From b935596f8bb16dcf4230530dd5ca1e9d834ce9d1 Mon Sep 17 00:00:00 2001 From: Mauro Donega <mauro.donega@cern.ch> Date: Wed, 24 Mar 2021 17:13:59 +0100 Subject: [PATCH] fixed numbers --- notebooks/exponentialGrowth.ipynb | 59 +++++++++++++++++-------------- 1 file changed, 33 insertions(+), 26 deletions(-) diff --git a/notebooks/exponentialGrowth.ipynb b/notebooks/exponentialGrowth.ipynb index 2c1ccf5..78bb564 100644 --- a/notebooks/exponentialGrowth.ipynb +++ b/notebooks/exponentialGrowth.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -133,12 +133,12 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAar0lEQVR4nO3de3Rc5Xnv8e8jyZaxLN9lx9iAiQmXYIwhgqSBkkATIIRAQkNCVnMWSWh9epq2yUlXL0lbQk/WyWo5bU5y2lNaJ6UlTQIpCQRCIdiBODSXAjYx2LJJsLkdfJPsEZY0Qhpp5jl/7D1mUCTNeKR9me3fZy0tzWXP3o825qetd955XnN3REQke5qSLkBERKKhgBcRySgFvIhIRingRUQySgEvIpJRCngRkYxKXcCb2a1m1m1m22vY9n+b2dbw6xdm9nIMJYqINARL2zx4M7sIGAC+6u6rj+J1vwec4+4fi6w4EZEGkroreHd/BMhVPmZmq8zse2a2xcz+w8xOH+elHwJuj6VIEZEG0JJ0ATVaD/y2uz9jZm8G/h64pPykmZ0EnAw8nFB9IiKpk/qAN7M5wFuBO82s/HDrmM2uA77l7sU4axMRSbPUBzzBMNLL7r52km2uAz4eTzkiIo0hdWPwY7l7H/CcmV0LYIGzy8+b2WnAAuCnCZUoIpJKqQt4M7udIKxPM7OXzOwG4DeAG8zsSaALuLriJR8C7vC0TQcSEUlY6qZJiojI9EjdFbyIiEyPVL3JunjxYl+5cmXSZYiINIwtW7YcdPeO8Z5LVcCvXLmSzZs3J12GiEjDMLMXJnpOQzQiIhmlgBcRySgFvIhIRingRUQySgEvIpJRCngRkYxSwIuIZJQCXkQkQRt3HOAffrg7kn0r4EVEErShaz+3/eT5SPatgBcRSVDvYIEFs2dGsm8FvIhIgg7lCyxsU8CLiGROb77AAgW8iEj25PIFFs6eEcm+FfAiIgkZKZboGxplYVtrJPtXwIuIJOTlwREAFrbpCl5EJFNy+QKAxuBFRLKmHPALNU1SRCRbegd1BS8ikknlK/hFCngRkWwpB/x8DdGIiGRLLl+gvbWFmS3RRLECXkQkIb2D0X2KFRTwIiKJyUXYhwagJbI9A2b2PNAPFIFRd++M8ngiIo2kd7DAkvZZke0/0oAPXezuB2M4johIQ8kNFDht6dzI9q8hGhGRhOQGC5G1KYDoA96BDWa2xczWjbeBma0zs81mtrmnpyfickRE0uGVQpGhkVJDv8l6gbufC7wL+LiZXTR2A3df7+6d7t7Z0dERcTkiIumQG4z2Q04QccC7+97wezdwN3B+lMcTEWkUveVGYxF9yAkiDHgzazOz9vJt4FJge1THExFpJIfKjcYadJrkUuBuMysf5xvu/r0Ijyci0jB6I24VDBEGvLs/C5wd1f5FRBpZ1I3GQNMkRUQS0TtYoMlg7qzGnSYpIiLjOJQvsGD2TJqaLLJjKOBFRBLQm4+20Rgo4EVEEpHLFyJbqq9MAS8ikoDewWg7SYICXkQkEbn8iIZoRESyplTy8Ao+uhk0oIAXEYld/9AoxZJH2qYAFPAiIrErNxrTGLyISMbkYuhDAwp4EZHYKeBFRDIqjlbBoIAXEYmdxuBFRDKqN1+gtaWJ2TObIz2OAl5EJGa5fPAp1nC9jMgo4EVEYpYLO0lGTQEvIhKzXAx9aEABLyISuzhaBYMCXkQkdrl8IdKl+soU8CIiMRoplugbGtUYvIhI1vQemQMfbSdJUMCLiMSqNz8CoDF4EZGsiasPDSjgRURi1RtTmwJQwIuIxOpQ+Qpeb7KKiGRLuZPkfAW8iEi25PIF2ltbmNkSffxGfgQzazazn5nZfVEfS0Qk7XoHCyycE/3VO8RzBf8JYGcMxxERSb24Go1BxAFvZiuAdwNfifI4IiKNotwqOA5RX8F/EfgjoDTRBma2zsw2m9nmnp6eiMsREUlWbxau4M3sSqDb3bdMtp27r3f3Tnfv7OjoiKocEZFUyA0WWJSBMfgLgKvM7HngDuASM/tahMcTEUm1VwpFhkZKjX8F7+6fdvcV7r4SuA542N0/HNXxRETS7lB+GIin0RhoHryISGyONBqL6Qq+JY6DuPsmYFMcxxIRSatcjH1oQFfwIiKx6Y2xkyQo4EVEYnNIAS8ikk29+QJNBnNn6U1WEZFMyQ0GH3JqarJYjqeAFxGJSW++EMtSfWUKeBGRmMTZhwaqTJM0s2tq2MeQu98/TfWIiGRWLl9gVcec2I5XbR78l4F7gMkGjC4CFPAiIlX0DsY7RFMt4B9w949NtoH6y4iIVFcqOb2DI7G1KYAqY/C19I5RfxkRker6h0YplpyFba2xHbOmVgVm1kywcMfKyte4+xeiKUtEJFtebVMQ3xV8rb1ovgsMAduYZPEOEREZXy7sJBlXozGoPeBXuPuaSCsREcmwXNhJMs5pkrXOg3/AzC6NtBIRkQwrNxpL4xX8fwJ3m1kTMEIwbdLdfW5klYmIZEh5DD6u5fqg9oD/G+BXgG3u7hHWIyKSSbl8gdaWJo6b0RzbMWsdonkG2K5wFxGpT7lNgVk8jcag9iv4fcAmM3sAGC4/qGmSIiK16c0XYh1/h9oD/rnwa2b4JSIiRyE3WIh1/B1qDHh3/4uoCxERybLefIETFsyO9ZiTjsGb2U3VdlDLNiIix7pDMbcKhupX8L9pZn2TPG/AdcBN01aRiEjGjBRL9A+Npm4M/stAew3biIjIBHoT6EMDVQJeY+8iIlPXe6RNQXydJEFL9omIRO5QudFYzFfwCngRkYj1JtBoDBTwIiKRO9ILPuY3WWsKeDO72czmmtkMM3vIzA6a2aQrOZnZLDN7zMyeNLMuM9N4vogck8qdJOenMeCBS929D7gSeAk4FfjDKq8ZBi5x97OBtcDlZvaWegsVEWlUuXyB9lktzGyJd9Ck1qOV3xm4Arjd3XPVXuCBgYrXzwDUrExEjjm5BD7kBLUH/HfN7GmgE3jIzDoIlvCblJk1m9lWoBvY6O6PjrPNOjPbbGabe3p6jqJ0EZHG0DsYf6MxqDHg3f1PCPrBd7r7CJAHrq7hdUV3XwusAM43s9XjbLPe3TvdvbOjo+OoihcRaQSpvoI3s2uBUXcvmtmfAV8Djq/1IO7+MrAJuLyOGkVEGlpvmgMe+HN37zezC4HLgNuAWyZ7gZl1mNn88PZxwDuAp6dQq4hIw3H3RBqNQe0BXwy/vxu4xd3voXpf+GXAD8zsKeBxgjH4++orU0SkMb0yUmR4tJTIGHytC37sMbN/JLgK/ysza6XKLwd3fwo4Z4r1iYg0tFw+mUZjUPsV/AeAB4HLw/H0hVSfBy8icswrtylI8yyaQYKpjheGD40SLMQtIiKTKLcpiHu5Pqh9Fs1ngT8GPh0+NINgJo2IiEwiV+4kmdYreOB9wFUE899x971UXwhEROSYt/fl4DOhS+bOiv3YtQZ8wd2dsNWAmbVFV5KISHbs6h5g2bxZzGmtdU7L9Kk14P8tnEUz38x+C/g+WqpPRKSq3T0DnLJkTiLHrulXirv/tZm9E+gDTgNudPeNkVYmItLg3J3d3QNc23lCIsev+W+GMNAV6iIiNdrfN0S+UGRVRzKj2rXOornGzJ4xs8Nm1mdm/WbWF3VxIiKNbHd3HoBVaR6iAW4G3uPuO6MsRkQkS3Z19wNwSkcyAV/rm6wHFO4iIkdnd0+e9lktdLS3JnL8Wq/gN5vZN4HvECzFB4C73xVFUSIiWbCre4BVHXMws0SOX2vAzwUGgUsrHnNAAS8iMoHdPQNcdGpyCxnVGvB/MHYdVjM7OYJ6REQyoW9ohO7+YVYlNP4OR7cm69zyHTM7A/huNCWJiDS+3d0DAIlNkYTaA/7zBCE/x8zeBHwL+HB0ZYmINLbdPcEUyaQ+xQq1f5L1381sBrCBoMnYe91d7YJFRCawq3uAGc3GiQtnJ1bDpAFvZn9L2GAsNBd4Fvg9M8Pdfz/K4kREGtXungFWLmqjpbnWgZLpV+0KfvOY+1uiKkREJEt2dw9w6tJku6pPGvDufhscaQ885O7F8H4zkMzMfRGRlCuMlnghN8gVZy1LtI5a/3Z4CDiu4v5xBC2DRURkjBdzeYolZ9WSZJfOqDXgZ7n7QPlOeDu5dw5ERFJs15EpksnNoIHaAz5vZueW74RTJV+JpiQRkcZWniKZdMDX+knWTwJ3mtne8P4y4IORVCQi0uDKy/S1JbBMX6Va58E/bmanE6zmZMDT7j