diff --git a/quantile.ipynb b/quantile.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..08418ce6865214a4795d5bb3c709627a528c6ecb --- /dev/null +++ b/quantile.ipynb @@ -0,0 +1,109 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quantiles" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6', '0.7', '0.8', '0.9', '1.0']\n", + "['-inf', '-1.282', '-0.842', '-0.524', '-0.253', '0.000', '0.253', '0.524', '0.842', '1.282', 'inf']\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAHFCAYAAACtqAFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYVOWV7/HvakBABeUiIjdB7qgI2kCUqCTGiNFRJ6MZchsn5sQxiZNkMjlnkpM5SY6ZPM9kMpdMJpkkzIyJmjjGo8kMMV5iVBBBkAa53wRERFTuAuHa9Dp/vFVSNlXdVV17195V9fs8Tz3dXbVr16qmWP3ud797LXN3RESkfA1JByAiUiuUUEVEIqKEKiISESVUEZGIKKGKiERECVVEJCJKqCIiEVFCFRGJiBKqiEhEOicdQFT69u3rQ4cOTToMEakxixcv3unuZxWzbc0k1KFDh9LU1JR0GCJSY8zslWK31SG/iEhElFBFRCKihCoiEpFEEqqZ3W1m281sZYHHzcy+Z2YbzGy5mV1c6RhFREqV1Aj1p8D0Nh6/FhiZud0O/LACMYmIlCWRs/zu/qyZDW1jkxuBez1Uv15gZmea2Tnu/nqUcezcufOk+8wMMyt6H+5OviLdDQ2l/a3Kt59SYwFoaWk56T69J72n9vZz/Lhz6BAcPgxHjsDRo8axY8axY3DsGDQ3n7gdPw4tLfluLWTflnu4L7wfe/u+1uGe/HP8/06TJ/fmootK2l3R0rpsaiDwas7PWzP3vSOhmtnthBEsQ4YMqVhwItWkuRl27IBdu2DnTti7N9z27YMDB2D//pBIy5H9O9DQEL7P3rL3ZbfJ/XuR729HvgYiJf6tatfAgdRdQs33KzzpV+3uM4GZAI2NjSX3cunbt2/pkYmk2PHj8OqrsGlTuG3dCm++CbkD4q5doVcvOOOMkFx69IDTToNTT4Xu3aFbt3Dr2hW6dDlx69wZOnV65y03gUp6E+pWYHDOz4OAbQnFIpJq+/bB0qWwciWsW3ditHnmmTBkCEyYAAMGQL9+cNZZIXEqAcYjrQl1FnCnmT0ATAHeinr+VKSaHT0KixbBwoWwfn04VO7TByZPhjFj4LzzwihUKiuRhGpm/wlMA/qa2Vbg60AXAHf/EfAo8AFgA3AQ+EQScYqkze7d8NRTMH8+HDwIZ58N110Hl1wC55yjkWfSkjrL/+F2HnfgsxUKRyT19uyBxx+HuXPDaPTii2HaNBgxQkk0TdJ6yC8ihDP0v/0tPPpoOLE0dSpcey307p10ZJKPEqpISq1fD/fdB9u3hxHpzTeHeVJJLyVUkZRpboZZs8LI9Kyz4POfh3Hjko5KiqGEKpIie/bAD38Ir7wCl18Ot9wS1oNKdVBCFUmJTZtCMj16FO64AyZOTDoiKZUSqkgKLF4Md98dFuN/8YthCZRUHyVUkYQ9/zzccw8MHw6f/jScfnrSEUlHKaGKJGjuXPjZz2DsWPjMZ+CUU5KOSMqhhCqSkOefD8n0ggvCnGmXLklHJOVSQhVJwMqVcO+9YWT66U+HSk5S/er6n1EFpouPBfSeCu2n1FheeQV+8IMW+vULi/X37u3YftL0nqB6/p16x3iZmZr0iVTQW2/Bv/zLLjp33sWnPhXqjkrtqOsRqgpMSyU1N8PMmdCpUwt33gnDhunzV2s0QhWpkF/8Al5+GWbMgP79k45G4qCEKlIBCxfCs8/CNdfE189IkqeEKhKznTvh/vtD7dKbbko6GolTXc+hisStpSVcUgpw223ZpnaqCF2rNEIVidETT8DGjfCRj5yoZdqRJUlSHZRQRWKybRv8+tfQ2Bia50ntU0IViYF7uKy0W7dwVl8D0vqghCoSg7lzw6H+LbdAjx5JRyOVooQqErG9e+Hhh2HMGHjXu5KORipJCVUkYg8/HK6K+uhHdahfb5RQRSK0aRO88AK8//3Qr1/S0UilKaGKRMQ9XF56xhkwfXrS0UgSEkmoZjbdzNaZ2QYz+3Kex4eY2TNm9qKZLTezDyQRp0gpFi6EzZvhgx9Up9J6VfGEamadgB8A1wLjgA+bWeuu438NPOjuE4EZwL9WNkqR0hw9Cr/6FQwdClOmJB2NJCWJS08nAxvcfROAmT0A3AisztnGgZ6Z788AtsURiApMFx8L6D0V2o+Z8cwzxhtvhGVSe/a0vY89e/bQ0tJy0vtK23uqxX+nWiwwPRB4NefnrZn7cn0D+JiZbQUeBf48347M7HYzazKzph07dsQRq0i7Dh6ERx7Zxbnn7uK889rfvlDSkOqXxAg135+r1p+uDwM/dfd/MLNLgfvM7AJ3f8efQHefCcwEaGxsLPkTqgLTEoX/+q+QJG++maJGP9mRnD5/tSeJEepWYHDOz4M4+ZD+k8CDAO7+PNAN0KdPUmffPnjqKZgwAQYMSDoaSVoSCXURMNLMhpnZKYSTTrNabbMFuArAzMYSEqqO6SV1HnssLOLXMimBBBKquzcDdwJPAGsIZ/NXmdldZnZDZrO/BD5lZsuA/wT+1DXpJCmzb1+4Zv/SS+Gss5KORtIgkQLT7v4o4WRT7n1fy/l+NTC10nGJlOLJJ0+MTlXfVEBXSol0yIEDMGdOqHPar19py4MaGhpKXgYk1UH/qiId8LvfhcX8116bdCSSJkqoIiU6eBCeeQYuvhjOOSfpaCRNlFBFSvTss3D4sEancjIlVJESNDeHdadjx8Lgwe1vL/VFCVWkBAsXhuVS11yTdCSSRkqoIkVyD0ulBg8O7U1EWlNCFSnSihXw+utw9dVqbSL5KaGKFOnJJ6FXL2hsTDoSSatErpRKC9VDLT4WqO/39NprsHw5XH+9s2fPye9p7969RceieqilxQLVUw+1rhOqSLEee2wXx4/DlCnx/WeU6lfXCVX1KKUYBw7AunUtTJ0KQ4b0aXPbUkY/cY6UJBl1nVBFijF3blh/evnlhbcppRiaCqfVLiVUkTYcPx6KoIwYAf37R7NPJdTapbP8Im1Ytiw03WtrdCqSpRGqSBtmz4Y+feD8801rT6VdGqGKFPD667BuHVxxBXTqVPoyIqk/SqgiBTz7LHTqBFOL6B1RStHojqzxlOqghCqSx5EjMH8+XHIJ9OgR7b6VUGuXEqpIHosWhZqnV16ZdCRSTZRQRfKYMwcGDoThw5OORKqJEqpIK6+8Alu2hJNROjKXUiihirQydy506QJTpiQdiVQbJVSRHIcPwwsvwKRJ0L170tFItUkkoZrZdDNbZ2YbzOzLBbb5kJmtNrNVZnZ/pWOU+rRoUTjDryujpCMqfqWUmXUCfgBcDWwFFpnZLHdfnbPNSOArwFR332Nm/Sodp9SnuXNhwAAYNizpSKQaJXHp6WRgg7tvAjCzB4AbgdU523wK+IG77wFw9+1xBKIC08XHArX/nl57LVwZ9cEPhuv3c+3J3FHoPanAdPV89uIsm5jEIf9A4NWcn7dm7ss1ChhlZvPMbIGZTc+3IzO73cyazKxpx44dMYUr9eLJJ3fR3LyLSy45+bFC/9FFciUxQs3356r1J7UzMBKYBgwC5prZBe7+jmGAu88EZgI0NjaW/GlXgWnJOnYsFJGePBkGDTp5BJMdffXpk7/AdHYUpgLT9S2JEepWYHDOz4OAbXm2+W93P+buLwPrCAlWJBZLloQz/B1dKqURrEAyCXURMNLMhpnZKcAMYFarbf4LeA+AmfUlTAFsqmiUUleeey6U6evolVGlJNR886dSGyqeUN29GbgTeAJYAzzo7qvM7C4zuyGz2RPALjNbDTwD/E9331XpWKU+bN8O69fD5Mm6MkrKU/Ycqpk1ABcBA4BDwCp3f7Ot57j7o8Cjre77Ws73DnwxcxOJ1fz5IZFOnqwi0lKeDidUMxsO/BXwPuAlYAfQjXB2/iDwY+Aed9exjaRWSws8/zxceCGceWbhbFrqsh2pT+WMUP8G+CHwZ95q8iizEP8jwMeBe8p4DZFYrV4Ne/fCjBnl7Uf1TQXKSKju/uE2HtsOfLej+xaplHnzQgHpCy+Effs6vp9SEqqSb+0q+zjGzL5pZp1zfu5pZj8pd78icdu/P3Q1nTIFOldwRbYq9teuKCaGOgMLzWy8mb2fsCxqcQT7FYnVCy/A8ePF9YwSKUbZf5fd/Stm9hSwENgDXOHuG8qOTCRG7uFwf+jQUAxFJApRHPJfAfwzcBcwG/i+mekjKqm2ZUsohqLRqUQpipmjvwduyZbfM7MPAk8DYyLYt0gs5s8PVfkbG5OORGpJFAn1Unc/nv3B3X9pZnMi2K9ILI4dC/OnEyfCqacmHY3Ukg4f8pvZx8ysITeZZrn7LjMbbmbvLi88kegtXQoHD8JllyUdidSackaofYAXzWwx4ax+9kqpEcCVwE4gb3uTtFCB6eJjgdp5T7/9LXTrBn37wu7dJ97TntZVpXOowHT7quWzF2fZxHIW9v+zmX0feC8wFRhPuJZ/DfBxd98STYgi0dmzB5Yv38V73gNm76xtqvJ7Uq5yruX/trv/lZmd6e7fiDCmilGB6frzwgthdPqe95z8758dYeUbwWSTrQpMS1vKWTb1ATPrQmimJ5J67uHs/vDhofZpac9VAWlpXzlzqI8T5klPM7Pcq6CNUIGvZ1mRiURswwbYsQP+8A+j33cpBaOVmGtXh0eo7v4/3f0M4Dfu3jPn1kPJVNJo3rxwuD9+fLJxaLRbu8q+Usrdb4wiEJE4HT4MixfDpEnQtauKk0g8yjkptZ+Tu5W+TaNUSZOmJjh6NKw9LZRM21qaowQsxShn2VQPADO7C3gDuI8wf/pRoEck0YlEZN48OOccGDYsLJ0qlRKqFCOK8n3XuPu/uvt+d9/n7j8E/iiC/YpE4vXXYdOm7Og0ntdQjVOBaBLqcTP7qJl1MrMGM/socNLlqCJJmT8fGhrgXe+K7zVKSagNDQ3qUVWjovhX/QjwIeDNzO0WoGB7FJFKOn78RBO+nprVl5hFUW3q/wJ/6u57AMysN6Gk320R7FukLCtWhFYn71aZHqmAKEao47PJFMDddwMTI9ivSNnmzYMzzoALLkg6EqkHUSTUBjPrlf0hM0Jtc+RrZtPNbJ2ZbTCzghWpzOxmM3MzUxlgKdnevWGEetllYQ5VJG5RHPL/AzDfzB4irEv9EPCtQhubWSfgB8DVwFZgkZnNylb8z9muB/A5Qq8qkZI9/3y4fl91T6VSorhS6l7CMqk3CTVRP+ju97XxlMnABnff5O5HgQeAfFdbfRP4O+BwuTFK/ck24Rs1Cvr1SzoaqReRdCPPjC5Xt7thMBB4NefnrcCU3A3MbCIw2N0fMbMvRRFjPiowXXwsUF3v6aWX4NVX4YorYPfud8aSLRbd0tLyjvekAtMdjwWq57OXygLTZcj32337nZtZA/BPwJ+2uyOz24HbAYYMGRJReFILFiwAs10MGgShucQJKkwicUkioW4FBuf8PAjYlvNzD+ACYHbmL1t/YJaZ3eDuTbk7cveZwEyAxsbGkv+XqMB0bTpwANavh6lTW+jXr3Ah59b//tlE29YIptBjKjAtkExCXQSMNLNhwGvADMLFAQC4+1vA2590M5sNfKl1MhUpZMECaG6GSy8t7XltjVxLqXcq9avii0ncvRm4E3iC0H/qQXdfZWZ3mdkNlY5Haos