasil) if you have not aliased the module upon importing it PYYGGDRASIL.
So if starting up the interpreter and writing two lines then any documentation won’t help you.

A second documentation are some small example that shows the basic usages of PYYGGDRASIL. They are
implemented by means of several Jupyter notebooks, the reason is that they are quite interactive and can be
better commented than a classical Python script.

Additionally there are also some smaller scripts, that does more non-trivial things. They are less well commented
on the objects, but focuses more on the interaction of them.

As a last resort you can turn your attention to the ultimate documentation, the source code. After all it is
the documentation that YGGDRASIL itself uses when deciding what to do next?2.

11.3 Importing PYYGGDRASIL

This section is probably incomplete, since I am not a Python guru, help is welcomed.

Compiling the PYYGGDRASIL module, as it was described in section 7.4 on page 10 is not enough to use
PYYGGDRASIL. You have to import it into your project. The object that is generated might be a binary file,
but for the Interpreter it is just a regular module that you can load like any other project. You just have to
write import pyYggdrasil and the module is loaded. As you can see there is no need to enter the long and
complicated name of the object, just the first part is enough.

But this is still not enough. You have to put the object at some location where the Interpreter can feusd it.
The easiest way is to place a symlink to the shared module in the directory where your python code re-
side, aka. fermy where you call python MY_AWESOME_PROGRAM.py, that points to the shared library. The
user can find more information on this matter on https://docs.python.org/3/tutorial/modules.html#
the-module-search-path.

11.4 Error Handling

Y GGDRASIL enforces some consistency with exceptions. pybind11 will transparently convert an exception that
is thrown in C++ into a Python exception. On ths Python side they just looks like regular exceptions.

If YGGDRASIL is compiled in debug mode, there are also assertions that enforce the correct behaviour. If an
assert is violated std: :abort () is called. This will lead to the termination of the program, which is the Python
interpreter that is currently running.

11.5 Sample and Sample Containers

In this section the storage classes of PYYGGDRASIL are discussed. These are one building block of the Ya-
GDRASIL.

11.5.1 Samples

As #-was said before, YGGDRASIL provides a class for everything and so there is one for modelling a single
sample. The sample is implemented in the Python object pyYggdrasil.Sample. This class is basically a
wrapper around an array. It is not so space efficient, but offers a convenient and very direct way to manipulate
a single sample, possiblg in a for loop.

Creating A Sample There are several methods to create a sample. One restriction is that the dimension of
the sample must be greater than zero.

ypYggdrasil.Sample(d) This will create a sample of dimension d. All the components will be initialized to
Zero.

21Linus Torvald said this about C, but if you compare C++ to Python it can be also applied.
22This is adapted from Life with UNIX.

15

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
-

meyerda
Cross-Out

meyerda
Inserted Text
find

meyerda
Cross-Out

meyerda
Inserted Text
from

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
e

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Cross-Out

meyerda
Inserted Text
py

pyYggdrasil.Sample(d, v) This will create a sample of dimension d, and all the components will be initialized
to the value v.
Note that v must not be nan or inf.

pyYggdrasil.Sample (PYTHON_LIST) This will create a sample out of the provided Python list?3.

pyYggdrasil.Sample(pyYggdrasil_Sample_Instances) This constructor will perform deep coping of the
sample. The reason for this existence is that deep copying in Python needs pickle support.

Other Function of the Samples The sample provides some more functions. They are basically “natural”
ones, that are functions that you would expect a sample to have, again help(pyYggdrasil.Sample) is your
friend. Like getting its dimension, which is done by calling nDims () on the sample.

It also has a function which is called isValid(). It checks if the dimension is greater than zero or if its
components are valid?4.

The class mimics an array so it also supports the operator[] (i) syntax for both reading and writing a
component. However it is not possible to set a component to nan.

Generating An Invalid Sample Under normal circumstances it is impossible to create an invalid sample.
However in certain situation it could be needed to create one. For that the function CREAT_INVALID_SAMPLE(d)
is provided?®. This function will generate a sample that has nan as component and dimension d. The dimension
can also be zero, in which case the sample is also invalid, because it does not have any component.

11.6 Sample Containers

Since working with PYYGGDRASIL most likely will involve working with many samples PYYGGDRASIL provides
also classes to efficiently store many sample. There are three different container. There are that many container
because different situations needs different solutions. Their existence is mostly due to the C++ heritage of
PYY GGDRASIL.

11.6.1 Universal Container Interface (UCI)

The Universal Container Interface or UCI for short, offers a set of methods that all containers implements.
Since Python uses Duck Typing the container can be used interchangeably, and as long as functions respect the
interface they can operate on all containers in the same uniform maney.
During its lifetime the size, numbers of samples, can change. However the dimension of the container?® is fix
during the lifetime of a container.

The interface is split into a base and extensions. Only the base is required to be implemented.

Construction This is part of the base. It deals with the construction of the container.

ctr(d) This will construct an empty container, meaning that the container has not any samples. The dimension
of the container is set to d, as mentioned this can not be changed.
Note that this constructor does not implies that no memory is allocated.

ctr(d, N) This will construct a container of size N, its dimension will be set to d. The values of the samples
are unspecific.

ctr(src) All container provides a copy constructor. This constructor will deep copy the container src. Note
that the type of src must be the same as the container that should be constructed.
Because of its importang the sample collection can be constructed also from the two other containers.

See also the third extension of the interface.
Accessing The Container basically models an array and a sample can be accessed with a zero based index.

It is important that due to the nature of some container it is not possible to return a reference in all cases?”.
So the function operates on copies.

23For that binding the pybindi1::1list object is used.

24Not funny values.

25Note that YcGDRASIL and thus PYY GGDRASIL write create without e. This is intended and an homage.
26This is rather the dimension of the samples that can be stored.

27This could be circumvallated by implementing proxy classes, but it was considered to be not worth it.

16

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
ne

meyerda
Cross-Out

meyerda
Inserted Text
y

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
ce

addNewSample (s) This function is not directly involved with accessing samples. It adds the sample s to the
container. It is appended at the end, it is like the append function of the list object. It can cause a
reallocation of the underling storages, however this is only a problem if references to samples exists?®. It
imposes the restriction that the sample has the same dimension than the container and that it is valid.

setSampleTo(s, i) This function writes to the container. It exchangg the sample that was previously associ-
ated with index i with the sample s that was passed as argument. This will not cause a reallocation. It
imposes the restriction that the sample has the same dimension than the container and that it is valid.

getSample (i) This function returns a copy of the sample, that is associated with index i.

Capacity Management These functions deals with the management of the size of the container. They
impose some restrictions that aims to detect some kind of errors.

resize(newSize) This function changes the size of the container, to newSize. However this function is only
allowed if the current size of the container is zero. If this function is called on a non-empty container, an
error is generated.

clear () This function clears the container and sets its size to zero. It is guaranteed that the associated memory
is deallocated by this function?®.

reserve(n) This function performs preallocation of the container. It only has an effect if the size of the
container is not set, zero. If called on a non empty container, it is considered a nops, especially no
exception is generated.