4SaWUiIg0qyWX6KlWbB3+Juz9sZteMeeoN4Tx4NRsTEamQ9DJ9lapdwb8NeBh4zzjPqZukiMgYR5bpS/sVvLt/Nvz+0aPdsZmdAHwVeB1QAta7+5fqKVJEpFEcWaYvwSZjZTWNwZtZK/DrwMrK17j7/5jkZaMEbYafMLN2YIuZbXT3HVOoV0Qk1ZJepq9SrW/x3gMcJmhVMFxlWwDcfR+wL7zdb2Y7geWAAl5EMivpZfoq1RrwK9z98noPYmYrgXOAR8d5bh2wDuDEE0+s9xAiIqmQ9DJ9lWr9oNNPzOyseg5gZnOAbwOfdPe+sc+7+3p373T3zo6O5Ja2EhGZDmmZIgnVp0luJ3iDtAX4qJk9SzBEY4C7+5oqr59BEO5f15RKEcm6NCzTV6naEM1yYG09O7bg75N/Ana6+xfq2YeISCMpL9PXEFfwwHPu/kKd+74A+C/ANjPbGj72GXe/v879iYik2qs9aJKfIgnVA36JmX1qoicnuzJ39x8RDOWIiBwT0rBMX6VqAd8MzEFBLSJSVRqW6atULeD3Vfkwk4iIhNKwTF+lar9mdOUuIlKD8jJ9aXmDFaoH/K/FUoWISINLyzJ9lSYNeHfPxVWIiEgjKy/Td0pH4wzRiIhIDcpTJF+fkimSoIAXEZkWaVmmr5ICXkRkGqSpB02ZAl5EZIrKy/SlpQdNmQJeRGSK0rRMXyUFvIjIFKVpmb5KCngRkSk6skyfruBFRLLlyDJ9c5Jfpq+SAl5EZIrStExfJQW8iMgUpXGKJCjgRUSmJG3L9FVSwIuITEHXnj4ATl2qgBcRyZSNOw4ws6WJt7x+UdKl/BIFvIhIndydB7v286unLE5VD5oyBbyISJ269vax5+VXuOzM1yVdyrgU8CIiddqw4wBNBr92xpKkSxmXAl5EpE4buvbTuXIhi1L2AacyBbyISB1eOJTn6f39qR2eAQW8iEhdHuzaD8Clb1yacCUTU8CLiNThwa4DnHn8XE5YODvpUiakgBcROUrd/UM88WIvl74xvcMzoIAXETlqG3ccwB0uW53e4RmIMODN7FYz6zaz7VEdQ0QkCRu6DnDSotmctrQ96VImFeUV/L8Al0e4fxGR2PUNjfCT3Qe57MzXpa498FiRBby7PwLkotq/iEgSfvB0NyNF57Iz0z08AykYgzezdWa22cw29/T0JF2OiMikNnQdYPGcVs45YUHSpVSVeMC7+3p373T3zo6OjqTLERGZ0NBIkU0/7+adb1xKU1O6h2cgBQEvItIofrzrIPlCsSGGZ0ABLyJSsw1dB2hvbeGtqxYnXUpNopwmeTvwU+A0M3vJzG6I6lgiIlErlpzv7zzAxacvYWZLY1wbR9ah3t0/FNW+RUTitvn5HIfyhVQ3FxurMX4NiYgk7MGuYGm+t53WOJNBFPAiIlWUl+a78JTFzEnh0nwTUcCLiFTx6tJ8jTF7pkwBLyJSRXlpvnecoYAXEckMd0/90nwTUcCLiEzige37eXp/P1edfXzSpRw1BbyIyAQOvzLCZ+/tYvXyuVx33glJl3PUGuftYBGRmP3V957m0MAwt15/Hi3NjXc93HgVi4jE4PHnc3zj0Rf52AUnc9aKeUmXUxcFvIjIGMOjRT591zaWzz+O//7OU5Mup24aohERGeMff/gsu7oH+OePnEdbA32waSxdwYuIVNjdM8DfPbyLK9cs4+LTlyRdzpQo4EVEQu7OZ+7axqwZTdz4njcmXc6UKeBFREJ3bn6JR5/L8ZkrzmBJ+6yky5kyBbyICHBwYJj/ef9Ozj95IR/obLw57+NRwIuIAJ+7bwevFIp8/n1nNcR6q7VQwIvIMW/Tz7u5Z+tefufiVZyyZE7S5UwbBbyIHNP+45kePvnNrazqaOO/vX1V0uVMKwW8iByT3J1bNu3m+lsfY2n7LG79yHm0tjQnXda0atwZ/CIidRoYHuUP73ySB7bv58o1y7j5/WuYPTN7cZi9n0hEZBK7ewb4r/+6hWd7BvjTK87gN3/1ZMyy8abqWAp4ETlmbNxxgE99cyszWpr42g1v5q2nLE66pEgp4EUk84ol50vf/wX/5+FdrFkxj1s+/CaWzz8u6bIip4AXkcw6PDjCd7bu4RuPvsjPD/Rz7ZtW8Ln3rmbWjGy9mToRBbyIZIq78/jzvdzx2Iv8+7Z9DI+WOGv5PL74wbVcvfb4zI63j0cBLyKZkMsXuOuJl7j9sRfZ3ZNnTmsL13au4LrzTmT18sZcsGOqFPAi0nBGiiWeOTDA9r2H2b7nMNv2HKZrTx+FYolzT5zPze9fw5VrlmVy6uPRiPSnN7PLgS8BzcBX3P0vozyeiGRHqeTkBgt09w1zoH+IfS8P0bX3MNv39rFzXx+F0RIAbTObOXP5PD56wUquOXcFp72uPeHK0yOygDezZuD/Au8EXgIeN7N73X1HVMcUkfi5OyUPZqoUS06hWKIwWmKkGHwVRksUiiVGis5gYZTB4SL5wigDw6Pkh0fJDxeD74VRevoL9PQP0d0/TE//MKMlf82x2ltbOHP5XK7/lZNYvXweq5fP4+RFbZlpDjbdoryCPx/Y5e7PApjZHcDVwLQH/Hv+9kcMjRSne7dyDPPqm0R3bJ/86JM+66/dpryvV++Xn3fcX71f3tbDbUpHbvtr7hdLTqnkFN0plaDoQahP1eyZzbS1trCobSZL5s7iDUvbWdLeytK5s1jS3sqSucHt4+cdpzA/ClEG/HLg/1Xcfwl489iNzGwdsA7gxBNPrOtAqzraKBRLdb1WZCJGgkFS5dCTPV2eJWJH7jPmfsXzFvyclds0WXDfwu9N4TZN4WPNTcFXkxnNTdDc1ERzxe2ZLU3MbDZmNAe3ZzQ3hbeNWTOamdPaQltrC3NaW5g9s5nZM1toVmhHIsqAH++/2C/9qnf39cB6gM7OzrouBb543Tn1vExEJNOi7Cb5ElC5LMoKYG+ExxMRkQpRBvzjwBvM7GQzmwlcB9wb4fFERKRCZEM07j5qZr8LPEgwTfJWd++K6ngiIvJakc6Dd/f7gfujPIaIiIxPKzqJiGSUAl5EJKMU8CIiGaWAFxHJKKv2seg4mVkP8EKdL18MHJzGcqaTaquPaquPaqtPo9Z2krt3jPdEqgJ+Ksxss7t3Jl3HeFRbfVRbfVRbfbJYm4ZoREQySgEvIpJRWQr49UkXMAnVVh/VVh/VVp/M1ZaZMXgREXmtLF3Bi4hIBQW8iEhGNXzAm9nlZvZzM9tlZn+SdD2VzOx5M9tmZlvNbHMK6rnVzLrNbHvFYwvNbKOZPRN+X5Ci2m4ysz3h+dtqZlckUNcJZvYDM9tpZl1m9onw8cTP2yS1peG8zTKzx8zsybC2vwgfT8N5m6i2xM9bRY3NZvYzM7svvF/XeWvoMfhwYe9fULGwN/ChtCzsbWbPA53unooPT5jZRcAA8FV3Xx0+djOQc/e/DH9BLnD3P05JbTcBA+7+13HXU1HXMmCZuz9hZu3AFuC9wEdI+LxNUtsHSP68GdDm7gNmNgP4EfAJ4BqSP28T1XY5CZ+3MjP7FNAJzHX3K+v9/7TRr+CPLOzt7gWgvLC3jMPdHwFyYx6+GrgtvH0bQUDEboLaEufu+9z9ifB2P7CTYL3hxM/bJLUlzgMD4d0Z4ZeTjvM2UW2pYGYrgHcDX6l4uK7z1ugBP97C3qn4Bx5yYIOZbQkXF0+jpe6+D4LAAJYkXM9Yv2tmT4VDOIkMH5WZ2UrgHOBRUnbextQGKThv4TDDVqAb2OjuqTlvE9QGKThvwBeBPwJKFY/Vdd4aPeBrWtg7QRe4+7nAu4CPh8MQUrtbgFXAWmAf8DdJFWJmc4BvA590976k6hjPOLWl4ry5e9Hd1xKsx3y+ma1Ooo7xTFBb4ufNzK4Eut19y3Tsr9EDPtULe7v73vB7N3A3wZBS2hwIx3LLY7rdCddzhLsfCP9HLAFfJqHzF47Tfhv4urvfFT6civM2Xm1pOW9l7v4ysIlgjDsV562ssraUnLcLgKvC9+/uAC4xs69R53lr9IBP7cLeZtYWvvGFmbUBlwLbJ39VIu4Frg9vXw/ck2Atr1H+Bx16Hwmcv/ANuX8Cdrr7FyqeSvy8TVRbSs5bh5nND28fB7wDeJp0nLdxa0vDeXP3T7v7CndfSZBnD7v7h6n3vLl7Q38BVxDMpNkN/GnS9VTU9XrgyfCrKw21AbcT/Ok5QvDXzw3AIuAh4Jnw+8IU1favwDbgqfAf+LIE6rqQYNjvKWBr+HVFGs7bJLWl4bytAX4W1rAduDF8PA3nbaLaEj9vY+p8O3DfVM5bQ0+TFBGRiTX6EI2IiExAAS8iklEKeBGRjFLAi4hklAJeRCSjFPCSWWb2+2Gnxa9P8PxHzOzvJnhuIPx+vJl9K8o6RaLSknQBIhH6HeBd7v5cvTvw4NPI75++kkTioyt4ySQz+weCD5vda2Z/YGbfCZtI/aeZrRln+5PN7Kdm9riZfa7i8ZUW9qgPr/jvMrPvhX25b67Y7gYz+4WZbTKzL5f/MjCza81se9h7/JHof3KRVyngJZPc/bcJ+hJdDKwEfubua4DPAF8d5yVfAm5x9/OA/ZPsei3wQeAs4IMWLLpxPPDnwFsI1iY4vWL7G4HL3P1s4Kqp/EwiR0sBL8eCCwk+ho67PwwsMrN5Y7a5gKBdAuVtJ/CQux929yFgB3ASQVOqH7p7zt1HgDsrtv8x8C9m9ltA89R/FJHaKeDlWFBrW+la+nYMV9wuEryPNd7+gx0Gf0n8GUHX061mtqiGY4hMCwW8HAseAX4DwMzeDhz0X+7p/mOC7n2Utz0KjwFvM7MFZtYC/Hr5CTNb5e6PuvuNwEFe295aJFKaRSPHgpuAfzazp4BBXm27WukTwDcsWLj620ezc3ffY2afJ1hNaS/B0M3h8On/ZWZvILjKf4igu6hILNRNUmQamNkcDxZxbiFY3OVWd7876brk2KYhGpHpcVO4xud24DngO4lWI4Ku4EVEMktX8CIiGaWAFxHJKAW8iEhGKeBFRDJKAS8iklH/HyhltMXgUxJgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZXklEQVR4nO3de5SddX3v8fdnbpncrwOBhDDcwSqE4xwqhWMRFSlQ9Nii2Nrj6bGy2npaXIfWoy4raFddLefo0tUerWg9ULV48I4WvBEiCogkAkJMkMuEe5hMMjNJ5pLZM/t7/th7wiROZvZM5rnsZz6vtWbNvjz7eb55xE9++e3n+f4UEZiZWfE0ZF2AmZklwwFvZlZQDngzs4JywJuZFZQD3sysoBzwZmYFlbuAl/R5SV2SHqlh23WS7pT0gKRfSLokjRrNzOpB7gIeuBG4uMZtPwjcEhFnA1cCn0qqKDOzepO7gI+Iu4Dd41+TdJKk70raLOnHkk4f2xxYUn28FHg+xVLNzHKtKesCanQD8KcR8Zik36QyUr8QuA74vqS/ABYCr8uuRDOzfMl9wEtaBPwW8BVJYy/Pq/5+G3BjRHxM0rnAFyS9PCLKGZRqZpYruQ94KtNIvRGxfoL33kl1vj4i7pXUCqwCutIrz8wsn3I3B3+oiNgDdEq6AkAVZ1Xffhp4bfX1M4BWYGcmhZqZ5Yzy1k1S0s3ABVRG4i8C1wIbgE8DxwDNwJcj4iOSXgZ8FlhE5QvX90bE97Oo28wsb3IX8GZmNjtyP0VjZmYzk6svWVetWhXt7e1Zl2FmVjc2b97cHRFtE72Xq4Bvb29n06ZNWZdhZlY3JD11uPc8RWNmVlAOeDOzgnLAm5kVlAPezKygHPBmZgXlgDczKygHvJlZQTngzcwy9MNfvsg//+iJRPbtgDczy9D3tuzgxru3J7JvB7yZWYZ6BkosW9CcyL4d8GZmGeobHHbAm5kVUc9AieULWhLZtwPezCxDvQPDLHPAm5kVS0TQO1BiuadozMyKZd/+EUbK4SkaM7Oi6R0oAbDUI3gzs2LpGRgG8AjezKxoeqojeM/Bm5kVTG91BO+raMzMCmZsDt43OpmZFczYHPyy+Q54M7NC6R0osbi1iabGZKLYAW9mlpGegeHErqCBFAJeUqOkByR9J+ljmZnVkyTvYoV0RvBXA1tTOI6ZWV3pHRhmab2O4CWtBS4FPpfkcczM6lFPnY/gPwG8FygfbgNJV0naJGnTzp07Ey7HzCw/6nYOXtJlQFdEbJ5su4i4ISI6IqKjra0tqXLMzHJlZLTM3qGRxK6Bh2RH8OcBl0vaDnwZuFDSFxM8nplZ3egbrN7klNA18JBgwEfE+yNibUS0A1cCGyLi7Ukdz8ysnhzoQ7OwDqdozMzs8JLuQwPQlNiex4mIjcDGNI5lZlYPku4kCR7Bm5ll4sAIfr6naMzMCuVAJ8mFHsGbmRVKz8AwTQ1i8bzkZsod8GZmGegZKLFsQTOSEjuGA97MLAN9g8OJXkEDDngzs0z09JcSvckJHPBmZpnoGfAI3syskJLuBQ8OeDOzTPQODifapgAc8GZmqRsqjTJUKrPUc/BmZsXSU72LNcle8OCANzNLXU9/8n1owAFvZpa6NDpJggPezCx1vYNjveA9gjczK5SeFDpJggPezCx1BzpJeg7ezKxYevqHmd/cSGtzY6LHccCbmaWsdzD5u1jBAW9mlrregWGWJnwFDTjgzcxS15NCHxpwwJuZpa5nYDjxu1jBAW9mlrre6mpOSXPAm5mlqFwOej2CNzMrnr37RyhH8tfAgwPezCxVafWhAQe8mVmqegbS6SQJDngzs1R5BG9mVlBp9aEBB7yZWarSWs0JHPBmZqnqGSghkfh6rOCANzNLVd/AMEtam2lsUOLHcsCbmaWoJ6W7WMEBb2aWqp6B4VSuoAEHvJlZqnpT6iQJDngzs1Sl1UkSHPBmZqnqK8IcvKRWST+T9JCkLZI+nNSxzMzqQWm0zN79Iyybn84IvinBfe8HLoyIfZKagZ9Iuj0ifprgMc3McmvsLtblC9MZwScW8BERwL7q0+bqTyR1PDOzvEuzDw0kPAcvqVHSg0AX8IOIuG+Cba6StEnSpp07dyZZjplZpnoH0+skCQkHfESMRsR6YC1wjqSXT7DNDRHREREdbW1tSZZjZpapnv7qCD6lOfhUrqKJiF5gI3BxGsczM8ujNDtJwhRz8JLeXMM+hiLitgk+2waUIqJX0nzgdcA/zKxMM7P6d6CT5MJ8XEXzWeBbwGRdcV4N/FrAA8cAN0lqpPIvhVsi4jszqtLMrAB6Bko0N4qFLY2pHG+qgL89Iv7bZBtI+uJEr0fEL4CzZ1qYmVnR9A1W+tBIyXeShCnm4CPi7VPtoJZtzMwMevpLLEuhD/yYmq6Dr06zXAq0j/9MRHw8mbLMzIonzT40UPuNTt8GhoCHgXJy5ZiZFVfvQInjVy5I7Xi1BvzaiDgz0UrMzAqud3CY9QuWpXa8Wq+Dv13SRYlWYmZWYBGR6mpOUPsI/qfANyQ1ACUql01GRCxJrDIzswIZLI0yPFJOrQ8N1B7wHwPOBR6uNhEzM7Np6BlItw8N1D5F8xjwiMPdzGxm0u4kCbWP4F8ANkq6nUqfd8CXSZqZ1SrtPjRQe8B3Vn9aqj9mZjYNB/rQ5G0EHxFebs/M7Ajkbg5e0nVT7aCWbczM5rre/vzNwf+JpD2TvC/gSuC6WavIzKyAegdLLGxppKUplWU4gNraBS+uYRszM5tEz8BwqqN3mCLgPfduZjY7elO+ixVSWrLPzGyuS7uTJDjgzcxS0ecRvJlZMVXm4HMY8JKul7REUrOkOyR1S/JKTmZmNSiXg77BUm6naC6KiD3AZcCzwKnAXydWlZlZgewZKlGOdK+Bh9oDfuzfFZcAN0fE7oTqMTMrnCzuYoVpLNknaRswCPy5pDYqS/iZmdkUejPoQwM1juAj4n1U+sF3REQJ6AfemGRhZmZFMdZJcmlOv2S9AhiJiFFJHwS+CBybaGVmZgWRRSdJqH0O/m8iYq+k84E3ADcBn06uLDOz4shqDr7WgB+t/r4U+HREfAv3hTczq0nfwDASLGnNZ8A/J+kzwFuA2yTNm8ZnzczmtJ6BEkvnN9PQoFSPW2tIvwX4HnBxRPQCK/B18GZmNcmiDw3UfhXNANAFnF99aYTKQtxmZjaFLDpJQu1X0VwL/E/g/dWXmqlcSWNmZlPoHczxCB74z8DlVK5/JyKeZ+qFQMzMDNjRN8RRi+elftxaA344IgIIAEkLkyvJzKw4+gZLdO8b5oRV6cdmrQF/S/UqmmWS3gX8EC/VZ2Y2pe3d/QC0ZxDwNfWiiYj/Len1wB7gNOBDEfGDRCszMyuA7bsqAX9iXgMeoBroDnUzs2l4cmc/Ehy3YkHqx671Kpo3S3pMUp+kPZL2StqTdHFmZvVu+65+1iybT2tzY+rHrnUO/nrg8ohYGhFLImJxRCyZ7AOSjpN0p6StkrZIuvrIyzUzqy+d3f2ZfMEKtQf8ixGxdZr7HgGuiYgzgFcB75b0smnuw8ysbkVEpgFf6xz8Jkn/D/gmsH/sxYj4+uE+EBEvAC9UH++VtBVYA/xyxtWamdWRXf3D7B0aoX1lvgN+CTAAXDTutQAOG/DjSWoHzgbum+C9q4CrANatW1djOWZm+Td2ieQJbfkO+GsOXYdV0gm1fFDSIuBrwHuqC3cfJCJuAG4A6OjoiBrrMTPLvSfHAj6jEXytc/DflnTgS1VJZwDfnupDkpqphPuXJpvOMTMrou3d/TQ1iLXL52dy/FoD/qNUQn6RpFcCXwXePtkHJAn4F2BrRHz8yMo0M6s/nd39rFuxgKbGbJbPqPVO1n+vjsa/T6XJ2JsiYqp2wecBfwQ8LOnB6msfiIjbZlqsmVk9yfIKGpgi4CX9I9UGY1VLgCeBv5BERPzl4T4bET8B0l2+xMwsJ8rlYPuufs4/eVVmNUw1gt90yPPNSRViZlYkO/YMMVQqZ9JkbMykAR8RN8GB9sBDETFafd4IpN/c2MysToxdIplFk7Extc783wGM/xp4PpWWwWZmNoEnM2wTPKbWgG+NiH1jT6qP02+NZmZWJ7Z399Pa3MDqJa2Z1VBrwPdL+g9jT6qXSg4mU5KZWf3r7O6nfeVCGhqyu9ak1jtZ3wN8RdLz1efHAG9NpCIzswLo3NXPaUdnu3R1rdfB3y/pdCqrOQnYFhGlRCszM6tTI6Nlnt41wBt+Y3WmdUx1HfyFEbFB0psPeeuU6nXwbj9gZnaI53oHGSlHpjc5wdQj+N8GNgC/O8F7NXeTNDObSw40GctzwEfEtdXff5xOOWZm9W97PQT8GEnzgN8D2sd/JiI+kkxZZmb1q7O7n8Xzmli5sCXTOmq9iuZbQB+VVgX7p9jWzGxO6+zu54S2hVSa6man1oBfGxEXJ1qJmVlBdHb388rjl2ddRs03Ot0j6RWJVmJmVgBDpVGe