7PPtsqMrfv38lX1c1TiWZESru/ijwaKv7vlZg22mViElqw4YN8OabMH16ZV+3lGSqxFu7tNxZasrcudC9OzQ2prcClEaztSuREapIHPbvD1X53/1uOOWU0gtJpzH5SnVRQpWaMX9+OBl15ZUde35bCVXJVoqhhCo1oaUlnIwaNQoGDIh+/0qoUgzNoUpNWL0adu7s+Oi0XKUUjU7r3K6UTyNUqQlz5oQC0hMmJB1J+5RMa5dGqFL1du0KZfre/W7orCGCJEgJVare7Nmh+d7llycdidQ7JVSpakeOwHPPhUN9XRovSVNClaq2cCEcPAhXXZV0JCJ1flJK9VCLjwXS957A+M1voE8f6NUr1D3NlVvfVPVQS9tPLX/24qzypRGqVK3162Hz5l1MmLALnTiXNKjrEarqoVa3JUugT58Wrrgif23RQvVNs6OdQiMV1UOVjtIIVarSG2/A8uUwdWrhpVKFDh9VnETiUtcjVKleTz4JXbqEhFqqQsm0rSLSSsBSDCVUqTr79oWq/JddBqefXpnXVEKVYiihStV55hk4fhyuvjo9l3Eq4QpoDlWqzJEj4cqoCROgX7/0FBopZV4235IpqQ0aoUpVee65sJD/6qvb31aFpKXSlFClajQ3w29/CyNHhiZ8HVUooSrRSrl0yC9VY/582LsXrrsunv23NX1QSr1TqV8aoUpVOH4cHn8czjsPxoxJOpqTaXQroBGqVIkFC0Ld0+uuI5WXmZZyciwtJ9IkehqhSuq1tITR6bnnwvnnJx1N+ZRMa5dGqJJ68+fD9u3pHZ2KZCWSUM1supmtM7MNZvblPI9/0cxWm9lyM3vKzM5NIk5J3rFj8MgjYe50/PikoxFpW8UTqpl1An4AXAuMAz5sZuNabfYi0Oju44GHgL+rbJSSFnPmwJ49cNNNGp1K+iUxhzoZ2ODumwDM7AHgRmB1dgN3fyZn+wXAx+IIRAWmi48FKv+eDh+GX/4SBg9uoU+f0Ca69X6KKQrdOhYVmG5/P7X82au1AtMDgVdzft6aua+QTwKP5XvAzG43syYza9qxY0eEIUoazJ4Nu3bt4tJLdxXcRqX4JE2SGKHm+3OV93+EmX0MaASuzPe4u88EZgI0NjaW/L9KBabTa8+ecDJqypQWLrqo8L9VdlRUSlFoFZiWuCSRULcCg3N+HgRsa72Rmb0P+CpwpbsfqVBskhIPPxy+Xn99x/ehkatUWhKH/IuAkWY2zMxOAWYAs3I3MLOJwI+BG9x9ewIxSoI2boRFi0IBlHIGcYWmAwpVe9L0gZSr4gnV3ZuBO4EngDXAg+6+yszuMrMbMpt9Bzgd+H9mttTMZhXYndQYd3jwQTjzTJg+vdKvXTihKtlKMRK5UsrdHwUebXXf13K+f1/Fg5JUmDsXNm+GT3wCunaFAwfSsVZKyVSKoUtPJTX27g1zp2PGwJQp4b72ltykpQJUKQWjlZxrlxKqpMYvfhGqSn30o9Es4k/rNfNKqLUrHX/epe4tWwZLloTr9fv1i2afhRaVq9qTxEUjVEncgQPws5/BwIHw/vfH/3ptFZEu9TkiuTRClUS5w333hT5Rt90GnTolHVF+GtVKMZRQJVHz58PSpXDjjTBoUNLRdJwSroAO+SVBb74ZTkSNHl1cF9M0KyWZpmVlgkRP/7KSiMOH4Yc/hM6dw5pTDe6kFiihSsW5wz33wBtvwKc+Bb16JR2RSDSUUKXifvvbsETqgx+EsWOTjkYkOnU9h6oC08XHAtG8pxdfNO6/35g4ES65BHbvbnsf7RVjVoFpffaK3U+tFpiWOvXSS/CTn+yif/9dfPjDxc2bqiiJVJO6HqGqwHTlvPIKPPBAWBr12c/C2WcXN0rIjnoK/Vtlk60KTEsa1HVClcrYtAm+9z047TT45Cfh1FOj27dGr5ImSqgSq5degn/5FzjjDPjiF0Pxk0opVAFKSVjiooQqsVm0KCyP6tsX/uIvQlLNcx6w4toqIi1SDiVUiZw7PPJIuI0YAXfcAT16hMfSfHlmWwm1lHqnUr+UUCVS+/fDvffC8uVw2WWhtmnnnE9ZqQm1veUyaUnQGt0KKKFKhFatgp/+NFSOmjEDpk2L/5LSakyoSr61SwlVyvbWW/DQQ/DCCzBgAHzhC6G2adLSkmxbU0KtXUqo0mFHjsDs2fDoo9DcDNdfHzqVdumSdGRBqYWk05qApXoooUrJDh6E556DJ54I1fYvvBA+9KHoWpckpa2EqmQrxVBClaK4w5Ytoc3zwoVw9CiMGwd/8Adw3nlJRxc/JVQphhKqFNTSEi4ZXb4cmppg+/ZwOD95cjjhNGRI0hGmRynFO5Sca1ciCdXMpgP/DHQC/t3d/7bV412Be4FLgF3AH7v75krHWW+OHoWtW8Olohs3wrp18PvfhzP1o0eHBnoXXxwuIZWOU0KtXRVPqGbWCfgBcDWwFVhkZrPcfXXOZp8E9rj7CDObAXwb+ONKx1pr3EOl/L17Yc8e2LULduwII8/XXgvfZ09A9+kD48fD+eeHmqWnn55s7CLVIIkR6mRgg7tvAjCzB4AbgdyEeiPwjcz3DwHfNzPzCNebbN8eFqHHLTfi1tFnf3Y/+fvcW0vLia8tLeF6+OytufnE7ehROHYsnH0/ciQkz4MH4dChcPLowIGwXa7OncOloQMHhkP5QYPCnOgZZ8T3OxGpVUkk1IHAqzk/bwWmFNrG3ZvN7C2gDxDZleCPPQZPP51vd5a5Fcszt9ZKLTWbbz+lxWIGnTu3cMop0LVruJ16KnTrZvTubZx+ehhpnnEGnHnmiVvr6b/mZmfnzniK/O7du7ekQ14VmC5MBaZL208lCkwnkVDz/XbzZZL2tsHMbgduBxhS4hmSq68O15mfvM+SdhMC85OfV2g/+bYzOzEabWg4cZ9Z6FNvduL+hoZw69TpxK1LlzDS7NTp5FFw7mukQa9evUr6D9arV682r6Pv1UZDqkKPlXp/7mOFDpLaem6+bVUboDYlkVC3AoNzfh4EbCuwzVYz6wycAZzULMPdZwIzARobG0uaDhgwAAYMUIFpEYlOEi1QFgEjzWyYmZ0CzABmtdpmFnBr5vubgaejnD8VEYlDxUeomTnRO4EnCMum7nb3VWZ2F9Dk7rOA/wDuM7MNhJHpjErHKSJSqkTWobr7o8Cjre77Ws73h4FbKh2XiEg51PVURCQiSqgiIhFRQhURiYjVyslzM9sBvJJ0HHn0JcILEhKm95JOtfJe0vo+znX3s4rZsGYSalqZWZO7NyYdRxT0XtKpVt5LLbwPHfKLiERECVVEJCJKqPGbmXQAEdJ7SadaeS9V/z40hyoiEhGNUEVEIqKEKiISESXUCjKzL5mZm1nV1g00s++Y2VozW25mvzKzM5OOqRRmNt3M1pnZBjP7ctLxdJSZDTazZ8xsjZmtMrPPJx1Tucysk5m9aGaPJB1LRymhVoiZDSb00dqSdCxlehK4wN3HA+uBryQcT9Fy+pldC4wDPmxm45KNqsOagb9097HAu4DPVvF7yfo8sCbpIMqhhFo5/wT8L/L3S6ka7v5bd892plpAKBBeLd7uZ+buR4FsP7Oq4+6vu/uSzPf7CYloYLJRdZyZDQKuA/496VjKoYRaAWZ2A/Cauy9LOpaI3QY8lnQQJcjXz6xqk1CWmQ0FJgILk42kLN8lDDiqujdMIvVQa5GZ/Q7on+ehrwL/G3h/ZSPquLbei7v/d2abrxIOO39eydjKVFSvsmpiZqcDDwNfcPd9ScfTEWZ2PbDd3Reb2bSk4ymHEmpE3P19+e43swuBYcCyTHO6QcASM5vs7m9UMMSiFXovWWZ2K3A9cFWVtaYppp9Z1TCzLoRk+nN3/2XS8ZRhKnCDmX0A6Ab0NLOfufvHEo6rZFrYX2FmthlodPc0VtVpl5lNB/4RuNLddyQdTykyDR/XA1cBrxH6m33E3VclGlgHWPjrfA+w292/kHQ8UcmMUL/k7tcnHUtHaA5VSvV9oAfwpJktNbMfJR1QsTIn07L9zNYAD1ZjMs2YCnwceG/m32FpZoQnCdIIVUQkIhqhiohERAlVRCQiSqgiIhFRQhURiYgSqohIRJRQRUQiooQqNcHMhprZITNbWsY+Gs3se5nvp5nZZe1sf7mZrTazlR19TaktSqhSSza6+4SOPtndm9z9c5kfpwFtJlR3nwtoMb28TQlVUs/MJmUKWnczs9MyBZUvaOc5Q3NHjpni3t/IfD/bzL5tZi+Y2Xozuzxz/zQzeyRTvekO4C8yVyBdbma3mNlKM1tmZs/G9malqqk4iqSeuy8ys1nA3wDdgZ+5e7mH2Z3dfXLmcs2vA28XhHH3zZlLag+4+98DmNkK4Bp3f63auhRI5SihSrW4i1DM5DDwuXa2LUa2OtNiYGgR288DfmpmD+Y8V+QddMgv1aI3cDqhMEu3IrZv5p2f79bPOZL5epwiBhbufgfw14Tyf0vNrE8RMUidUUKVajET+D+EgtbfLmL7N4F+ZtbHzLoS6reWYj8heQNgZsPdfaG7fw3YyTvrqooAOuSXKmBmfwI0u/v9mUZ7883sve7+dKHnuPsxM7uL0BbkZWBtiS/7a+AhM7sR+HPCCaqRhKr/TwG11s5GIqDyfVITMmfmH3H3Ns/+18rrSjrpkF9qxXHgjHIW9pcqs9zq14QpABGNUEVEoqIRqohIRJRQRUQiooQqIhKRmlk21bdvXx86dGjSYYhIjVm8ePFOdz+rmG1rJqEOHTqUpqampMMQkRpjZq8Uu60O+UVEIqKEKiISESVUEZGIxJpQzWy6ma0zsw1m9uU2trvZzNzMGnPu+0rmeevM7Jo44xQRiUJsJ6UyRSx+AFwNbAUWmdksd1/darsehPqWC3PuGwfMAM4HBgC/M7NR7n48rnhFRMoV51n+ycAGd98EYGYPADcCq1tt903g74Av5dx3I/CAux8BXjazDZn9PR9jvFLjmpth4UI4cCD83KsXTJoEZsnGJbUjzoQ6EHg15+etwJTcDcxsIjDY3R8xsy+1eu6CVs8d2PoFzOx24HaAIUOGRBS21KItW+Cee2DrVjh8ONQy6datL3PmwK23Qr9+CQcoNSHOhJrv7/7blVjMrAH4J+BPS33u23e4zyQUHqaxsVFVXiSv2bPhF7+AHj3gM5+BszJLtF95BR58EO66Cz7xCbjkkkTDlBoQZ0Ldyjurmg8CtuX83AO4AJht4ZirPzDLzG4o4rkiRVm/Hh54AC64AG67DU49FXZmiu1deimMHQs//jH85CfQvz8MPOk4SKR4cZ7lXwSMNLNhZnYK4STTrOyD7v6Wu/d196HuPpRwiH+DuzdltpthZl3NbBgwEnghxlilBr31Fvzbv4XD+f/xP0Iybe3MM+HTn4bu3UNiPXy48nFK7Ygtobp7M3An8ASwBnjQ3VeZ2V2ZUWhbz10FPEg4gfU48Fmd4ZdStLSEZHr4MNxxB3TsNwMWAAAgAElEQVRro61fz57wqU/B9u1w772gEsHSUbFey+/ujwKPtrrvawW2ndbq528B34otOKlp8+bBihU7mTEDBgzo+47HLM9p/VGjYNq0nTz2GFx2WV8uUEMT6QBdKSU159gxeOQROPdcaGw8+XEzy5tUp02D3r3hV7/SKFU6RglVas6cObB3L3zgA6WtMe3cGaZPD0urFi+OLz6pXUqoUlMOH4bHHgtn70eMKP35EyfCgAHw3/8d5mFFSqGEKjXlqafClVA33dSx5zc0hOdu3w7z50cbm9Q+JVSpGc3N8PTTMH48DB1aeK60kOz248eH+dcnn9RcqpRGCVVqxpIlYXT63veGnzuaUM3CCao33oCXXoonVqlNSqhSM+bMCYv4x4wpf1+TJoULAebMKX9fUj+UUKUmbNsGGzbA5ZdHUz2qS5dwaeqSJbBvX/n7k/qghCo14dlnw7Knyy6Lbp9XXhnO9M+bF90+pbYpoUrVO3IEnn8+VIs6/fTo9nv22TB6NMydqyVUUhwlVKl6S5aE9adXXBH9vq+4AnbtgrVro9+31B4lVKl6ixZBnz4wfHhx27s7XuR6qIsuCoVVmprKCFDqRqJN+szsDjNbYWZLzey5TC8pzGyomR3K3L/UzH4UZ5xSvQ4cgDVrwjX7xZ6MKiWhdukCEybAiy+Gda4ibYktoeY06bsWGAd8OJswc9zv7he6+wRCX6l/zHlso7tPyNzuiCtOqW4vvhjmNydNiu81Ghvh4MGQuEXaEucI9e0mfe5+FMg26Xubu+cuSDmNPG1ORNrS1BROHg0aFN9rjB0b1qQuWhTfa0htiDOh5mvSl6/R3mfNbCNhhPq5nIeGmdmLZjbHzC7P9wJmdruZNZlZ044dO6KMXarAvn2wbl1ph/sd0blzKJqybFkoDShSSJwJtdhGez9w9+HAXwF/nbn7dWCIu08Evgjcb2Y98zx3prs3unvjWdnOa1I3Fi+GQ4d2ct55O/M+XspcaXvbjxixk717d7JyZYdClToRZ0IttdHeA8BNAO5+xN13Zb5fDGwERsUUp1Sp7OF+//75Hy+UIBsaGmhoOPmj33ZChdNO09l+aVtiTfoAzGxkzo/XAS9l7j8rc1ILMzuP0KRvU4yxSpXZvx82bgzLmiqhoQEuvBBWrtTZfiks6SZ9d5rZKjNbSji0vzVz/xXAcjNbBjwE3OHuu+OKVarPihWhtN7551fuNceNCxcQqAKVFJJokz53/3yB5z0MPBxnbFLdli8PLaAHnnSaMz6jRoV1qcuWhTP/Iq3pSimpOs3NsHp1KCTd0FBazdOOMjNOOcUYOzYkcxWelnyUUKXqrFsXCqKMH992EelCJ58KaWv73Gr+u3aFcoEirSmhStVZvjwcekdRSLpU48efiEGkNSVUqSruIZmNGxeSaqWdcUboN6WEKvkooUpVee012L37xEgxCePHw8svh6VbIrmUUKWqrFgRvl54YXIxXHRRGClnYxHJUkKVqrJ6NQweHA69kzJoEPTsGWIRyaWEKlXj8OHQiG9c6yKQFWYWYlizRsun5J2UUKVqrF8fap+Wm1BLLZqSz7hxobj1li3lxSK1RQlVqsaqVXDKKaFQSTmiSKjZK6V02C+5lFClaqxeHS7/7BzrBdPF6dkzzOUqoUquVPaUyjz2lczz1pnZNXHGKem3cyds317ZYijtGTcuzOkePpx0JJIWqewpldluBnA+MB3412w5P6lP2ZFg6/nTKA7fi5HvdcaNC3O669fH/vJSJdLaU+pG4IFMoemXgQ2Z/UmdWr0aevcOBaVztZVQCz1W6Pr/Uvc1YkSY0121qsg3ITUvztmofD2lprTeyMw+S6iFegrw3pznLmj13AoWapM0aWkJS5QmTSqtd1Sh5FiomEqpI93OnWH0aM2jyglp7SlV1HPVpK8+bN4c5imTKIbSnrFjw9zubpU/F1LaU6rY56pJX31Yty58HT062TjyySb5tWuTjUPSIZU9pTLbzTCzrmY2jNBT6oUYY5UUW7s2XO7Zo0fSkZxswIAQlxKqQIxzqO7ebGbZnlKdgLuzPaWAJnefRegp9T7gGLCHTE+pzHYPAquBZuCz7n48rlglvY4dC0uTpk3L/3hbBaRLreTf1vaFC0+HkfO6deEy1Ao0D5AUS2VPqcxj3wK+FV90Ug02bgwtTzoyfxplQm3LmDGhvfSbbxZuaS31QVdKSaqtXRtaOI8c2f62SdE8qmQpoUqqrV0LQ4dCt25JR1JY377Qp48SqiihSoodOhSWTKVxuVSu3HnUlpako5EkKaFKar30Ehw6tJOzz96ZdCjt6t9/J7t372Tr1qQjkSQpoUpqrV0brkY699ykI2lfdo5Xh/31TQlVUmvdujB/mkR301L17An9+p24CEHqkxKqpNLvfw9bt5ZfTDqflpYWWmKY7Bw+PKyZ1Txq/VJClVTKlsSLI6HGZcSIUHNAbVHqlxKqpNK6daE03pAh+UvtpY2ZMWJEiFOH/fVLCVVSad26cAjdpUv1JNSePY1zzlFCrWdKqJI6+/fDtm3FVZdKsmJ/PqNHh3nU46o8UZeUUCV1XsrUHCs3oRY6+VSoYn9bJ6tKSahHjsArr7S7qdSgpJv0fdHMVpvZcjN7yszOzXnseKZ531Izm9X6uVK71q2Drl3jW39aKKFGYdSo8FWH/fUp6SZ9LwKN7j4eeIjQqC/rkLtPyNxuiCtOSZ9168IZ805V2Jbx9NNh4EAl1HqVdJO+Z9z9YObHBYTK/FLH9u+H118/MdKrRqNGnSg7KPUlzoSar0lfW432Pgk8lvNzt0y/qAVmdlOhJ0ltya4/LTahxnn43tHXGT0ajh7VPGo9irPAdFGN9gDM7GNAI3Blzt1D3H2bmZ0HPG1mK9x9Y6vn3Q7cDjBkyJBoopZErV9f2vxpW0kuygLTpewr+8dg/fqw9EvqR+JN+jItUL4K3ODuR7L3u/u2zNdNwGxgYuvnqklf7Yly/rTU0WtUo93TTgs9sDSPWn+SbtI3EfgxIZluz7m/l5l1zXzfF5hK6C8lNSw7f5rG7qal0jxqfYotobp7M5Bt0rcGeDDbpM/MsmftvwOcDvy/VsujxgJNZrYMeAb4W3dXQq1x2RFdNZ+Qyho1SvOo9SjpJn3vK/C8+cCFccYm6ZOdP82dDq/EVVBRaB1n7npUzaPWD10pJamxfv3J86eVurS0XK3jzM6jZlctSH1QQpVU2LevduZPs0aNCtf1ax61fiihSiqUuv60HJUa9Y4aBceOaR61niihSirkmz+NSyUTKmj5VD0pKaGa2WmZa/RFIlXN1+8XovWo9afNhGpmDWb2ETP7jZltB9YCr5vZKjP7jpmNrEyYUsv27YM33sg/f9rQ0EBDQ/oPpArFOXq01qPWk/Y+qc8Aw4GvAP3dfbC79wMuJxQz+dvMZaMiHZYdwdXSCams0aPDPOrLLycdiVRCe+tQ3+fux1rf6e67gYeBh82sCpr8SpqtWwfdunVs/rSt7qWlzpO2tX1Hu6SOHAlm4T2O1PFczWtzhJpNppnr7d/BzG7N3Uako9avD8km6iP7QiefCh2ex3Gy6