Query Functions This functions allows to request some information about the container.
nDims () This function returns the dimension of the container.

nSamples() This function returns the number of samples that are present in the container.

First Extension (Python) This extension of the interface is only present in the Python interface. The reason
is that the implementation of proxy classes for the operator[] is actually build in when using pybind11. It
specifies two functions.

__getitem__(i) This function implements the reading bracket operator. It returns a copy of the sample that
is stored at location i in the container. It is equivalent to the getSample (i) function.

__setitem__(i, s) This function implements the writing bracket operator. It sets the sample that is asso-
ciated with index i to the provided sample s. It imposes the restriction that the sample has the same
dimension than the container and that it is valid.

Second Extension (C++ & Python) This is the second extension to the UCI. It requires that the container
provides at least reading access, which allows to return copies, to a single dimension. The sample collection
is the only collection that naturally allow such kind of accesses, the other container have to construct such a
container. It is thus not recommended to use this function on containers others than sample collection if not
especially needed.

getDimensionArray(d) This function returns a dimension array of the dimension d. A dimensional array is an
array that consists of all samples, in the same order as the container, but only contains a single dimension.

Note on Python In Python an Eigen type is returned. In every call on to this function, on all container
types, will create a copy.

Third Extension This extension describes how containers can be constructed from matrices. On the C++
level Eigen matrices are used. The interface was designed according the recommendations of the pybind11
manual, so interaction with NumPy is possible without much problem. It is implemented by all containers.
The extension describes a constructor and a new function.

ctr(mat, view) This constructor reads in the matrix mat. How the matrix is interpreted is determined by the
view argument, see below.

getMatrix(view) This function returns an Eigen matrix. The way the matrix is constructed is analogue to
the interpretation of the matrix by the constructor and can be controlled by view.

28This is never the case in Python. And in C++ it only affects the sample list.
29In the C++standard, this function does not guarantees that the memory is freed.

17

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
s

meyerda
Cross-Out

meyerda
Cross-Out

meyerda
Inserted Text
f

meyerda
Cross-Out

The view Parameter The view parameter controls how the matrix is interpreted. It is implemented as
an enum that encodes where if a sample occupies a row or a column®’. The enum is called eMatrixViewSample
and can have two values®!.

Row In this mode each row contains one samples. The number of columns is interpreted as the dimension of
the samples and the number of rows is the number of samples.

Col In this mode one sample occupies one column. Thus the number of samples is equal the number of columns
of the matrix and the dimensions is equal the rows.
Note on the C++ level this value is called Dimension.

Matrix Order There are to ways to store a matrix in memory row and column major order. The C++
code supports both, however only row major is supported by PYYGGDRASIL. The motivation is that this is the
default of NumPy.

Note that depending on the matrix order the efficiency to construct a container from a matrix depends on the
view and the storage order. Below we have note which is the best choice for the view, these recommendations
assume that the matrix are stored in row major order, which is the default in NumPy.

11.6.2 Sample List

The sample list is one of the container, that is provided. Its existence is mostly historical. It is available under
the name pyYggdrasil.SampleList.

It is not very space efficient and should thus not be used. It is basically an array of samples. Thus imposes
an significance over head on the memory system.

Its sole merit is on the C++ side. Since it is the only container that is able to return references to samples
when the operator[] is used. However this makes it possible to add a sample with a different dimension than
the container is possible. Thus great care has to be taken. It is thus recommended to use the named accessing
function, that are specified by the UCI.

Note that this problem does not exists in Python, since there is an extra layer that performs a check on the
dimension.

The performance of the construction of a list using a matrix is best if the view is set to Row.

11.6.3 Sample Array

This is a very efficient container and recommended to be used if the samples are not indented to be used for
fitting a tree. It stores the samples in one single array. The samples are stored consecutive in memory.
It is available as pyYggdrasil.SampleArray.

The performance of the construction of a list using a matrix is best if the view is set to Row.

11.6.4 Sample Collection

The sample collection is also a very efficient way of storing the samples. It is not as efficient as the sample
array, but the differences are negligible.
Instead of storing a single array, it stores each dimension in its own array.

This container is used internally by the tree. Thus it is possible to directly load the samples into the tree
without the need of coping them first into a sample collection. However the passed collection will be empty
afterwards.

This container is available as pyYggdrasil.SampleCollection. It can be constructed from all three con-
tainer types by performing a deep copy.

Note that contrary to the other two container the best way to construct a sample collection from a matrix
is to set the view parameter to Col. Meaning that each column contains one sample.

11.7 Utility Classes and Functionality

Here the utility classes are presented. These are classes that models some imported helper concept. Only the
most important ones are present in PYY GGDRASIL.

30Note that this is different from C++, where the enum is used to encode how a sow should be interpreted. This divergence will
not be changed.
31Note that actually only the Row value is recognised, all other values are considered Col.

18

meyerda
Cross-Out

meyerda
Inserted Text
s

11.7.1 Interval

The interval class, that is available as pyYggdrasil.Interval, implements the concept that was presented
in section 2 on page 3. This means it models a right open interval. It is basically a pair of numbers that is
enhanced with some meaningful functions.

It can be constructed by specifying the bounds. So by writing pyYggdrasil.Interval(a, b) an interval
that spans the range a < x < b, is created. However an exception is generated if an invalid interval is generated.

The interval has the usual functions that you would expect, like lower () /upper () for obtaining the lower and
upper3? bound of the interval. Please use help(pyYggdrasil.Interval) to obtain a full list of the supported
functions.

A Valid Interval The only function that is covered here in deep is the isValid() function of the interval.
PYYGGDRASIL imposes strong control over invalid interval. Although they are relatively common on the C++
level and especially in the inner working of the tree, they are considered impossible to surface in PYY GGDRASIL.
Encountering one most likely indicates an internal error.

This section is here because it is very important to understand when an interval is invalid and when not.
Since the validity of the interval limits the splitting depth of the tree33. The process to verify the validity of an
interval is quite involved.

First of all a valid interval must have bounds that are not nan, but infinity is permitted. Further the lower
bound must be strictly less than the upper bound. Then the length, which is defined as upper bound minus
lower bound, must be strictly greater than zero. If the length happens to be infinity®* then the interval is
considered immediately valid3®. Then it is checked if the length is zero, if so the interval is considered invalid.
If this checks also succeeds it is tested if the inverse of the length, %, is a valid number, which is also greater
than zero, seen from a finite precision point.