6x3MbB3W8aa6TPIRoFzd7o8lPUllikZARMSZyZdoZlY/ntk9QAScmNE6rONNNUWzBlifQh1mZoVwoMlY3kfwQGdEPJVKJWZmBbA9B10kx0wV8EdJ+h+He9NrrZqZHayzu5+VC1tYOr8561KmDPhGYBFees/MrCZZr8M63lQB/4JvZjIzq11ndz+vPrUt6zKAqS+T9MjdzKxG/ftH6Nq7Pzcj+KkC/rWpVGFmVgCdOelBM2bSgI+I3WkVYmZW77bvqqOANzOz2nXuzM818OCANzObNZ3d/RyztJX5LY1ZlwI44M3MZk3nrv7cjN7BAW9mNmvG2gTnhQPezGwW9PQP0ztQ4sScfMEKDngzs1nRuStfX7CCA97MbFYcWIfVUzRmZsXS2d1Pg+C45QuyLuUAB7yZ2Szo7O7nuBULaGnKT6zmpxIzszrW2Z2vSyTBAW9mdsQigu05ahM8xgFvZnaEnu0ZpH94lJNy9AUrOODNzI7Yxke7APitk1dlXMnBEgt4SZ+X1CXpkaSOYWaWBxu2dXH8ygW5uskJkh3B3whcnOD+zcwyNzg8yj1P7OI1px2FlK81khIL+Ii4C3A/eTMrtHue6Gb/SJnXnnFU1qX8mszn4CVdJWmTpE07d+7Muhwzs2nZsK2LBS2NnHPCiqxL+TWZB3xE3BARHRHR0daWj4VqzcxqERHcua2L809exbymfPSAHy/zgDczq1ePvriX5/uGuPD0/E3PgAPezGzGNmyrXB75mrkW8JJuBu4FTpP0rKR3JnUsM7Ms3Lmti984dglHL2nNupQJNSW144h4W1L7NjPLWu/AMJuf6uHdrzk561IOy1M0ZmYz8KNf7aQc+Z2eAQe8mdmM3LmtixULWzhr7bKsSzksB7yZ2TSNloONv9rJBae20diQr7tXx3PAm5lN0wNP99A7UMr19Aw44M3Mpm3Dti4aG8SrT833zZkOeDOzadqwrYtXHr+cpfObsy5lUg54M7NpeL53kG079vLanE/PgAPezGxa7qwu7pHX9gTjOeDNzKbhzm1drF0+n5OPWpR1KVNywJuZ1WioNMrdj+/iwtPzt7jHRBzwZmY1+umTuxgsjeb+8sgxDngzsxrdua2L1uYGzj1xZdal1MQBb2ZWg4hgw6NdnHfSKlqb87e4x0Qc8GZmNXhi5z6e2T1YN9Mz4IA3M6vJpzY+QUtjA6874+isS6mZA97MbAqbn+rh6z9/jj/5Tyewemk+F/eYiAPezGwS5XJw3a1bOHrJvFwv7jERB7yZ2SS+svkZHn6ujw9ccgYL5yW2CF4iHPBmZofRN1ji+u8+Ssfxy7n8rGOzLmfa6uuvIzOzFH3yh4+xe2CYmy4/py7uXD2UR/BmZhP41Yt7uene7bztnHW8fM3SrMuZEQe8mdkhIoIPf3sLi+Y18VcXnZZ1OTPmgDczO8T3tuzg7sd3cc1Fp7JiYUvW5cyYA97MbJyh0ih/+52tnL56MX9wzrqsyzki/pLVzGycz/zoSZ7rHeTmd72Kpsb6HgPXd/VmZrPo2Z4BPrXxcS498xjOPak+OkZOxgFvZga80DfIu/51MxJ84JIzsi5nVniKxszmvIef7eOdN93PwPAon/mjDtYsm591SbPCAW9mc9r3t+zg6i8/yIqFLXz1z87h9NVLsi5p1jjgzWxOigg+9+NOPnr7Vs5cu4zP/pdXctTi+ukUWQsHvJnNOaXRMtfeuoV/u+9pLnnFaj52xXrmt9THKk3T4YA3szllz1CJd3/p5/z4sW7+7IKT+OuLTqOhof76zNTCAW9mc8Lu/mFu/tnTfOHep+jet5/rf/9M3tJxXNZlJcoBb2aF9shzfdx4z3Zufeh5hkfKnHfySv7pD86mo31F1qUlzgFvZoVTGi1z+yM7uOme7Wx+qocFLY28pWMt7zi3nVOOXpx1ealxwJtZ3esbLPHws308+EwPDz7Tx8+f7mF3/zDHr1zABy89gys6jmPp/Oasy0xdogEv6WLgk0Aj8LmI+Pskj2dmxRUR9A6U2LFniB19QzzTM8BDz1RC/Ymd/Qe2O7FtIRec2sZlZx3DBaceVdgvUGuRWMBLagT+D/B64Fngfkm3RsQvkzqmmeVHRDBaDkYjKI0GwyPll35GRxkeCYZHywwMj9C/f5R9+0vsGxph7/4R+vePsG9ohJ5xgf7iniH2j5QPOsaqRS2sP24Zb1q/hvXrlnHmmmUsXTD3RuqHk+QI/hzg8Yh4EkDSl4E3ArMe8L/7jz9hqDQ627s1q0lkccw4/FEnrScO3mZsPwHEgfeCiHHPx21Tjsp75ai8PvZauRyUA0bKZcrl6u8jODGNDWLRvCaWzm9m9ZJW1h+3jNVLWzl6SSurl7Syemkrxy6rPK7HpfTSkmTArwGeGff8WeA3D91I0lXAVQDr1s2s9/JJbQsZHi1PvaFZQkQGITPJISerZiwQdeD5S5856D1V/lzSS9s2SDQ0VLbT2HNVnjc2jPs55HlLYwPNjaKlqZGWpsrjeU0NtDQ1ML+5iUXzmljUWvm9uLWJeU0NDu5ZkGTAT/S/zq/9nR4RNwA3AHR0dMzo7/xPXHn2TD5mZlZoSbYLfhYYfxfBWuD5BI9nZmbjJBnw9wOnSDpBUgtwJXBrgsczM7NxEpuiiYgRSf8d+B6VyyQ/HxFbkjqemZkdLNHr4CPiNuC2JI9hZmYT85J9ZmYF5YA3MysoB7yZWUE54M3MCkqT3fKcNkk7gadm+PFVQPcsllM0Pj9T8zmanM/P1LI4R8dHRNtEb+Qq4I+EpE0R0ZF1HXnl8zM1n6PJ+fxMLW/nyFM0ZmYF5YA3MyuoIgX8DVkXkHM+P1PzOZqcz8/UcnWOCjMHb2ZmByvSCN7MzMZxwJuZFVTdB7ykiyU9KulxSe/Lup48kPR5SV2SHhn32gpJP5D0WPX38ixrzJKk4yTdKWmrpC2Srq6+7nNUJalV0s8kPVQ9Rx+uvu5zNI6kRkkPSPpO9Xmuzk9dB/y4hb1/B3gZ8DZJL8u2qly4Ebj4kNfeB9wREacAd1Sfz1UjwDURcQbwKuDd1f9ufI5esh+4MCLOAtYDF0t6FT5Hh7oa2Druea7OT10HPOMW9o6IYWBsYe85LSLuAnYf8vIbgZuqj28C3pRmTXkSES9ExM+rj/dS+T/oGnyODoiKfdWnzdWfwOfoAElrgUuBz417OVfnp94DfqKFvddkVEveHR0RL0Al4ICjMq4nFyS1A2cD9+FzdJDq9MODQBfwg4jwOTrYJ4D3AuVxr+Xq/NR7wNe0sLfZRCQtAr4GvCci9mRdT95ExGhErKeynvI5kl6ecUm5IekyoCsiNmddy2TqPeC9sHftXpR0DED1d1fG9WRKUjOVcP9SRHy9+rLP0QQiohfYSOV7HZ+jivOAyyVtpzI1fKGkL5Kz81PvAe+FvWt3K/CO6uN3AN/KsJZMSRLwL8DWiPj4uLd8jqoktUlaVn08H3gdsA2fIwAi4v0RsTYi2qnkzoaIeDs5Oz91fyerpEuozIWNLez9d9lWlD1JNwMXUGld+iJwLfBN4BZgHfA0cEVEHPpF7Jwg6Xzgx8DDvDR/+gEq8/A+R4CkM6l8SdhIZSB4S0R8RNJKfI4OIukC4K8i4rK8nZ+6D3gzM5tYvU/RmJnZYTjgzcwKygFvZlZQDngzs4JywJuZFZQD3gpL0l9WO0Z+6TDv/1dJ/3SY9/ZVfx8r6atJ1mmWlKasCzBL0J8DvxMRnTPdQUQ8D/z+7JVklh6P4K2QJP0zcCJwq6RrJH1T0i8k/bR6E8+h258g6V5J90v623Gvt4/11a+O+L8u6bvVft/Xj9vunZJ+JWmjpM+O/ctA0hWSHqn2Vb8r+T+52Usc8FZIEfGnVPoSvQZoBx6IiDOp3LH6rxN85JPApyPiPwI7Jtn1euCtwCuAt1YXDzkW+BsqveVfD5w+bvsPAW+o9lW//Ej+TGbT5YC3ueB84AsAEbEBWClp6SHbnAfcXH38hUn2dUdE9EXEEPBL4Hgq6xL8KCJ2R0QJ+Mq47e8GbpT0Liq3/ZulxgFvc0GtbaVr6duxf9zjUSrfY020/8oOK/+S+CCVrqcPVnuVmKXCAW9zwV3AH8KBxlDdE/R/v5tKV0DGtp2GnwG/LWm5pCbg98bekHRSRNwXER8Cujm4vbVZonwVjc0F1wH/V9IvgAFeauc63tXAv1UX4P7adHYeEc9J+iiVbpTPU5m66au+/b8knUJllH8H8NCM/gRmM+BukmazQNKiiNhXHcF/g0rr6m9kXZfNbZ6iMZsd11XXL30E6KTSf98sUx7Bm5kVlEfwZmYF5YA3MysoB7yZWUE54M3MCsoBb2ZWUP8fqiEGh+uHw3oAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -151,8 +151,8 @@ ], "source": [ "r = 1 # 100% growth means doubling \n", - "c = 0.0001 # 0.1 mm = 0.0001 m\n", - "t = np.arange(0., 40., 1)\n", + "c = 0.0001 # 0.1 mm = 0.0001 m = 0.0000001 km\n", + "t = np.arange(0., 43., 1)\n", "\n", "plt.plot(t, c*(1+r)**t, '-')\n", "plt.xlabel('foldings')\n", @@ -170,7 +170,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -178,14 +178,14 @@ "output_type": "stream", "text": [ "Foldings to the sun = 50.413883924031595\n", - "Foldings to the moon = 38.46720846231721\n" + "Foldings to the moon = 41.78913655720457\n" ] } ], "source": [ "import math\n", - "print (\"Foldings to the sun = \", math.log(1.5E15,2))\n", - "print (\"Foldings to the moon = \", math.log(380.E9, 2))" + "print (\"Foldings to the sun = \", math.log(150E13,2))\n", + "print (\"Foldings to the moon = \", math.log(380.E10, 2))" ] }, { @@ -199,17 +199,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Suppose a baterium can replicate without any resource limitations. Assume its has a round shape with a diameter of 1 micrometer. How many replications steps does it need to cover Europe (10 millions km^2)? and the entire earth (500 millions km^2)?" + "Suppose a baterium can replicate without any resource limitations. Assume its has a square shape with a side of 1 micrometer. How many replications steps does it need to cover Europe (10 millions km^2)? and the entire earth (500 millions km^2)?" ] }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXiklEQVR4nO3dfZTddX3g8fdnZpIMCSRBCAiBEB5FqwLdaKm4KKBdqojdVQu2drWrsu52W/S4teq2PmzP7tmz2+1qt123ASkuUlwRscpRlOVRXAskIAjCAhWCECBPzBAyuTN35n72j3snmZBhZjKZ3/3d+5v36xzO3Iffwydfkk+++fy+D5GZSJKqp6fsACRJxTDBS1JFmeAlqaJM8JJUUSZ4SaooE7wkVVTHJfiIuCwiNkXE/TM4dlVE3BwR90TEfRHxtnbEKEndoOMSPHA5cO4Mj/1j4OuZeRpwIfA/igpKkrpNxyX4zLwN2Dbxs4g4PiKuj4j1EfHDiDh5/HBgaev1MmBjG0OVpI7WV3YAM7QW+EhmPhIRv0Kzp3428DngBxHx+8AS4C3lhShJnaXjE3xEHAi8Abg6IsY/XtT6+V7g8sz8rxHxq8AVEfHqzGyUEKokdZSOT/A0y0gDmXnqJN99kFa9PjN/HBH9wKHApvaFJ0mdqeNq8C+Wmc8Dj0XEewCi6ZTW108A57Q+fyXQD2wuJVBJ6jDRaatJRsRVwJtp9sSfBT4L3AR8CTgCWAB8LTP/fUS8CrgEOJDmA9dPZOYPyohbkjpNxyV4SdLc6PgSjSRpdjrqIeuhhx6aq1evLjsMSeoa69ev35KZKyb7rtAEHxGPA9uBMWA0M9dMdfzq1atZt25dkSFJUqVExIaX+q4dPfizMnNLG+4jSZrAGrwkVVTRCT5pLiWwPiIuKvhekqQJii7RnJGZGyPiMOCGiHiotZjYLq3EfxHAqlWrCg5HkuaPQnvwmbmx9XMTcC3w+kmOWZuZazJzzYoVkz4IliTNQmEJPiKWRMRB46+BXwOm3cRDkjQ3iizRHA5c21oBsg/428y8vsD7SZImKCzBZ+bPgVOmPVCS5rEbfvYs/7D5BT7ypuPn/NoOk5SkEt344LNcdvtjhVzbBC9JJarVx+hf0FvItU3wklSiWr3Bor5iUrEJXpJKVBu1By9JlTRcb9C/wB68JFWOPXhJqqhmDd4EL0mVM1wfs0QjSVXkMElJqqjaqA9ZJamSavUxa/CSVEXD9uAlqXrqYw3GGkm/PXhJqpZafQzAh6ySVDW1egPAEo0kVc14D36RPXhJqpbhUUs0klRJ4yUalwuWpIrxIaskVdTwaOshqz14SaoWe/CSVFG7h0ma4CWpUnb34C3RSFKl1BwmKUnVtKtE41o0klQtu2eyWqKRpEoZHybpRCdJqpjh+hiL+nqIiEKub4KXpJIUuR8rmOAlqTS1enG7OYEJXpJKUxu1By9JlVSrjxU2RBLakOAjojci7omI64q+lyR1k1q9UdgQSWhPD/5i4ME23EeSusrwaBf34CPiKODtwKVF3keSulG39+C/AHwCaLzUARFxUUSsi4h1mzdvLjgcSeocXTtMMiLOAzZl5vqpjsvMtZm5JjPXrFixoqhwJKnjDI82ujPBA2cA50fE48DXgLMj4qsF3k+SukpzFE0Xlmgy81OZeVRmrgYuBG7KzPcVdT9J6jZdW6KRJE2t6JmsfYVdeYLMvAW4pR33kqRukJkMj46xqFuHSUqSJlcfSxpZ3HZ9YIKXpFIUvV0fmOAlqRS7d3MywUtSpQzv2o/VEo0kVcp4D94SjSRVTG28B2+Cl6RqGW49ZC1qw20wwUtSKezBS1JF7a7B24OXpEpxHLwkVdSuEo1LFUhStViikaSKciarJFXU8Oj4KBp78JJUKcP1MSJgYa8JXpIqpTbaYFFfDxFR2D1M8JJUgqK36wMTvCSVornhtglekiqn6P1YwQQvSaWwRCNJFTU82ih0DDyY4CWpFLX6WKFLBYMJXpJKURttWKKRpCoaro8Vuh8rmOAlqRQ+ZJWkinKYpCRVVG3UHrwkVdJwvfiHrH1TfRkR/2wG16hl5nfnKB5JqrzMpDZa/DDJKRM8cAnwd8BUy52dCZjgJWmGRsYaZBa7HytMn+C/l5n/YqoDIuKrcxiPJFXe+H6spU50ysz3TXeBmRwjSdpteNd+rCU/ZI2IpRFx/CSfv3aa8/oj4s6IuDciHoiIz+9PoJJUFeM9+FITfET8JvAQcE0rSb9uwteXT3PtYeDszDwFOBU4NyJO349YJakSaqPjPfhyx8F/GvhHmXkq8LvAFRNG1ky5z1Q2vdB6u6D1X+5HrJJUCcPjPfiCN/yY7iFrb2Y+DZCZd0bEWcB1EXEUM0jWEdELrAdOAP4qM++Y5JiLgIsAVq1atY/hS1L32d2DL7cGv31i/b2V7N8MvBP4pekunpljrd7/UcDrI+LVkxyzNjPXZOaaFStW7EvsktSVaq2HrItKLtH8K15UisnM7cC5wJTDJ190zgBwS+s8SZrXam0q0Uw3TPLezHx0ks/rmXnlVOdGxIqIWN56fQDwFpoPbCVpXqvVO+MhKwAR8YFZXPsI4OaIuA+4C7ghM6+bxXUkqVJqbRoHP91DViLiM8BJTD8scg+ZeR9w2uzCkqTqqo22ZrIW3IOfbrGxtcBBwG8XGoUkzSPtmsk6XQ/+t4DXZ2aj0CgkaR4ZHu2Ah6zAecDXJ1uqQJI0O7X6GBGwoHfK+aL7bbpRNLcAFwKuGClJc6RWH6O/r5eIEhM8QGbeD7yr0CgkaR5px36sMMNhkpm5sehAJGm+qNWL348VZjBMEiAijgV+H1g98ZzMPL+YsCSpumqjxe/HCjNM8MC3gC8D3wEcUSNJ+2G4Xvx+rDDzBF/LzL8oNBJJmic6rQf/xYj4LPADmht5AJCZdxcSlSRVWLMG3zk9+NcAvwOcze4STbbeS5L2wXB9jOWLFxZ+n5km+H8KHJeZI0UGI0nzQUcNkwTuBZYXGIckzRu10Q4aJgkcDjwUEXexZw3eYZKStI/GZ7IWbaYJ/rOFRiFJ88jwaHtKNDNN8Isz83sTP4iIjwC3zn1IklRt7ZrJOtO/Qv4kInaNmImIP6K58bYkaR9kJrV6g0UdVIM/H7guIv6Q5sbZJ7c+kyTtg6GR5mYfSxZ2SILPzC0RcT7wf4D1wLszMwuNTJIqaHBnHYDlixcUfq/ptuzbTnNC07iFwHHAuyMiM3NpkcFJUtUMDDUT/LIDSp7olJkHFR6BJM0jAzub80WXHVB8D37Kh6wR8fLpLjCTYyRJTYND7SvRTDeK5rszuMZMjpEk0UE1eOCUiHh+iu8DmOp7SdIEAzvHa/AlJ/jMLH4cjyTNIwNDdRb29nBAB010kiTNgcGddZYtXkBEFH4vE7wktdHgzhGWt6E8AyZ4SWqrgaF6W+rvMPOlCgCIiMOA/vH3mfnEnEckSRU2MFTnyOX90x84B2bUg4+I8yPiEeAxmitIPg58b8qTJEl7GdxZb8ssVph5ieZPgdOBhzPzWOAc4EeFRSVJFdVM8J1Vg69n5lagJyJ6MvNm4NSpToiIoyPi5oh4MCIeiIiL9zdYSepm9bEGLwyPtmWSE8y8Bj8QEQcCPwSujIhNwOg054wCH8/MuyPiIGB9RNyQmT/bj3glqWu1cxYrzLwH/05gCPgocD3wD8A7