tRTNY9aT4r9CH/NzH6YOSl1tpn9GviDOAOT+rB3L7z5Zm0e7meNHg2bNoVDf6ltxSbUK4GNwFLgOeB+d785tqikbtTy/GnW6NHhpNSmTUlHInErNqH2AqYQkuoR4Fyrht6+knrr1p04LK5V2XlUXYZa+4pNqAuAx9x9OjAJGADMa+9JZTbpu9XMXsrcbi0yTqky5c6fprFif2vdu4cTbppHrX3Ffozf5+53A7j7IXf/HHBSgsxVTpM+M+sNfJ0wKp4MfN3MehUZq1SJPXtgx47yDvfbSnSlrmFta/tyE3d2HvXo0Q7vQqpAewv7hwK4+5bWj7n7sxYUOlgrp0nfNcCT7r7b3fcATwLTi3tLUi3Wrg1fa3n+NGv0aDh+PCzyl9rV3p/v75jZw2b2J2Z2vpn1M7MhZvZeM/sm4bB/bIHnltOkr9TnShVau/ZE2+Val53WyP4RkdrU5sJ+d78lc5j+UeA24BzgIKEC/6PAt9z9cIGnl9Okr6jnqklf9XIPyWXMmHDCptZ17QrDhimh1rr2DvlvybQe+Xd3n+buo919ort/xN1/1kYyhfKa9BX1XDXpq17bt4c1qO0d7ldrgel8xo4NpfwOHmxzM6li7R3yfyXz9eEO7LvDTfoIfajen2nW1wt4f+Y+qRFr1oSvY8a0vV0tJdQxY8LIXMunald71/LvMrNngGE5DfTe5u435HlO9rFmM8s26esE3J1t0gc0ufss3tmkD2CLu9/g7rszc7SLMru7K1M/QGrE2rXQuzfU04HFsGHQpUt47xMmJB2NxKG9hHodcDFwH/APpe68o036Mo/dDdxd6mtK+rW0hDWZEyYkM3+a1Ii3c+dwckrzqLWrvZNSR4EFZnaZu++oUExS4159Ncwjtne4H5ckpxDGjIFf/hLeegvOOCOxMCQmbSbUTBEUz3x/0uNtHfKLFJK9YqiYhFotVzgXG2f2Pa9dC1OmxBiQJKK9k1J/TzjUfxk4BPxb5nYAWBlvaFKr1q6Fc84pboRWqUtLy1VsnIMHh9oFOuyvTe0d8s8BMLNvuvsVOQ/92syejTUyqUnHjoWz3O9+dzT7q9The1Sv09AQRqlr1oQz/lXwt0JKUOyFzmeZ2XnZH8xsGFBH52clKhs3hqR6/vnR7K+t5UqFHis0muzIvjpi3LhQx+DNNyPZnaRIe2f5s/4CmG1mmwhzqsOAP4stKqlZCxbs5OhRGDWqb+yvVSgBFjo0r9Rot1+/nRw+DKtX96V//4q8pFRIsSPU2YQF+HsICfXHwJyYYpIatm5dWI/ZtWvSkSSnTx/o2xdWr046EolasQn1XsKo9HvANzPf3xdXUFKb9u2Dbdtg1KikI0neqFHhj4vaS9eWYg/5R7v7RTk/P2Nmy+IISGpX9nLTeijX157Ro2HJklAjVX9gakexI9QXzexd2R/MbApFVOwXybV6dVgyFGW5viiLQkdZrLo9I0aEM/467K8txX5CpgDzzWyzmW0GngeuNLMVZrY8tuikZriH5DFqlNGpU2XWCkWZUKNkZnTvbgwfroRaa4o95Fe1fCnLtm1hDvW977W6X3uZTdrjxsGsWbB/P/TokXBQEomiRqju/kpbt0LPK6JJ3xVmtsTMms3s5laPHTezpZnbSZWupLqsWhW+av70hHHjwsg9O7cs1S+6SaFWimzStwX4U+D+PLs45O4TMjfVDKhyK1aEudMzz0w6kvQ499wwMl2pi7hrRmwJleKa9G129+VAS4xxSMIOHYING+DCC0t/bktLCy0t6f94dCROs3DF2MqVoaShVL84E2q5jfa6mVmTmS0ws5uiDU0qafXqkDAuuCDpSNLnwgvh97+Hl19OOhKJQpwJtegmfQUMcfdG4CPAd81s+EkvYHZ7Juk27dihcq1ptXJlWC41/KR/QRk3Liyf0mF/bYgzoRbVaK8Qd9+W+bqJcOnrxDzbqElfyrmH+dPzzw+JIw3SNI2Q/UOzYkXSkUgU4vyIt9ukr5BMc76ume/7AlMBrdirQlu2hGVBOtwv7MILQxeDvXuTjkTKFVtCdfdmINukbw3wYLZJn5ndAGBmk8xsK3AL8GMzyyyuYSzQlLm89RngbzPtrKXKrFhx4uRLR9Ragel8sifrdNhf/Ypd2N8hRTTpW0SYCmj9vPlAB84JS9qsWAFDh3Z84Xo1JFMoL85zzoFevcLvKqrC25KMlMxqSS3auxc2b4bx4+N7jSgLPyf1Ombhd7R6dSi+LdVLCVViszxT5SG3B33Uiamt/RU6+VTo8Lytk1VRxp1vXxMmwNGjumqq2imhSmxefBH69QuHtFmVGlG2Jel52Xy/g1GjoHv38DuT6qWEKrE4eDB09pwwQY3oitG5czjsX7ZMV01VMyVUiUX2csrcw31p24QJ4aqpDRuSjkQ6SglVYvHii9CzJ5x3XvvblqOSNUzjfp3zzw8j1aVLY30ZiZESqkTu2LFQrq8Sh/ttJbooC0xXIqF27RouRV26NFxhJtVHCVUit2YNHDmS/3A/6lYibUlrxf62fgcTJsCuXbB1a+xhSAyUUCVyS5ZAt24qJt0RF10Uah4sXpx0JNIRSqgSqWPHwvzpxReH+UApzemnw5gxsGiRDvurkRKqRGrlSjh8GCZNimZ/aVi3Wowo45w0CXbuDFeZSXVRQpVILVoUrtsfMyaa/dVjQp04MYzuFy2KZHdSQbEm1DKb9N1qZi9lbrfGGadE4/DhcLnpJZekp/ZpNerePZQ7bGrSIv9qk8omfWbWG/g6MIXQm+rrZtYrrlglGsuWhTnUqA7341INo95Jk+Ctt7TIv9qktUnfNcCT7r7b3fcATwLTY4xVIrBoUShDl/ZWJ9WQUMePD+tSX3gh6UikFGlt0lfUc9VTKj0OHAiL+SdN0rX7UTjllLCEaskSaG5OOhopVlqb9BX1XPWUSo+FC8N837veFe1+K3khQDniiPNd7wrX9i9bFuluJUZpbdJXVoM/qSx3eO65UJl/YCmNwqVNY8eGKZR585KORIqVyiZ9hD5U78806+sFvD9zn6TQK6/Atm0wdWrlXzvKotAdKVYdp4aG8DtdvRp2767oS0sHpbJJn7vvBr5JSMqLgLsy90kKzZsHXboUd3a/kieECr1WocPzNLZTufTScAQwf37MQUkkUtmkL/PY3cDdccYn5Tt6NJyJvuSSsH6yPWk/u14JpfwO+vYNF0nMnw/XXacTfmmX/tl+SbUlS8KC/iQO9+vF1KmhAtW6dUlHIu1RQpWyzJkT+kaNHJl0JLVr4kQ49dTwu5Z0U0KVDtu8GTZtgve8J7lD0Vqq2F9Ily5w+eWhiteuXYmEIEVSQpUOe/rpUPf0ssuKf07Uiamt/ZW6NrSt7aOMuyP7mjYt/NGaPTuSECQmSqjSIXv3hktNp04NSbVYSbdwToOO/A569w6H/s89F7ohSDopoUqHzJkTlvO85z1JR1I/rroqtOdesCDpSKQQJVQp2bFjMHduKOChK34r57zz4Nxzw1SLVp+lkxKqlGzePNi/H973vvhfqxoqQ0Fl4jQLv/M33lCr6bRSQpWSNDfDY4/BiBGVWSqlhPpOjY1hmdpvfqNRahopoUpJnnsunJD6gz/QVTtJaGgIV0y9+qqqUKWREqoUrbkZHn88FJCu5hbR1TLqLWTy5DBKfeQRjVLTRglVijZvHuzZU/2j02pPqA0N8IEPhFHq8uVJRyO5km7S19XMfpF5fKGZDc3cP9TMDpnZ0sztR3HGKe07fDjM2w0fHl1H02JUy7rVSsc5ZUoYpf7qV2rklyZJN+n7JLDH3UcA/wR8O+exje4+IXO7I644pTiPPx6axt1yS2VHp0qo+TU0wB/9Ebz+uq7xT5NEm/Rlfr4n8/1DwFVWDf976szOnfDkk6Elx7BhSUfzTmmsYVopF10UjhZmzQqtUiR5STfpe3ubTEHqt4A+mceGmdmLZjbHzC7P9wJq0lcZDz0EnTrBH/5h0pGcrK1EV+ixQqPJjuwrSWbwoQ/BoUPw618nHY1A8k36Cm3zOjDE3ScCXwTuN7OeJ22oJn2xW706VDmaPh3OPLP8/VWylUiUCTVKUf4OBg6EK68Mh/1bt0aySylD0k363t7GzDoDZwC73f2Iu+8CcPfFwEZgVIyxSh6HDsG998LZZ8PVVycdjRRyww1w+unwk5+o5XTSkm7SNwu4NfP9zcDT7u5mdlbmpBZmdh4wEtgUY6ySx4MPhkX8n/hEqMkp6XTaafDxj4cR6m9+k3Q09S3RJn3AfwB9zGwD4dA+u7TqCmC5mS0jnKy6Q036Kmv58tDHaPr09J2IkpONHx/q0j7+eCj8LclIuknfYULH09bPexh4OM7YpLA9e8Kh/sCBcP31SUfTtrYKSJe6YKSt7UspVJ2UD30I1qyB//gP+MpXQtsUqaz0f0qkoo4dgx/9KHz91Kegc8R/ciu5XrPU16r2dirdu4d/s127QlLVgv/KU0KVt7nDz38eDhlvuw3OOSf616iWhfpxivN3MHw4zJgBK1eG9alSWbEe8kt1efxxeP75cK3+RRclHY101BVXwJYtoczi2WfDpZcmHVH9UEIVAJ56Cv7rv0Ilo+uuSzoaKdeMGeEKt3vuCdM2kyYlHVF90CG/MGdOWCJ18cVhiVSajsgreSFAOdIWZ+fO8JnPhELgd98dLs6Q+Cmh1jH3cMni/feHZTef/GQouiG14ZRT4M47YehQmDlTLagrQf996tSxY+FM8COPhPWLf/Zn0Z/Rl+R16wZf+AJccAH853/CL36hs/9x0n+hOrR1a7hMcevWUPDkmmvSdZgftzQdmldC167w6U/Dww/D734XTlh94hPQt2/SkdUeJdQ60twc/kPNmhUuV/zzPw8jF6l9DQ2hlu2QIWGketddcPPN8O53a5onSkqodcA9nJT41a9g+/Zw8umjHw0FNdKuWtasVkucU6bAqFHw05+GNcdz5oTEOnZs0pHVBiXUGtbcDE1NYUnUli0wYEAYlZ5/fvUc4ldLoqqWOAF69Qrzqk1N4Y/sd78bWoJfdVVYf6wRa8cpodYY93ClU1MTvPAC7NsXrnj6kz8JC7xr7T9LpYo+p624dLnMwtrUiRPDKPWpp8Ilx336hLXIjY2hlkMV/Z1IhVgTqplNB/4Z6AT8u7v/bavHuwL3ApcAu4A/dvfNmce+Qug5dRz4nLs/EWes1co9XLu9cSOsXRuKY+zZE87Yn39+KD48blx6/mNEnZja2l+hk0+FRpNtnayKMu40JefOncPI9D3vgWXL4Nln4YknwlVWffuGz86YMXDeeaHAeFo+R2kVW0LNadJ3NaGQ9CIzm+Xuq3M2e7tJn5nNIDTp++NMM78ZwPnAAOB3ZjbK3Y/HFW+aucPBgyFR7t4droB58014441wKH/wYNjutNNg9OhQcHjChHRWG0pDMkn68DwNv4PWGhrCaHXiRNi/H5YsgVWrwlHOs8+GbXr0gMGDoX//cElr377Qu3dItN27K9lCvCPUt5v0AZhZtklfbkK9EfhG5vuHgO9nmvTdCDzg7keAlzP1UicDz0cV3CuvhORUjHyff/d33p/9Pvd+97DmL/v1+PHw/fHjJ27HjoW5zmPH4OhROHIktGw+dCjcDhwIt9aDp+7dw4f6kkvg3HPD4u1Bg/ShlvL16BGObK68MnxGt2wJ/182b4Zt22DevPA5zdWpU3jeqaeGW/fuYQ3sKaeEW5cu4da5c9g2e2toOHEzO/EVwtfc77Ny789V7Gf/7LPD+YQ4xJlQ8zXpm1JoG3dvNrNsk76BwIJWz23d4A8zux24HWDIkCElBTd7diignAZdupz40HXtGm6nngo9e4ZDrR49wq1Xr3Dr0yf8XI3Js2+Jix979+7d4f0VeqzQPjuyr/b22ZF9pUmnTqHAeG6RcffQUnzXrnDUtHdvGNXu3x+Oln7/+3BfdoBw9GgYMBw7ltz7yHXttXDTTfHsO86EWk6TvmKei7vPBGYCNDY2lnQcdcMNYe6oWPn+Urb+ufVf1OwJoNy/wp06hcc6dw63