11.7.2 Hyper Cube

Since the method aims at settings where the problems involves more than one dimensions, it is clear that the
interval is not enough. The extension of the interval to many dimensions is a hyper cube, which is available
under pyYggdrasil.HyperCube. It is basically an array of intervals, one for each dimension where it describes
the extend in the corresponding dimension. It also reimplements most of the functions that are provided by the
interval again, but extended to several dimensions.

It is important to note, that the hyper cube models an immutable object. This means once it is created it
is not possible to change the object itself. You can assign an other hyper cube to the object, but not modifying
the underling structure. But under certain condition it is possible to do that.

Creation of Hyper Cubes There are two different ways creating a hyper cube. The first one is by simple
coping an interval, this is done by the following invocation pyYggdrasil.HyperCube(d, interval). This will
create a hyper cube of dimension d, the d intervals that forms the cube, are copies of interval.

It is immediately clear that this mechanism is extremely limited. In order to construct more complex
domains, we must use an exception in the immutability of the object.
A dimension can be changed, if and only if, said dimension is invalid. Thus in order to construct a more
complex interval you must first create an invalid hyper cube, with the correct dimension. For that the function
pyYggdrasil.CREAT_INVALID_CUBE(d) is used. This function returns an invalid cube of dimension d3¢. The
intervals of the dimensions are invalid intervals, which have nan as boundary values.
After the invalid cube is created, the intervals can be exchanged, one by one. For that the member function
setInvalidDimension(d, interval) is provided. This function exchanges the inwvalid interval of dimension d
of the hyper cube, with the valid interval interval.
It is considered an error if interval is not valid. It is also an error if it is attempted to exchange a valid interval
of the cube.

Creation from a List The hyper cube also supports the creation out of a list of intervals. As argument
in the wrapper std: :vector<Interval> is used. This means that every Python structure that pybind11 can
convert to that type is supported.

As far as it goes this includes lists and tuples.

32not included.

33 Although this should be only a problem in obscure cases.

34This happens if at least one of the bound is infinity.

35This is a case that may be removed in the future.

364 can also be zero, but then the cube is useless for the process explained here.

19

A Valid Hyper Cube A valid hyper cube is an object, that meets several requirements. First of all all of
its constituting intervals must be valid, in the sense as it was described in section 11.7.1 on page 19. Further
the volume of the cube, which is nothing more than the product of the length of the intervals, is a valid number
that is greater than zero. Second the inverse of the volume is again valid and strictly positive.

Note that the definition of the validity of an interval has an interesting consequences3”. It can happen that

the intervals are valid, individually, but their volume is so small, that we have problems there. So the condition
that every single interval of a cube is valid, does not imply that the cube is also valid.
The cube provides two functions for validation. One is isValid(), this function performs the tests that are
described above. The second function is isValid(d), this only checks if dimension d has a valid interval. So
iterating through the dimensions and testing if they are valid is not enough3® to test if a cube is valid or not.
For that the isValid() function® has to be used.

11.7.3 Depth Map

This is a very condensed description of the tree. It is basically a Python dict object and it is possible to
convert it into one, the format is as described. It maps integers to integers, the key value of the map, represents
a depth of a leaf. The depth of a leaf is the number of descend operations that is needed to reach the leaf. The
associated value, is the number of leafs that where found that have that depth.

It supports other functions, please see the Python help(pyYggdrasil.DepthMap) output. Most important
are the getDepthMean() which returns the mean depth of the leafs. Also important is getDepthStd () which
returns the standard deviation of the depth.

11.7.4 Tree Facade

PYYGGDRASIL is a C++ library, that beliefs in data encapsulation, something that is not possible in Python.
But since PYYGGDRASIL is technically C++ we can impose this.
Y GGDRASIL or rather the tree object will not allow user code to access internal structures. This is done such
that they are not messed up and remain in a valid state all the time®. However for some operations at least a
controlled access to the internal data is required. This access is provided by a proxy object that is available to
PYYGGDRASIL as pyYggdrasil.NodeFacade.

This object models a controlled access to the wrapped node by mimic a constant pointer to a constant node
object. On the C++ level such a facade can technically point to any kind*! of node. However in PYYGGDRASIL it
is only possible to obtain references to leafs, encountering a non-leaf facade in Python indicates serious problems.

It is also possible to obtain a copy of the sample collection that is owned by the node. Depending on the
situation they can be empty. It is not recommended to request the data, since it involves a copy. Also the user
has to keep in mind that the data is rescaled and thus lies inside a unit cube.

What may be useful for the user is to obtain the domain of the node. The domain is the hyper cube that
describes the fraction of space that is occupied by the leaf. This cube does not describe the position of the leaf
in the original data space, but in the rescaled root data space.

The Mass of a Node This section is more intended for the C++ level. A node, regardless of its kind, has an
associated mass. The mass is defined as the number of samples beneath that node. For a leaf this is just the
number of samples hat lies in its occupied space and is equivalent*? with the number of samples that are stored
inside the sample collection of the leaf.

For an inner node things are different, since these kind of nodes have an empty sample container. There it is
the mass of all its children that are leafs.

11.7.5 Leaf Iterator

It is actually very obscure to provide this class to the user directly in Python, however there are situation
where it could come in handy. The name of this class pyYggdrasil.LeafIterator, should be self explanatory.
It allows the iteration of all leafs beneath a certain node. In PYYGGDRASIL only the tree is able to create one,
see section 11.10 on page 21 for more detains. Because of that it allows the iteration over all leafs. Note that
in C++ offers a more fine grained access mechanism.

This class provides four functions. It can not be used inside a for loop, but the while loop has to be used
to iterate over it.

37That is unlikely to happen, but is documented here.

38 And fairly inefficient.

39The one without an argument.

407t is a pain to write such structure that then actually interact with other objects, however it is worth the time to actually do it.
41By this we mean true splits, indirect splits or leafs.

42This technically only true for the dirty mass, but since inserting is not supported, the dirty and the normal mass are the same.

20

access() This function returns a reference like object to the leaf the iterator currently points to. The type of
the returned object is of type pyYggdrasil.NodeFacade, that was already discussed in section 11.7.4 on page
20.

isEnd() This function returns a bool. The value is True if the end of the range was reached. This has several
implications. First of all it can not be incremented more. The second implication is that the iterator does not
point to any leaf. Trying to access it will result in undefined behaviour.

A False indicates that the node can be safely incremented.

getDepth() This is the depth of the current leaf. See section 11.7.3 on page 20 for more information.

nextLeaf () This function increments the iterator and the head of the iterator will be advanced to the next
leaf. Note that the order in which the leafs are visited is not specified and not guaranteed to be static during
the lifetime of the tree. It only guaranteed that all leafs will be visited*3.

Tring to increment an iterator which is at the end, isEnd () returns True results in undefined behaviour.

11.8 Tree Builder

Functions with many arguments are annoying. In Python you have named arguments, but they are only able
to cover a certain aspect of the problem. The builder pattern?* is an extreme convenient way of introducing
named arguments to C++, it also provides an extreme convenient and clean solution to our problem.