pjohM5/OzLtbr7cDDwIrZx2pJHW5wTbOYoWZrwe/IyKOAU7MzK9ExGJgxtOwImI1cBpwx6yilKQK2L1UcAf14CPiw8A3gL9ufbQS+NYMzz0QuAb4aGbutW5NRFwUEesiYt3mzZtnFLQkdaPB1lLByxd31iia3wPOoLWwWGY+Ahw23UkRsYBmcr8yM7852TGZuTYz12TmmhUrVswwHEnqPrtq8J3UgweGM3Nk/E1E9LHnTk97ieZCC18GHszMP599iJJUDR1ZogFujYhPAwdExFuBq4HvTHPOGcDvAGdHxE9a/71tP2KVpK42nuCXdtJDVuCPgA8BPwX+Jc1NPi6d6oTMvJ3mevGSJJolmqX9ffT2tCc1TpvgI6IHuC8zXw1cUnxIklRNgzvrbXvACjMo0WRmA7g3Ila1IR5JqqyBoZG21d9h5iWaI4AHIuJOYMf4h5l5fiFRSVIFDeyst20WK8w8wX++0CgkaR4Y3Fln5fID2na/mc5kvXXi+4g4A/gtmksHS5JmYLCNm33APmz4ERGn0kzqv0lzXfhrCopJkionMzurRBMRJwEXAu8FtgL/G4jMPKsNsUlSZbwwPMpYI1neps0+YPoe/EM0lwh+R2Y+ChARHys8KkmqmF0rSbaxBz/dMMl3Ac8AN0fEJRFxDk5ekqR91u5lCmCaBJ+Z12bmBcDJwC3Ax4DDI+JLEfFrbYhPkiqh3QuNwQzXosnMHZl5ZWaeBxwF/AT4ZJGBSVKVjPfgO2om64tl5rbM/OvMPLuIgCSpitq9mxPMIsFLkvbdwK7NPkzwklQpg0N1FvX10L9gxrud7jcTvCS1weDO9s5iBRO8JLXFwFB7Z7GCCV6S2mJg50hbZ7GCCV6S2mJgqN7WWaxggpektnjeGrwkVdPAznpbZ7GCCV6SCjcy2mBoZMyHrJJUNWXMYgUTvCQVbrA1i3VZG9ehARO8JBVu10Jj9uAlqVp2ryRpgpekSrEGL0kVtW3H+EqS1uAlqVKe2DbE0v4+e/CSVDUbtg1xzCFL2n5fE7wkFWzD1h0cc8jitt/XBC9JBaqPNXjquZ0meEmqmo0DOxltZLVKNBFxWURsioj7i7qHJHW6DVuHADjmZdXqwV8OnFvg9SWp423YugOgWj34zLwN2FbU9SWpG2zYOkT/gh4OO2hR2+9deg0+Ii6KiHURsW7z5s1lhyNJc+rxrUOsetlienqi7fcuPcFn5trMXJOZa1asWFF2OJI0p57YtqOU8gx0QIKXpKpqNJIntg2V8oAVTPCSVJhN24ep1Rscc2jFevARcRXwY+AVEfFkRHywqHtJUifaNYKmpB58X1EXzsz3FnVtSeoGu8bAlzCLFSzRSFJhNmzbQV9PsHL5AaXc3wQvSQV5fOsQKw8+gL7eclKtCV6SCvLE1nKWCR5ngpekAmQmj2/dUdoDVjDBS1IhBobqbK+NlvaAFUzwklSIDdvGR9BYopGkStm9iqQ9eEmqlPEx8KuswUtStTy+dQcvX9pP/4Le0mIwwUtSAZpDJMvrvYMJXpLmXH2swUPPbOfEww8sNQ4TvCTNsbs3PMcLw6O88YRy97gwwUvSHLvtkc309gRvOOGQUuMwwUvSHLvt4S2cdvRylvYvKDUOE7wkzaGtLwxz/8ZBzjyp/C1ITfCSNIduf3QLmZjgJalqbn14M8sXL+A1K5eVHYoJXpLmSmbyw0e28MYTDqW3J8oOxwQvSXPloWe2s3n7cEeUZ8AEL0lz5raHNwNw5okmeEmqlNse2cwrDj+Ily/rLzsUwAQvSXNiaGSUux57jjNPOrTsUHYxwUvSHPj+A88wMtbomPo7mOAlab/V6mP82fcf5lVHLOWM4+3BS1JlfOX/Ps5TAzv5d29/JT0dMDxynAlekvbDcztG+MubH+WsV6zgjBM6p/cOJnhJ2i9/cdMj7Bge5VNve2XZoezFBC9Js/TYlh1c8eMNXPC6oznp8IPKDmcvJnhJmoXna3X+8Op7WdjXw8feclLZ4Uyqr+wAJKnbbHq+xvv/5i4eeXY7/+2CUzlsaWdMbHoxE7wk7YOfb36Bf37ZnWzbMcJlH3hdR417fzETvCTNwHM7Rvjq32/g0tsfo68nuOrDp3PK0cvLDmtKhSb4iDgX+CLQC1yamf+pyPtJ0lyq1ce478lBvnPvRq5e/wtq9QZvOmkFnzv/lzj20CVlhzetwhJ8RPQCfwW8FXgSuCsivp2ZPyvqnpI0E5nJaCMZGhnjheFRttfqDAzVeWawxsbBnWwc2MlPn3qeB54aZLSRLOzt4TdOO5IP/ePjOnK0zEspsgf/euDRzPw5QER8DXgnMOcJ/h3//XZq9bG5vqykAuRsz8vdZ+51jWx+1sgkE5Kk0Wie00gYbSSNTEbHGoyMNRgZbdCYIpCl/X2cfMRSPnzmcfzyqoNZc8zBHLxk4SwjL0+RCX4l8IsJ758EfuXFB0XERcBFAKtWrZrVjY5fsYSRscaszpXUfsEsp/PH3i8jYtf7iObPnggiggjoCejt6aGvJ+jtCRb29bCwt4eFfT0sXtjLQf19HNS/gKX9C3j5sn6OWNbPkkXVeDxZ5K9isv+De//Fm7kWWAuwZs2aWf3l/oULT5vNaZJUaUVOdHoSOHrC+6OAjQXeT5I0QZEJ/i7gxIg4NiIWAhcC3y7wfpKkCQor0WTmaET8G+D7NIdJXpaZDxR1P0nSngp9kpCZ3wW+W+Q9JEmTc7ExSaooE7wkVZQJXpIqygQvSRUVE6f/li0iNgMbZnn6ocCWOQyn29kee7NN9mR77Klb2+OYzJx0zeKOSvD7IyLWZeaasuPoFLbH3myTPdkee6pie1iikaSKMsFLUkVVKcGvLTuADmN77M022ZPtsafKtUdlavCSpD1VqQcvSZrABC9JFdX1CT4izo2I/xcRj0bEJ8uOpwwRcXRE3BwRD0bEAxFxcevzl0XEDRHxSOvnwWXH2k4R0RsR90TEda3387Y9ImJ5RHwjIh5q/T751fncHgAR8bHWn5f7I+KqiOivWpt0dYKfsLH3rwOvAt4bEa8qN6pSjAIfz8xXAqcDv9dqh08CN2bmicCNrffzycXAgxPez+f2+CJwfWaeDJxCs13mbXtExErgD4A1mflqmkuaX0jF2qSrEzwTNvbOzBFgfGPveSUzn87Mu1uvt9P8w7uSZlt8pXXYV4DfKCXAEkTEUcDbgUsnfDwv2yMilgJnAl8GyMyRzBxgnrbHBH3AARHRByymueNcpdqk2xP8ZBt7rywplo4QEauB04A7gMMz82lo/iUAHFZiaO32BeATwMTd2OdrexwHbAb+plWyujQiljB/24PMfAr4M+AJ4GlgMDN/QMXapNsT/Iw29p4vIuJA4Brgo5n5fNnxlCUizgM2Zeb6smPpEH3ALwNfyszTgB10eelhf7Vq6+8EjgWOBJZExPvKjWrudXuCd2PvlohYQDO5X5mZ32x9/GxEHNH6/ghgU1nxtdkZwPkR8TjNst3ZEfFV5m97PAk8mZl3tN5/g2bCn6/tAfAW4LHM3JyZdeCbwBuoWJt0e4J3Y28gIoJmffXBzPzzCV99G3h/6/X7gb9rd2xlyMxPZeZRmbma5u+JmzLzfczf9ngG+EVEvKL10TnAz5in7dHyBHB6RCxu/fk5h+azq0q1SdfPZI2It9Gst45v7P0fyo2o/SLijcAPgZ+yu+b8aZp1+K8Dq2j+hn5PZm4rJciSRMSbgX+bmedFxCHM0/aIiFNpPnBeCPwc+F2aHbx52R4AEfF54AKao9DuAT4EHEiF2qTrE7wkaXLdXqKRJL0EE7wkVZQJXpIqygQvSRVlgpekijLBq7Ii4g9aKyde+RLffyAi/vIlvnuh9fPIiPhGkXFKRekrOwCpQP8a+PXMfGy2F8jMjcC75y4kqX3swauSIuJ/0lxk69sR8fGI+FZE3BcRfx8Rr53k+GMj4scRcVdE/OmEz1dHxP2t1x+IiG9GxPWt9cL/84TjPhgRD0fELRFxyfi/DCLiPa31xu+NiNuK/5VLu5ngVUmZ+RGa6xKdBawG7snM19Kc4fu/JjnlizQX43od8MwUlz6V5uzH1wAXtDZbORL4E5pr8b8VOHnC8Z8B/klmngKcvz+/JmlfmeA1H7wRuAIgM28CDomIZS865gzgqtbrK6a41o2ZOZiZNZrruRxDc1+CWzNzW2vhqqsnHP8j4PKI+DDN5TSktjHBaz6Y6bLSM1m3Y3jC6zGaz7Emu37zgs1/SfwxzVVPf9JaD0dqCxO85oPbgN+GXYuPbZlkvfwf0Vx5kvFj98GdwJsi4uDW7kDvGv8iIo7PzDsy8zPAFvZc3loqlKNoNB98juZuRvcBQ+xeDnaii4G/bW1Yfs2+XDwzn4qI/0hz9c6NNEs3g62v/0tEnEizl38jcO+sfgXSLLiapDQHIuLAzHyh1YO/lubS1deWHZfmN0s00tz4XET8BLgfeAz4VqnRSNiDl6TKsgcvSRVlgpekijLBS1JFmeAlqaJM8JJUUf8fVXCdZCrft4sAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYWUlEQVR4nO3de5zddX3n8dd7ZpJMEnJBMiAEQrhfqkLc0VrjUrnYRcXYXS9gayuuNeuua9F1a9W1areP7qPd7UW67doGRFikuAJilYciXW4Rq0giF8GwhJIEQ4BMEmZIMnNmzuWzf/zOJJNkkplM5nt+5/zO+/l48Jg5v/M7v99nviSf+ebz+14UEZiZWfF05B2AmZml4QRvZlZQTvBmZgXlBG9mVlBO8GZmBeUEb2ZWUE2X4CVdJ2mrpMcnce4SSfdKeljSY5Le1ogYzcxaQdMleOB64NJJnvs54BsRsQy4AvhfqYIyM2s1TZfgI2I1sGPsMUmnSbpT0lpJP5B09ujpwPz69wuALQ0M1cysqXXlHcAkrQI+EhHrJf0yWU/9IuCLwF2SPgbMBS7JL0Qzs+bS9Ale0lHAG4FbJI0enlX/+j7g+oj4c0m/Atwo6VURUcshVDOzptL0CZ6sjNQfEeeP896HqNfrI+JHkrqBRcDWxoVnZtacmq4Gv7+IeBnYIOk9AMqcV3/7WeDi+vFzgG6gL5dAzcyajJptNUlJNwNvJuuJvwh8AbgH+DJwPDAD+HpE/FdJ5wLXAEeRPXD9VETclUfcZmbNpukSvJmZTY+mL9GYmdnUNNVD1kWLFsXSpUvzDsPMrGWsXbt2W0T0jPdeUyX4pUuXsmbNmrzDMDNrGZI2Hew9l2jMzArKCd7MrKCc4M3MCsoJ3sysoJzgzcwKygnezKygnODNzArKCd7MLEf/+PMX+dv7/znJtZ3gzcxydPe6F7nugQ1Jru0Eb2aWo1K5SveMziTXdoI3M8tRqVxjVleaVJw0wUtaKOlWSU9KWlffVs/MzOpKlXQ9+NSLjV0N3BkR75Y0E5iT+H5mZi1luFyje0aavnayBC9pPnABcCVARIwAI6nuZ2bWikqVKkfNSpOKU5ZoTiXbH/Wrkh6WdK2kufufJGmlpDWS1vT1eTtVM2svWQ2+9R6ydgGvBb4cEcuA3cCn9z8pIlZFRG9E9Pb0jLtmvZlZYQ2Xq8lKNCkT/GZgc0Q8WH99K1nCNzOzupYcJhkRLwC/kHRW/dDFwM9T3c/MrBWVKi34kLXuY8BN9RE0zwAfTHw/M7OWUipXk9Xgkyb4iHgE6E15DzOzVjacsAfvmaxmZjkpV2tUa0F3C46iMTOzQyiVqwCt95DVzMwOrVSuAbhEY2ZWNKM9+FnuwZuZFctwxSUaM7NCGi3RtORywWZmdnB+yGpmVlDDlfpDVvfgzcyKxT14M7OC2jtM0gnezKxQ9vbgXaIxMyuUkodJmpkV054SjdeiMTMrlr0zWV2iMTMrlNFhkp7oZGZWMMPlKrO6OpCU5PpO8GZmOUm5Hys4wZuZ5aZUTrebEzjBm5nlplRxD97MrJBK5WqyIZLgBG9mlptSuZZsiCQ4wZuZ5Wa44h68mVkhpe7BdyW7MiBpI7ATqAKViOhNeT8zs1ZSKlfpmTcr2fWTJvi6CyNiWwPuY2bWUoYrNY+iMTMromwUTes+ZA3gLklrJa0c7wRJKyWtkbSmr68vcThmZs2j1WeyLo+I1wJvBT4q6YL9T4iIVRHRGxG9PT09icMxM2seLT2TNSK21L9uBW4HXp/yfmZmrSIiGK5UmdWKwyQlzZU0b/R74NeAx1Pdz8yslZSrQS3SbdcHaUfRHAfcXl8Gswv4+4i4M+H9zMxaRurt+iBhgo+IZ4DzUl3fzKyV7d3NqQVLNGZmdnDDe/ZjbdGHrGZmNr7RHnwrD5M0M7NxlEZ78E7wZmbFMlx/yJpqw21wgjczy4V78GZmBbW3Bu8evJlZoTRiHLwTvJlZDvaUaFpxqQIzMzs4l2jMzArKM1nNzApquDI6isY9eDOzQhkuV5FgZqcTvJlZoZQqNWZ1dVBfcTcJJ3gzsxyk3q4PnODNzHKRbbjtBG9mVjip92MFJ3gzs1y4RGNmVlDDlVrSMfDgBG9mlotSuZp0qWBwgjczy0WpUnOJxsysiIbL1aT7sYITvJlZLvyQ1cysoAoxTFJSp6SHJd2R+l5mZq2iVClGD/4qYF0D7mNm1jKGy+kfsnYd6k1J/2YS1yhFxHcP8vkTgbcDfwz8p8MPz8yseCKCUiX9MMlDJnjgGuAfgEMtd3YBMG6CB74EfAqYd7APS1oJrARYsmTJBOGYmbW+kWqNiLT7scLECf57EfFvD3WCpK8d5PhlwNaIWCvpzQf7fESsAlYB9Pb2xgTxmJm1vNH9WHOd6BQR75/oAoc4ZzmwQtJG4OvARQf7ZWBm1k6G9+zHmvNDVknzJZ02zvHXHOpzEfGZiDgxIpYCVwD3TOYXhplZ0Y324HNN8JLeCzwJ3CbpCUmvG/P29SkDMzMrqlJltAef7zj4zwL/IiLOBz4I3DhmZM2k95mKiPsi4rKphWhmVizDoz34xBt+TPSQtTMingeIiJ9IuhC4oz780Q9EzcymYG8PPt8a/M6x9fd6sn8z8E7glxLGZWZWWKX6Q9ZZiUs0E/Xg/z37lWIiYqekS4H3JovKzKzASs1QoomIRw9yvAzclCQiM7OCK5Wb4yErAJKuTBqFmVkbKTXROPjPA5ckjcLMrI2UKvWZrHnW4CWtIltH5jeTRmFm1kYaNZN1ooesvwG8PiJqSaMwM2sjw5XGPGSd6N8HlwHfGG+pAjMzm5pSuYoEMzonPV90SiZabOw+snVkvEiYmdk0KZWrdHd1IuWY4AEi4nHgXUmjMDNrI43YjxUmOUwyIrakDsTMrF2Uyun3Y4WJH7ICIOkU4GPA0rGfiYgVacIyMyuuUiX9fqwwyQQPfAv4CvAdwCNqzMyOwHA5/X6sMPkEX4qIv0oaiZlZm2i2HvzVkr4A3AUMjx6MiJ8micrMrMCyGnzz9OBfDfwWcBF7SzRRf21mZodhuFxl4ZyZye8z2QT/r4FTI2IkZTBmZu2gqYZJAo8CCxPGYWbWNkqVJhomCRwHPCnpIfatwXuYpJnZYRqdyZraZBP8F5JGYWbWRoYrjSnRTDbBz4mI7409IOkjwP3TH5KZWbE1aibrZH+F/IGkPSNmJP0+2cbbZmZ2GCKCUrnGrCaqwa8A7pD0e8ClwNn1YwclqRtYDcyq3+fWiHCpx8za2uBIttnH3JlNkuAjYpukFcD/BdYC746ImOBjw8BFEbFL0gzgAUnfi4gfH1nIZmata2CoDMDCOTOS32uiLft2kk1oGjUTOBV4t6SIiPkH+2z9F8Cu+ssZ9f8m+qVgZlZo/YNZgl8wO+eJThEx70guLqmTrMd/OvA3EfHgOOesBFYCLFmy5EhuZ2bW9PqHsvmiC2an78Ef8iGrpFdOdIFDnRMR1Yg4HzgReL2kV41zzqqI6I2I3p6enkmEbGbWugYGG1eimWgUzXcncY0Jz4mIfuA+sge0ZmZtq2lq8MB5kl4+xPsCxn1fUg9Qjoh+SbOBS4A/nVqYZmbF0D80WoPPOcFHxJGM4zkeuKFeh+8AvhERdxzB9czMWl7/YJmZnR3MbqJx8IctIh4DlqW6vplZKxoYKrNgzgwkJb9X+sUQzMxsj4GhERY2oDwDTvBmZg3VP1huSP0dDrNEI+lYoHv0dUQ8O+0RmZkVWP9gmRMWdk984jSYVA9e0gpJ64ENZCtIbgS+d8gPmZnZAQaGyg2ZxQqTL9H8EfAG4KmIOAW4GPhhsqjMzAoqS/DNVYMvR8R2oENSR0TcC5yfLiwzs+IpV2vsGq40ZJITTL4G3y/pKOAHwE2StgKVdGGZmRVPI2exwuR78O8EBoGPA3cC/wy8I1FMZmaFNNDAWaww+fXgd0s6GTgjIm6QNAdIPw3LzKxA9i4V3EQ9eEkfBm4F/q5+aDHwrUQxmZkV0kB9qeCFc5prFM1HgeXUFxaLiPXAsamCMjMroj01+GbqwQPDETEy+kJSF96dyczssDRliQa4X9JngdmS3gLcAnwnXVhmZsUzmuDnN1mC/32gD/gZ8O/INvn4XKqgzMyKaGCozPzuLjo70q8kCZMYRSOpA3gsIl4FXJM+JDOzYhoYKjfsAStMogcfETXgUUneEdvM7Aj0D440rP4Ok5/JejzwhKSfALtHD0bEiiRRmZkVUP9QuWGzWGHyCf4Pk0ZhZtYGBobKLF44u2H3m+xM1vvHvpa0HPgNsqWDzcxsEgYauNkHHMaGH5LOJ0vq7yVbF/62RDGZmRVORDRXiUbSmcAVwPuA7cD/ARQRFzYgNjOzwtg1XKFaCxY2aLMPmLgH/yTZEsHviIinASR9InlUZmYFs2clyQb24CcaJvku4AXgXknXSLoYaMwIfTOzAmn0MgUwQYKPiNsj4nLgbOA+4BPAcZK+LOnXDvVZSSdJulfSOklPSLpq2qI2M2sxjV5oDCa5VEFE7I6ImyLiMuBE4BHg0xN8rAJ8MiLOIdvP9aOSzj2SYM3MWtVoD76pZrLuLyJ2RMTfRcRFE5z3fET8tP79TmAd2TryZmZtp9G7OcEUEvxUSFoKLAMeHOe9lZLWSFrT19fXiHDMzBquf89mHwVK8PXNum8DPh4RL+//fkSsiojeiOjt6elJHY6ZWS4GBsvM6uqge0bjdjtNmuAlzSBL7jdFxDdT3svMrJkNDDV2FiskTPCSBHwFWBcRf5HqPmZmraB/sLGzWCFtD3458FvARZIeqf/3toT3MzNrWv1DIw2dxQqHsRbN4YqIB/CkKDMzIOvBn/SKOQ29Z0NG0ZiZtbuXi1SDNzOzvfqHyg2dxQpO8GZmyY1UagyOVAv1kNXMzMhnFis4wZuZJTdQn8W6oIHr0IATvJlZcnsWGnMP3sysWPauJOkEb2ZWKK7Bm5kV1I7doytJugZvZlYoz+4YZH53l3