Qn9tRdLKLBzml9q0MXuk1tz8zqO1lpYTNzhxVJd9Tr4jwba+b0+PHqXFXYo4E2opTfq25jbpK/K5ZcmO9kSkMsxOHOrXqlQ26cvcP8PMuprZMEKTvhdijFVEpGyxjVAzc6LZJn2dgLuzTfqAJnefRWjSd1/mpNNuQtIls92DhBNYzcBn6/UMv4hUD0vjEo6OaGxs9KampqTDEJEaY2aL3b2xmG1r7LoZEZHkKKGKiERECVVEJCI1M4dqZjuAV5KOI4++wM6kg4iI3ks61cp7Sev7ONfdzypmw5pJqGllZk3FTminnd5LOtXKe6mF96FDfhGRiCihiohERAk1fjOTDiBCei/pVCvvperfh+ZQRUQiohGqiEhElFBFRCKihFpBZvYlM3Mzq54Kw62Y2XfMbK2ZLTezX5lZiVUxk2Vm081snZltMLMvJx1PR5nZYDN7xszWmNkqM/t80jGVy8w6mdmLZvZI0rF0lBJqhZjZYEJ/rS1Jx1KmJ4EL3H08sB74SsLxFC2nz9m1wDjgw5n+ZdWoGfhLdx8LvAv4bBW/l6zPA2uSDqIcSqiV80/A/yJP54Fq4u6/dffmzI8LCMW/q8Xbfc7c/SiQ7XNWddz9dXdfkvl+PyERndQmqFqY2SDgOuDfk46lHEqoFWBmNwCvufuypGOJ2G3AY0kHUYJ8fc6qNgllmdlQYCKwMNlIyvJdwoCjcC/vKhBnC5S6Yma/A/rneeirwP8G3l/ZiDqurffi7v+d2earhMPOn1cytjIV1ausmpjZ6cDDwBfcfV/S8XSEmV0PbHf3xWY2Lel4yqGEGhF3f1+++83sQmAYsCzTD34QsMTMJrv7GxUMsWiF3kuWmd0KXA9c5dW1kDn2XmWVZGZdCMn05+7+y6TjKcNU4AYz+wDQDehpZj9z948lHFfJtLC/wsxsM9Do7mmsqtMuM5sO/CNwpbvvSDqeUmQaQa4HrgJeI/Q9+4i7r0o0sA6w8Nf5HmC3u38h6Xiikhmhfsndr086lo7QHKqU6vtAD+BJM1tqZj9KOqBiZU6mZfucrQEerMZkmjEV+Djw3sy/w9LMCE8SpBGqiEhENEIVEYmIEqqISESUUEVEIqKEKiISESVUEZGIKKGKiERECVVqgpkNNbNDZra0jH00mtn3Mt9PM7PL2tn+cjNbbWYrO/qaUluUUKWWbHT3CR19srs3ufvnMj9OA9pMqO4+F9BienmbEqqknplNyhS07mZmp2UKKl/QznOG5o4cM8W9v5H5fraZfdvMXjCz9WZ2eeb+aWb2SKZ60x3AX2SuQLrczG4xs5VmtszMno3tzUpVU3EUST13X2Rms+YwjLkAAAE1SURBVIC/AboDP3P3cg+zO7v75Mzlml8H3i4I4+6bM5fUHnD3vwcwsxXANe7+WrV1KZDKUUKVanEXoZjJYeBz7WxbjGx1psXA0CK2nwf81MwezHmuyDvokF+qRW/gdEJhlm5FbN/MOz/frZ9zJPP1OEUMLNz9DuCvCeX/lppZnyJikDqjhCrVYibwfwgFrb9dxPZvAv3MrI+ZdSXUby3FfkLyBsDMhrv7Qnf/GrCTd9ZVFQF0yC9VwMz+BGh29/szjfbmm9l73f3pQs9x92NmdhehLcjLwNoSX/bXwENmdiPw54QTVCMJVf+fAmqtnY1EQOX7pCZkzsw/4u5tnv2vldeVdNIhv9SK48AZ5SzsL1VmudWvCVMAIhqhiohERSNUEZGIKKGKiERECVVEJCJKqCIiEfn/4tSB7zmTw3oAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 360x1080 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from scipy.stats import norm\n", + "\n", + "plt.figure(figsize=[5,15])\n", + "\n", + "plt.subplot(211)\n", + "# cumulative of the gaussian pdf\n", + "x = np.linspace(-5,5,100)\n", + "plt.plot(x, norm.cdf(x),'b-', alpha=0.6)\n", + "plt.xlabel(r'x [units]')\n", + "plt.ylabel(r'cdf(x)')\n", + "\n", + "# draw vertical line from (70,100) to (70, 250)\n", + "for i in range(0,11):\n", + " step = i*0.1\n", + " plt.plot([-5,5], [step, step], 'k--', lw='0.2')\n", + " plt.plot([norm.ppf(step),norm.ppf(step)], [step, 0], 'k--', lw='0.2')\n", + "\n", + "plt.subplot(212)\n", + "plt.subplots_adjust(top=0.5)\n", + "# gaussian pdf \n", + "x = np.linspace(-5,5,100)\n", + "plt.plot(x, norm.pdf(x),'b-', alpha=0.6)\n", + "plt.xlabel(r'x [units]')\n", + "plt.ylabel(r'pdf(x)')\n", + "s =[]\n", + "p =[]\n", + "for i in range(0,11):\n", + " step = i*0.1\n", + " s.append(\"{:.1f}\".format(step))\n", + " p.append(\"{:.3f}\".format(norm.ppf(step)))\n", + " plt.plot([norm.ppf(step),norm.ppf(step)], [norm.pdf(norm.ppf(step)), 0], 'k--', lw='0.2')\n", + "\n", + "print (s)\n", + "print (p)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}