It is a very simple object which represents the arguments of the constructor. It is implementing such that the
functions returns references to the object itself, thus allowing method chaining.
With that object you can set the parameter of your tree.

Setting the Model Type Currently there are two models implemented in YGGDRASIL. The linear and
the constant model. In order to set model, the following functions are supported useLinearModel() and
useConsatntModel (), which evident meaning.

However it is also possible to use the constructor to set the model. The constructor takes an optional
argument. This argument is an enum with the name pyYggdrasil.eParModel, it defines member constants
that are used to encode the model.

Setting the Significance Level In order for performing the statistical tests a significance level has to be
specified. As default the value is 0.01 used. The level can be adjusted by calling setGOFLevel (siglevel)
which sets the significance level of the goodness-of-fit test to sigLevel.

The level for the independence test can be adjusted by setIndepLevel (siglLevel).

Split Strategy The scheme for the splitting can be set by the following two functions. useMedianSplitter ()
for using the median splitting scheme, also known as score based splitting, this is also the default. The size
splitting can be activated by useSizeSplitting().

Reading the Builder It is also possible to query the currently set options. For that similar named functions
are provided, consult help() for a full list.
11.9 Note on Extending

The builder class is one of the class that has to be adjusted if the functionality is extended. The C++ level of
this class was designed with that in mind. There are more enums defined, that are used to encode the test type.
This flexibility was not carried over to Python.

11.10 Tree

In this section the tree is explained, in Python the tree is known by pyYggdrasil.DETree.

43This guarantee is only valid if the insertion of samples is not implemented or used.
44The name is a bit misleading, and it could be confused with the factory pattern, which is also used.

21

11.10.1 Creating a Tree

Creating the tree is rather easy, the constructor has only three arguments. The first step is to create a building
object, that was discussed in section 11.8 on page 21.

The tree can be constructed from all three containers that were discussed in section 11.6 on page 16. However
in the case of the sample collection a more efficient construction is used. The three arguments are.

samples These are the samples that should be loaded into the tree. As it was mentioned all three containers
are supported, it is also planed to support NumPy Arrays.

domain This is the data space that is used, it can be invalid. If domain is valid then it is required and enforced,
that the samples lies inside the given domain. If domain is invalid the domain is estimated form the given
data. Notice that the definition of the interval is also enforced, thus the upper bound is slightly larger
than the largest element.

builder This is the builder object that was created.

load This is an optional argument, that is only present if samples is of type pyYggdrasil.SampleCollection.
By default it is False. If it set to True then the data of the collection is moved into the tree. The
argument is then empty.

The constructor will call the fitting process on its own. When the constructor returns the tree is fitted.

11.10.2 Steps in the Construction of the Tree

In this section the steps that are done in the constructor are outlied and explained.

1. The first step depends if the passed domain is valid or not.
In the case of a valid domain, tree checks if the passed samples really lies inside the domain, that was
given.
In the case of an invalid domain, the data is scanned to find a domain. For that the largest and the
smallest element in each dimension is searched for. The smallest element is used for the lower bound.
Because of the interval definition the largest element can not be used as upper but. Instead the next
larger representable number is used*®.
The final domain is then stored as global data space.

2. The data is rescaled such that it lies in the rescaled root data space, which is the unit cube.
3. Then the model on that node is fitted.

4. Then the gof and independence test is performedS. If all tests are accepted the leaf is accepted and the
process ends.

5. In the case that a test is not accepted the node will be split. For that a split position is searched for, how
this is done depends on the chosen strategy.

6. The node is split at that location?”. We assume that the split happens in dimension d and at position .
The samples for which we have z(?) < z, are sent to the left child the other samples are sent to the right
child.

The samples are rescaled such that they, again, lies inside the rescaled node data space, which is nothing
else than a unit cube. Also the domain of the parent node is split in two new node data spaces that
together completely fill the node data space of their parent.

Then the two childes are tested as well.

11.10.3 Operation on Trees

In these section we explain some of the functions that are provided by the tree, not this excludes functions
related to the density estimation which are treated in section 11.10.4 on page 23. Again help() is your friend.

45For that std: :nextafter is used.
46The gof test is done first and the independence test is only done if the gof test is accepted.
4TThis implicitly means a dimension and a position.

22

Accessing The tree implements the __iter__ function. Thus allows the iteration over all leafs in the
tree. This is done by using the functionality of the pyYggdrasil.LeafIterator that was discussed in sec-
tion 11.7.5. The user also have to keep in mind, that the operation happens in a read only fashion on
pyYggdrasil.NodeFacade objects, see section 11.7.4.

This happens in a hidden fashion to the user. By calling the getLeafIterator() function the user can obtain
a leaf iterator and manipulate it directly.

Get the Data Domain If the user did not pass a domain, meaning that the domain was estimated from the
data, the user does not know what the domain is. The function getGlobalDataSpace() returns a copy of the
data domain. This is the unscaled original data domain, where the samples lived in.

Test Integrity The tree offers some functions that can be used to test the integrity of the constructed tree.
Some of them only performs quick checks, such as isValid (), others like checkIntegrity () of isFullySplittedTree()
performs some deep and comparable expensive checks.

11.10.4 Density Queries

The whole point of the tree is to be able to have an estimation of the probability density function. For that
functions are provided. Again they operate on sample containers, but also a single sample can be estimated.

There are two kinds of functions to query the tree pdf. The difference between them is their behaviour if a
sample is encountered, which lies outside the data space.

It is an Error The default behaviour is, that the tree consider this as an error. The argument for that is the
following. If the user has passed a data domain to the tree, he has some prior knowledge about the generating
process. So a sample outside the domain violates this knowledge and should not go on unnoticed. In the case
the domain was estimated from the data, saying something that lies outside the data is very critical.

It is not an Error In some situation it could be justified to allow such queries. Then the pdf value of these
samples is set to zero.

Functions The tree provides three functions. They are overloaded for the containers and one single samples.

evaluateSamplesAt (x, beQuiet) This functions evaluates the pdf of the samples that are stored inside the
container x*8. The parameter beQuiet is a bool, which defaults to False. This controls the behaviour of
the tree if a sample is encountered that lies outside the data domain. If beQuiet is False then an error
is generated. In the case of True the pdf of such samples are set to zero and no error is generated.

evaluateSamplesAt_err(x) This function is like the first one, but with beQuiet fixed to False.

evaluateSamplesAt_noErr(x) This function is like the first one, but with beQuiet fixed to True.

Return Type In the case of a single sample a float is returned. In the case of many samples an Eigen vector
is returned. pybind11 will convert this vector transparently into a NumPy array without coping®®.

Note that this is different for the C++ case. There the functions return a yggdrasil_PDFValueArray_t,
which currently are an alias of std::vector. However also the versions which returns an Eigen type are
available.