vwZmZFs2nHICcfM7fh93WCNzNLbNP23Zx8TGPXoQEneDOzpMrVGs+9NOQEb2ZWNFv6h6jUwiUaM7Oi2bR9EICTG7xUMDjBm5kltWn7bgD34M3MimbT9kG6Z3Rw7LxZDb+3E7yZWUIbtw+y5BVz6Oho/AZ3TvBmZgk9u2N3LuUZcII3M0umVgue3TGYywNWcII3M0tm685hSuUaJy9yD97MrFD2jKBxD97MrFj2jIHPYRYrJEzwkq6TtFXS46nuYWbWzDbt2E1Xh1i8cHYu90/Zg78euDTh9c3MmtrG7YMsPno2XZ35FEuS3TUiVgM7Ul3fzKzZPbs9n2WCR+Veg5e0UtIaSWv6+vryDsfMbFpEBBu3787tASs0QYKPiFUR0RsRvT09PXmHY2Y2LfoHy+wsVXJ7wApNkODNzIpo047RETRtXKIxMyuivatIFrAHL+lm4EfAWZI2S/pQqnuZmTWb0THwS3KswXelunBEvC/Vtc3Mmt3G7bt55fxuumd05haDSzRmZglkQyTz672DE7yZ2bQrV2s8+cJOzjjuqFzjcII3M5tmP930EruGK7zp9HyHfjvBm5lNs9Xr++jsEG88/Zhc43CCNzObZquf2saykxYyv3tGrnE4wZuZTaPtu4Z5fMsAF5yZ/8x8J3gzs2n0wNPbiMAJ3sysaO5/qo+Fc2bw6sUL8g7FCd7MbLpEBD9Yv403nb6Izg7lHY4TvJnZdHnyhZ307RxuivIMOMGbmU2b1U9le1pccIYTvJlZoaxe38dZx83jlQu68w4FcII3M5sWgyMVHtrwEhecuSjvUPZwgjczmwbff+IFRqq1pqm/gxO8mdkRK5Wr/Nn3n+Lc4+ez/DT34M3MCuOGf9rIc/1D/Je3n0NHEwyPHOUEb2Z2BF7aPcJf3/s0F57Vw/LTm6f3Dk7wZmZH5K/uWc/u4Qqfeds5eYdyACd4M7Mp2rBtNzf+aBOXv+4kzjxuXt7hHMAJ3sxsCl4ulfm9Wx5lZlcHn7jkzLzDGVeyTbfNzIpq68slPvDVh1j/4k7+8vLzOXZ+c0xs2p8TvJnZYXimbxe/fd1P2LF7hOuufF1TjXvfnxO8mdkkvLR7hK/9eBPXPrCBrg5x84ffwHknLcw7rENKmuAlXQpcDXQC10bEn6S8n5nZdCqVqzy2eYDvPLqFW9b+glK5xq+e2cMXV/wSpyyam3d4E0qW4CV1An8DvAXYDDwk6dsR8fNU9zQzm4yIoFILBkeq7BqusLNUpn+wzAsDJbYMDLGlf4ifPfcyTzw3QKUWzOzs4NeXncDv/MtTm3K0zMGk7MG/Hng6Ip4BkPR14J3AtCf4d/zPByiVq9N9WTNLIKb6udj7yQOuEdmxWgQREAS1WvaZWkClFtQiqFRrjFRrjFRq1A4RyPzuLs4+fj4fvuBUXrvkaHpPPpqj586cYuT5SZngFwO/GPN6M/DL+58kaSWwEmDJkiVTutFpPXMZqdam9Fkzazwxxen8OvBbSXteS9nXDglJSNAh6OzooKtDdHaImV0dzOzsYGZXB3NmdjKvu4t53TOY3z2DVy7o5vgF3cydVYzHkyl/ivH+Dx74izdiFbAKoLe3d0q/3L90xbKpfMzMrNBSTnTaDJw05vWJwJaE9zMzszFSJviHgDMknSJpJnAF8O2E9zMzszGSlWgioiLpPwLfJxsmeV1EPJHqfmZmtq+kTxIi4rvAd1Pew8zMxufFxszMCsoJ3sysoJzgzcwKygnezKygNHb6b94k9QGbpvjxRcC2aQyn1bk9DuQ22ZfbY1+t2h4nR8S4axY3VYI/EpLWRERv3nE0C7fHgdwm+3J77KuI7eESjZlZQTnBm5kVVJES/Kq8A2gybo8DuU325fbYV+HaozA1eDMz21eRevBmZjaGE7yZWUG1fIKXdKmk/yfpaUmfzjuePEg6SdK9ktZJekLSVfXjr5D0j5LW178enXesjSSpU9LDku6ov27b9pC0UNKtkp6s/zn5lXZuDwBJn6j/fXlc0s2SuovWJi2d4Mds7P1W4FzgfZLOzTeqXFSAT0bEOcAbgI/W2+HTwN0RcQZwd/11O7kKWDfmdTu3x9XAnRFxNnAeWbu0bXtIWgz8LtAbEa8iW9L8CgrWJi2d4BmzsXdEjACjG3u3lYh4PiJ+Wv9+J9lf3sVkbXFD/bQbgF/PJcAcSDoReDtw7ZjDbdkekuYDFwBfAYiIkYjop03bY4wuYLakLmAO2Y5zhWqTVk/w423svTinWJqCpKXAMuBB4LiIeB6yXwLAsTmG1mhfAj4FjN2NvV3b41SgD/hqvWR1raS5tG97EBHPAX8GPAs8DwxExF0UrE1aPcFPamPvdiHpKOA24OMR8XLe8eRF0mXA1ohYm3csTaILeC3w5YhYBuymxUsPR6peW38ncApwAjBX0vvzjWr6tXqC98bedZJmkCX3myLim/XDL0o6vv7+8cDWvOJrsOXACkkbycp2F0n6Gu3bHpuBzRHxYP31rWQJv13bA+ASYENE9EVEGfgm8EYK1iatnuC9sTcgSWT11XUR8Rdj3vo28IH69x8A/qHRseUhIj4TESdGxFKyPxP3RMT7ad/2eAH4haSz6ocuBn5Om7ZH3bPAGyTNqf/9uZjs2VWh2qTlZ7JKehtZvXV0Y+8/zjeixpP0JuAHwM/YW3P+LFkd/hvAErI/0O+JiB25BJkTSW8G/nNEXCbpGNq0PSSdT/bAeSbwDPBBsg5eW7YHgKQ/BC4nG4X2MPA7wFEUqE1aPsGbmdn4Wr1EY2ZmB+EEb2ZWUE7wZmYF5QRvZlZQTvBmZgXlBG+FJel36ysn3nSQ96+U9NcHeW9X/esJkm5NGadZKl15B2CW0H8A3hoRG6Z6gYjYArx7+kIyaxz34K2QJP0t2SJb35b0SUnfkvSYpB9Les04558i6UeSHpL0R2OOL5X0eP37KyV9U9Kd9fXC//uY8z4k6SlJ90m6ZvRfBpLeU19v/FFJq9P/5GZ7OcFbIUXER8jWJboQWAo8HBGvIZvh+7/H+cjVZItxvQ544RCXPp9s9uOrgcvrm62cAPwB2Vr8bwHOHnP+54F/FRHnASuO5GcyO1xO8NYO3gTcCBAR9wDHSFqw3znLgZvr3994iGvdHREDEVEiW8/lZLJ9Ce6PiB31hatuGXP+D4HrJX2YbDkNs4Zxgrd2MNllpSezbsfwmO+rZM+xxrt+dsHsXxKfI1v19JH6ejhmDeEEb+1gNfCbsGfxsW3jrJf/Q7KVJxk99zD8BPhVSUfXdwd61+gbkk6LiAcj4vPANvZd3tosKY+isXbwRbLdjB4DBtm7HOxYVwF/X9+w/LbDuXhEPCfpv5Gt3rmFrHQzUH/7f0g6g6yXfzfw6JR+ArMp8GqSZtNA0lERsaveg7+dbOnq2/OOy9qbSzRm0+OLkh4BHgc2AN/KNRoz3IM3Myss9+DNzArKCd7MrKCc4M3MCsoJ3sysoJzgzcwK6v8DO23HNf1Pb+gAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -222,7 +222,7 @@ ], "source": [ "r = 1 # 100% growth means doubling \n", - "c = 3.141*(0.5E-9)**2 # 1 um = 1E-9 km\n", + "c = (1.0E-9)**2 # 1 um = 1E-9 km\n", "t = np.arange(0., 90., 1)\n", "\n", "plt.plot(t, c*(1+r)**t, '-')\n", @@ -233,23 +233,23 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "7.850000000000001e-19\n", - "83.39743781306716\n", - "89.04129400284188\n" + "One bacterium = 1e-18\n", + "83.04820237218406\n", + "88.69205856195879\n" ] } ], "source": [ "# Area of the bacterium in km ^2:\n", - "a = 3.14*(0.5E-9)**2\n", - "print (a)\n", + "a = (1.0E-9)**2\n", + "print (\"One bacterium = \", a)\n", "\n", "# number of replicas for Europe\n", "print (math.log(1E7 / a,2))\n", @@ -258,6 +258,13 @@ "print (math.log(5E8/a, 2 ))" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -268,21 +275,21 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 2", + "display_name": "Python 3", "language": "python", - "name": "python2" + "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", - "version": 2 + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.15" + "pygments_lexer": "ipython3", + "version": "3.8.5" } }, "nbformat": 4, -- GitLab