11.11 prYYR

For testing and demonstration purposes PYY GGDRASIL provides facilities to generate samples from certain
parametric distributions. They reside in the submodule PYYGGDRASIL.RANDOM, you can get a complete help
by typing help(pyYggdrasil.random).

48Note that even in the case only a single sample is queried, the function is named that way.
49 At least the manual claims that.

23

11.11.1 Note on Performance

The distribution are implemented by using standard methods that are provided by Eigen and the C++ standard
library. The non trivial ones where tested®. The test consists of verifying if the mean and covariance of the
generated samples are the same as the theoretic values.
But it is recommended to use real implementations, written by people who knows what they are doing. The
advantages of the distributions provided by YGGDRASIL itself are, that they provide a very tight integration
into the general frame work. So they store the samples directly in the sample containers.

A second note is, that the generators, especially the base class was not designed for speed. They were designed
to add new distribution with the least possible amount of code. This means that a concrete distribution must
implement, beside its constructor only 5 functions, of which 3 are more or less trivial®!.

11.11.2 Implementation

Here we will shortly describes the implementation of the base class. All distributions inherent from the
base class, in C++ this class is known as ::yggdrasil::yggdrasil_randomDistribution_i and in Python
as pyYR.RNDistribution. The class is abstract, so it is impossible to create instances. However the base
implements the main sampling functions. The derived class only has to implement two hooks, beside some
other utility functions, see section 11.11.5 for more details.

wh_pdf (s) This function computes the probability of the sample s.

wh_generateSample(g, &s) This function generates a sample using the generator g. Note that the & is used
to indicate, that the sample is modified and no object is returned.

All 17 other sampling functions are implemented by these two functions. Thus allowing the implementation of
a new distribution in a short amount of time.

11.11.3 The “Sampling Domain”

The sampling domain is a concept that was introduced to solve a problem in the scaling experiment program.
It is a very simple concept, that seams strange in some situations but can come in handy.

The sampling domain is the domain where samples could exists. It is important to note that there is no
requirement that the probability must be greater than zero everywhere in the domain. In fact the probability
can be zero everywhere in that domain®?.

The functionality for reducing the support of certain distributions is particular interesting if the support is
R™, but the probability is rather small after a certain value. This allows to artificially shrink the domain. The
canonical distributions are all restricted to a certain domain. However these domain was chosen very large, such
that no important features are missing®?.

There is also an important point to pointed out. Lets assume that the distribution is restricted in a mean-
ingful way. Then the base object will sample the distribution until a sample is generated that lies inside the
sampling domain®®. It is recommended that the deriving class does this on its own, this will lead to better
performance.

A second point is, that if a sample, that lies outside the sampling domain, the pdf value is set to zero auto-
matically. The actual probability for that sample at that point does not matter at all, only the fact that the
sample lies outside the domain is important. This is done by the base object itself, so concrete distribution can
not influence that®®.

A last remark is, that the pdf value must not be adapted. A pdf function must integrating to one. But when re-
stricting the support to a smaller set than the actual support, then this is not true any more. This inconsistency
is ignored.

Setting the Domain There is only one way to set the sampling domain. This is at construction. All
constructors takes an optional last argument, which is called domain®S.

If the domain is omitted a distribution specific default value is used. In the case of infinite support, no
restriction is applied. In the case of a finite support, the sampling domain is set to the smallest set®” that

contains the analytic support, that can be encoded by a single hyper cube.

50 As far at is goes, the uniform distribution was not tested, since it is just a wrapper around the standard function.
51The interface could be removed even more, but it evolved.

52Note that this distribution is very useless, since no sample will ever be generated.

53 At least we hope that.

54There is a protection if no progress was made.

55The only possibility to do that is to override all pdf functions.

56The name is only useful in Python.

57Y aapraAsIL only supports axis aligned domains.

24

An Unbounded Domain It is important that for several reasons, an unbounded domain is not encoded by a
domain that has inf as bounds®®. A sampling domain that should be unbounded, must be the invalid domain.

11.11.4 Explicit Random Number Generator Needed

The distribution objects that are provided by Python and especially SciPy do not need a (pseudo) random
number generator passed to the distribution. They use some global object that is provided somewhere.

We consider this, global variables, as ugly and dangerous. Thus all functions that needs a source of randomness,
will need a generator passed to them as an argument. The name of that argument is always g.

For that PYYGGDRASIL provides the object pyYggdrasil.Random.pRNG. This is a very thin wrapper around a
std: :mt19937_64 object, which is the C++ implementation of the Mersenne Twister algorithm.

11.11.5 Functions of the Distributions

The base of all distributions, pyYR.RNDistribution, implements the main functions directly, as it was explained
before. Generally all functions are overloaded for a single sample as well as all sample containers.

pdf (s) -- single sample This function calculates the probability for a single sample. It returns a floating
point value®®.

pdf (s) -- sample containers This function calculates the pdf values for all samples that are stored inside
the sample container s°°. The function returns an vector of type Eigen: :VectorXd, pybind11 can trans-
parently convert this type into a NumPy array without the need of coping it. This is different from C++
where a PDFValueArray_t is returned, which is currently an alias of std::vector. However the Eigen
versions are also available on C++.

generateSamples(g) This function generates a single sample form the underling distribution.

generateSamplesCONTAINER (g, N) This function generates N samples. The samples are stored and returned
in a sample container.
The type of the container must be selected by the function name. You must substitute CONTAINER by
List, Array or Collection, the meaning should be clear.

generateSamples{CONTAINER}PDF (g, N) This function is similar to the one above. It will also generate N

samples and returns an appropriate container, that can be selected by substituting CONTAINER as described
above.
However this functions return actually a pair. The first member of that pair is the requested sample
container, filled with the samples. The second member of that pair, is a vector, also an Eigen compatible
type, that can be converted to a NumPy array. This vector contains the probability of the samples that
where generated.

getMean() This function returns the theoretical mean of the distribution. As a type the function returns an
Eigen vector.
This function has to be implemented by the deriving class.

getCoVar () This function returns the theoretical covariance of the distribution. It returns an Eigen matrix.
This function has to be implemented by the deriving class.

getSamplingDomain() This function returns a copy of the sampling domain of the distribution.
This function has to be implemented by the deriving class.

isUnbounded () This function returns True if the sampling is not restricted by a domain. This also implies that
the domain is invalid.
By default this function uses the getSamplingDomain() function to obtain the domain and then testing
if it is invalid. This is rather costly and it is recommended to override this function. The base class is
designed to minimize calls to both of them.

Note on the Sampling Functions The sampling functions made a unusual guarantee. All samples that are
generated will have a probability greater than zero. This sounds rather strange, since a sample with probability
zero, will never be generated. However this guarantee means finite precision, where cancellation can occur.

As a side note the generation of a pdf value that is nan is considered an error. However also an infinite pdf
value is considered an error.

58By a quirk in the code this might actually work, but it is not the supported way. Doing it is undefined behaviour.
59In C++ this is ::yggdrasil: :Real_t which is an alias of long double.
60The argument is named s in both case single sample or sample container.

25

11.11.6 Concrete Distributions

Here we list the concrete distributions that are implemented. They all supports two constructor, one with
sample domain and one without. As it was explained in section 11.11.3 on page 24, if the domain is not
specified meaningful defaults are applied. In the following we will only list the constructor with the domain
argument.

The concrete implementation also implements some additional functions. Primarily they are used to access the
parameter of the distribution. See help() for more information.
When we write Eigen type or something similar, then this is equivalent to a corresponding NumPy type.

Gauss Distribution This is a normal distribution in n dimensions. In Python this class is named pyYggdrasil.Random.Ga
The constructor reads:

Gauss (mu, Sigma, domain)
mu This is the mean of the distribution. In C++ this is an Eigen vector type. It must have length n.

Sigma This is the covariance matrix, this is the generalization of the variance to many dimension. It must be
an n X n Eigen matrix.

domain This is the sampling domain. If the domain is omitted the invalid distribution is used. This means no
restriction is applied.

Dirichlet Distribution The class pyYggdrasil.Random.Dirichlet models the Dirichlet distribution. For
the Dirichlet distribution there are many conventions used. We follow the one that is also used in the paper
and in Mathematica, this differs from Wikipedia.

The k dimensional Dirichlet distribution, is described by k + 1 L)arameters a, for which we have a; > 0.
From the sample vector & we require 2; > 0 for alli =1,...,kand > ,_; z; < 1. Its probability density function
is given by

%

I (Zf;l ai) (k) appi—l
S T . xiai—l

Hi:_f N
It has the following constructor:
Dirichlet(alpha, domain)
The arguments are:
alpha An Eigen vector of length k + 1. These are the parameters that are used to describe the distribution.

domain This is a hyper cube of dimension k. If the domain in omitted the unit hyper cube is used.

Uniform Distribution YGGDRASIL also provides a multidimensional uniform distribution, thy Python
name is pyYggdrasil.Random.Uniform. The dimension of the distribution are independent from each other.
It provides the following constructor:

Uniform(suppDom, domain)
The arguments are:
suppDom This is an hyper cube of dimension k. It describes where samples are generated.

domain For this distribution the sample domain is a bit off. Note that there are no restriction on the domain.
If none is specified domain is equal suppDom.

Uniform Distribution This is the outlier distribution, in Python pyYggdrasil.Random.Outlier. It is
basically a bimodal Gaussian distribution where both modes have the same mean. In a short hand form this
distribution reads as:

CVN(/J,,O'12) + (]. — Q)N(M,022)
The constructor of this is:

Outlier (alpha, mean, sigmal, sigma2, domain)

26

alpha This is the strength of the first mode. It must be in the range 0 < o < 1.
mean This is the mean of both modes.

sigmal This is the standard deviation of the first mode. Note that this differs from the Gauss distribution
where the variance is used.

sigma2 This is the standard deviation of the second mode.

domain This is the sampling domain. Note that even this is a one dimensional distribution, the domain must
be a hyper cube object, but of dimension one. As default an invalid cube is used.

Bimodal Uniform Distribution This is a bimodal uniform distribution, pyYggdrasil.Random.BiUniform.
In the paper the term spiky uniform is used. It can be written in the following way

aUni(ay,bl) 4+ (1 — o) Uni(ag, b2) (1)
The constructor reads as:
BiUniform(suppDoml, suppDom2, alpha, domain)
With the arguments
suppDom1 This the support range of the first mode, Uni(aq,b1). It is of type pyYggdrasil.Interval.
suppDom2 This the support range of the first mode, Uni(ag, b2). It is of type pyYggdrasil.Interval.
alpha This is the coupling constant of the mode, or the strength of the first mode.

domain This is the support domain. For consistency it must be a hyper cube of dimension one. If no domain
is used, an invalid cube is used.

Gamma Distribution This is the gamma distribution, it is implemented by pyYggdrasil.Random.Gamma.
Since there are more than one convention that is in use, we will give the PDF explicitly.

1
I(a,B) ~ — g e

()8
The constructor is given as:

Gamma (Alpha, Beta, domain)

Alpha This is the shape parameter of the distribution. It must be greater than zero.
Beta This is the rate parameter of the distribution. It must be greater than zero.

domain This is the sampling domain of the distribution. It must be a hyper cube of dimension one. If it is
invalid no restriction is applied.

Beta Distribution This is the beta distribution, pyYggdrasil.Random.Beta. The pdf is given as:

o7l (1 —)Pt
B(a, 8)
Na)TH)

A et)

Beta(a, 8) ~

Its constructor reads as:
Beta(Alpha, Beta, domain)
The parameters are:
Alpha This is the shape parameter, must be greater than zero.
Beta This is also called shape parameter®!, it must also be greater than zero.

domain This must be a hyper cube. If the domain is not given the unit interval is used.

61 According to Wikipedia.

27

Multimodal Distribution This is an application of the composite pattern. It is not a distribution by itself,
it is the (linear) combination of several distributions. Assume you have N different distribution that you want
to combine with each other. The weight of each mode, Py, is given by N — 1 weights, w;, with Zii}l w; < 1.

The last weight is implicitly given as 1 — Z?:ll w;. Then the new distribution can be written as:

N-—-1 N-—-1
P~ ZwiPH— <1— Zw) Py
=1 =1

Due to some circumstances this distribution does not exposes any constructors to Python. The only way
to construct multimodal distributions, is to use the provided helper functions createMultiModal(...). Use
help(pyYggdrasl.Random.createMultiModal) to get a list of the functions. They will create a distribution of
type pyYggdrasil.Random.MultiModal.

A small note on the domain. If the domain is omitted it will be tried to estimate it form the passed
distributions, by merging the corresponding domains. If at least one of them is invalid, the resulting domain
will be invalid as well and the distribution will be unbounded.

11.12 Tree Sampler

Beside the RANDOM sub module of PYYGGDRASIL, does not only contain distributions, it also contains a dis-
tribution that takes a tree as underling distribution. This object is called pyYggdrasil.Random.TreeSampler.
This object is similar to the distributions that are presented in section 11.11 on page 23, but is a bit different.

Because of some implementation details the sampler is not able to compute the pdfs of stand alone samples.
The sampler can compute the probability of sample that was sampled by it as a by product, but it is not possible
that a sample is passed to it and its probability is calculated®?. Thus the pdf (s) functions that are described
in section 11.11.5 on page 25 are not supported, as well as the getMean() and getCoVar() functions that are
also not supported. The rest of the listed functions is implemented.

11.12.1 Conditions

As with any other main concept that surfaces in YGGDRASIL there is a class that models it. In PYYGGDRASIL
this class is available as pyYggdrasil.Random.MultiCondition.

It is build around the class pyYggdrasil.Random.SingleCondition that is used to model a condition in a
single dimension. It is basically a wrapper around an integer and a double. The integer is the dimension in
which the condition should be applied®®. The double represents the value samples should have.

A MultiCondition can be seen as a list of SingleConditions. It is also an important note that every
MultiCondition belongs to a sample space and thus needs its dimension.

The class supports many way of constructing it.

ctr (nDims) This construct an empty MultiCondition this means no conditions that are applied. As we have
said every MultiCondition is associated to an underlying sample space, and thus the dimension of this
space must be passed to it to. In this case the sample is set to nDims.

ctr(nDims, cVec) This is a constructor that associates the condition to a sample space of dimension nDims.
The conditions that are applied are extracted from cVec, this is a list®*. The order inside the list is not
important.

ctr(nDims, eMap) This constructor binds the condition to a sample space of dimension nDims. The conditions
are extracted from the dict object. The dictionary is interpreted as a map from integers® to doubles®®.
The keys are interpreted as the dimension and the associated value is seen as condition that should be
applied.

ctr(src) Also a copy construct is provided that performs a deep coping of the condition.

62Technically it is possible, but it is extremely inefficient, so it is not implemented.

63Y aaprAsIL and PYYGGDRASIL use zero based indexing, this means the first dimension 0 and not 1.

64A std::vector is used, this means a python list and tuples can be passed to it. Under the condition that all elements are of
type SingleCondition.

65The keys.

66The associated values.

28

11.12.2 Constructing a Sampler

Constructing a sampler is quite forward. It must be provided with a tree and condition that should be applied,
there are several constructor that allows to bypass the construction of an explicit condition object, see help()
for more. If no condition is supplied then an unconditioned sampler is generated.

It is important that regardless of the form the conditions are supplied they are interpreted on the original data
space. All rescaling that is needed is done by YGGDRASIL under the hood.

The step of the constructing a sampler are roughly as follows. The sampler iterates over all leafs of the tree,
for that the leaf iterator, that was already presented in section 11.7.5 on page 20 is used. Then each leaf is
processed.

1. First it is tested if the leaf satisfy the conditions. This is done by testing if all conditions lies inside the
domain®” that is occupied by the leaf.

2. If this is is the case the leaf joins the selected leafs, we use the symbol £ to denote them. Note that the
leaf is partially copied into a proxy object®®. This proxy stores a copy of the model and the domain and
some other auxiliary object, that allows it to mimic a node for the parametric model.

This coping allows the decoupling of the sampler and the tree. This means that the sampler can then

exists on its own%?.

3. Then the probability weight of the leaf is calculated. According to the paper’® this weight is given by

d
My = 1 .n(Ck). H p[l’i

p(Ee) m i=q+1

é(ck)}

The components ¢ + 1 up to d were the one where a condition was applied on. This is done out of
convenience and bears no real meaning. YGGDRASIL allows that any dimension can be conditioned on.
The first factor of My, ﬁ does not depend on the leaf and is thus the same for all leafs. For the
computation of the weights it is ignored. However this factor is quite important for calculating conditioned
probability.

The second factor is a normalization constant for the probability density functions of the leafs. n(Cy) is
the number of samples that are inside leaf k. n; is the total number of samples in the whole tree.

The last factor is a product of probabilities. This factor is only present in the case of of conditions, in
the case of an unconditioned sampler, it is just one. Actually the probabilities should be expressed on
the global data space. However due to some internal design aspects of YGGDRASIL the probability on the
root data space is used. This is not a problem since the transformation factor that must be applied is a
multiplicative constant that is the same for al leafs and will cancel out.

Calculating of %c) In this section we will explain how the factor is computed and used. This factor is
needed for obtaining the probabilities in the conditioned case.

The calculation of this factor happens after the weights, remember when we compute the weights we omit some
constant multiplicative terms. They are not important for the weights, since only their relative weights are

needed, but they are important for calculating this factor.

The first step is that they are summed up.

Then we have to include the factors that we have omitted. The only factor that we have to include is
the transformation factor that transforms the probability from the root data space to the global space. It is
important that this factor is not the inverse volume of the global data space. It is the inverse product of the
length of all the dimensions that we conditioning on.

11.12.3 Generate Samples

As it was explained in the beginning of section 11.12 on 28 the sampler mimics the functionality of a random
distribution, with some limitations. Here we will explain how the sampling process works under the hood. It is
a two step process, first the leaf is selected and then a sample is drawn from that leaf.

1. The probability that a leaf is selected is proportional to its probability mass M, that was discussed in
section 11.12.2 on page 29. This is implemented by using std::discrete_distribution that allows to
sample from this.

67For that a variation of the isInside function of the HyperCube is used, that is not available in PYYGGDRASIL.
68The type of the proxy is ygInternal_leafProxy_t, but is only available on the C++ level.

69Hower there is this limitation about pdf queries.

70See equation (6).

29

2. We then generate a sample on the selected leaf. For that a function of the parametric model interface
is used. As argument the function gets the domain and the conditions, that where transformed to the
rescaled node data space. Also a source of randomness must be passed. This is a sample with components
that where sampled uniformly on the unit interval. The intent is that the inversion method can be applied,
but it is not required to do that.

3. It is then tested if the probability of the generated sample is slightly negative or zero. This can happen
because of the finite arithmetic of the doubles. If this happens the sample is rejected and the process is
repeated.

11.12.4 Note On Returned Probability

Earlier versions of YGGDRASIL always computed the unconditioned probability. At some point this was
changed, however some parts of the documentation might not reflect that change.

So the functions, those who actually return probability values, return conditioned ones.

30

12 Canonical Distributions

Y GGDRASIL uses some canonical distribution. They are characterized by a name, the name of the distribution®,
and a number. The number corresponds in a sense to the dimension, if positive, when the number is negative,
it has some special meaning.

12.1 Gauss Distribution

This are the Normal or Gauss distributions. Here we will list the known ones.

Kind: -2 Here we have a two dimensional distribution. This distribution comes from the paper and is there

introduced in section 3.2.1.
_ (0 (4 228
"= <0> > = (—2.28 1.14)

The sampling domain is restricted to the domain [—8, 8[2.

If conditions are applied we get

0 0 0.39 0
Bl = (0 o.1404> Zlai=0 = (0 0)

Kind: -22 Here we have a two dimensional distribution. This distribution is based on kind —2.
L (05 5 4 —2.28
F=\-05 “\-228 114

The sampling domain is restricted to the domain [—8, 8[*.
If conditions are applied we get

0 0 0.39 0 0.221625 0
2|351:0.5 - <0 0.1404) E|m2:—045 - (0 0) E|m1:0 - < 0 0>

Kind: 2 This is also a two dimensional gauss distribution. The distribution does not come from the paper.

It has the following parameters
. (14 (20
h= (—4.0) > = (0 2)

The sampling domain is restricted to the domain [—10, 10[>.

Kind: 3 This distribution comes from the paper about the random generator. It is a 3 dimensional gauss
distribution, with the following properties

0 0.35 0.25 0.5
i=10 »=[(025 04 06
0 05 06 1

The sampling domain is restricted to the domain [—10, 10[2.
Under certain restricting we have

0.19375 0 0.125 0.0375 0 0
D | R 0 0 0 Z|12:0’$3:0 = 0 0 0
0125 0 0.1 0 0 0

Kind: 4 This is a four dimensional Gauss distribution. It is also from the paper, where it is introduced in
section 3.4.1.

The sampling domain is restricted to [—15, 15[*.

"1In the code they are modelled by the enum eDistriType.

31

Kind: 7 This is a seven dimensional Gauss distribution. It is also from the paper, where it is introduced in
section 3.4.1.

The sampling domain is restricted to [~15, 15"

12.2 Dirichlet Distribution

For the Dirichlet distribution there are two different convention are in use. The first is used by Wikipedia, the
second is used by the paper. YGGDRASIL follows the convention of the paper”®. All of the canonical distribution
are restricted to the unit hyper cube.

Kind: 2 This is a distribution from the paper, it is introduced in section 3.2.3. Its parameters are

0.9
a=115
3

Kind: 4 This is a four dimensional Dirichlet distribution. It is also introduced in the paper in section 3.4.2.
Its parameter are

d=(6.13 9.29 10.6 824 3.91)

Kind: 7 This is a seven dimensional Dirichlet distribution. It is also from the paper, where it is introduced
in section 3.4.2.

12.3 Outlier Distribution

This is basically a super position of two Gaussian The Distribution is characterized by
Out(av Ky 01, 02) =« N(M» U%) + (1 - a) N(,va 0%)

Kind: 0 This distribution is introduced in section 3.1.2 of the paper. It has the following parameters.

1 1
a=— nw=20 o1 =1 O'QZE

12.4 Uniform Distribution

This is the uniform distribution or related.

Kind: >0 & < 100 In this is a multi dimensional uniform distribution. The different dimensions are
independent. In each dimension one has the following distribution

X; ~ Uni(0.25, 0.75)

The sampling domain is restricted to the unit hyper cube of the corresponding dimension.
See also section 13.2.1 on page 34 if you observe slow convergence for this distributions.

Kind: >1000 This is also a multidimensional uniform distribution. The different dimensions are independent
from each other. In each dimension one has the following distribution

X; ~ Uni(0.25, 0.75)

The number of dimensions is calculated by kind — 1000.
The main differences between the other uniform distribution is that here the sampling domain not restricted to
the unit hyper cube, but the domain where the probability is greater than zero.

Kind: -1 This is a distribution which is known as “spiky uniform” and was also used in the paper section
3.1.4. The sample domain is restricted to the unit interval.

72In an earlier version YcaaDpRasIL followed Wikipedia, but this was changed.

32

Kind: -2 This is a different version of the spiky uniform distribution. With the notation used in section 3.1.4,
the distribution can be characterized by:

1 9
— Uni(0.25, 0.5) + — Uni(0.7, 0.
-5 Uni(0.25, 0.5) + 15 Uni0.7, 0.8)

The sampling domain is restricted to the unit interval.

12.5 Gamma Distribution

This is also a classical distribution. The distribution is a one dimensional distribution. It is parametrized by
two parameters o the shape and 3 called the rate”.

Kind: -1 This is a distribution form the paper, see section 3.1.6. Its parameter are
a=- B =50
The sampling domain is restricted to the interval [0.001, 300].

Kind: -2 This is essentially the same as kind —1. The reason for its existence is, that kind —1 does not
pass the statistical test, since its sampling range is restricted too much. So this one provides a larger sampling
domain.

Kind: -3 This is a different gamma distribution. The parameters are
a=1 B8=2

The sampling domain is restricted to the interval [0.001, 300].

12.6 Beta Distribution

This is the beta distribution. Controlled by two parameters o and 3, which are both called shape”™. The
distributions are only defined in the interval |0, 1], so we have restricted all distribution to that domain. They
are mostly taken from Wikipedia.

Kind: 1 This is the Beta distribution taken from the paper, see section 3.1.5. The parameters are
a=1.05 B8=038
Kind: -1 This is a distribution from Wikipedia, the parameters are:
a=0.5 B8=0.5
Kind: -2 This is a distribution from Wikipedia, the parameters are:
a=2 B=5

Kind: -3 This is a distribution from Wikipedia, the parameters are:

a=1 8=3

73Notice that there is a second convention, we use the convention used by the C++ standard.
74 According to Wikipedia.

33

13 Known Bugs and Strange Behaviour

This section lists all known bugs, but also strange behaviour that can be observed.

13.1 Bugs

Currently no known bugs.

13.2 Strange or Unusual Behaviour

13.2.1 Scaling Test Shows Slow Convergence if Median Splitter is Used

It can happens that the scaling test shows very bad convergence for certain kind of distributions, especially
the uniform kind of the canonical distribution, with a kind parameter less than 1000, when the median splitter
is used. However if the constant size splitter” is used the convergence is superior.

This effect is known and is not a bug, but an effect of the domain. The effect can be best understood in a
one dimensional case. The main cause of this effect is that the “zero probability parts” of the domain, can not
be eliminated, since always sample are “partially there”.

To fix estimate the domain from the data, this is done by passing an invalid hypercube to the constructor
of the tree. A second approach is to shrink the zero probability range.

13.2.2 Probability of the Tree Sampler

Previously the probability that was returned by the tree sampler was always unconditional, even in the case
of a conditioned tree sampler. The first “fix” was to document it as a strange behaviour. However it was later
found that this was not very good solution, so the behaviour was changed. It is possible that at some location
of the manual, code or the auxiliary material this change was not made, since the location was forgotten. It
was tried to change all location but there is no guarantee that it happened.

13.2.3 Iterating in Python

In Python a class can implement the special function __iter__ which allows the iteration over its members.
Technically the majority of the classes in PYYGGDRASIL would support such a feature and does so but only in
C++. The reason is that the behaviour in Python is rather unintuitive and wrong as far as I can tell. Part of
the problem is the fact that in Python there are no references like in C++. Assigning something to an iterator
had no effect and did not produced an error.

But a lot of classes that are provided by PYYGGDRASIL implements the iteration function. In the beginning
they did not implement the function, but it was possible to iterate over them and no error occurred. I do not
really understand it why this was possible. So it was decided that the easiest fix it, was to implement the
function and generate an exception when called.

75which cut the dimension in half, geometrically.

34

