
Exercise_4

October 19, 2018

1 Exercise 4

In []: from __future__ import print_function # For Python < 3

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

%matplotlib inline

1.1 1. Approximations to the binomial

For np < 10, large n, the Poisson distribution is a good approximation for the binomial.

• Show analytically that the binomial distribution converges to the Poisson distribution in the
limit of large n. (Hint: e = limn→∞(1 + 1

x)
x)

• Keeping np fixed, plot the binomial probability mass function for an increasing number of
observations n, comparing in each case to the equivalent Poisson distribution (λ = np). For
convenience, you should use the relevant functions in scipy.stat.

In []: n_trials = [5, 10, 100]

p0 = 0.8

...

Plot the PMFs

fh, ax = plt.subplots(1,len(n_trials), sharey=True, figsize=(10,4))

for idx, nt in enumerate(n_trials):

...

ax[idx].bar(...)

ax[idx].bar(...)

...

For np > 10, n(1-p) > 10, the discrete binomial distribution can be reasonably approximated by
the continuous normal distribution.

• Choose a large n (> 30, with p close to 0.5). To start with, choose n=100 and p=0.45. Plot the
binomial pmf, and, with equivalent parameters, the normal pdf

1

• Calculate the probability that X >= 55 for each. Don’t forget to apply the continuity correc-
tion

• What happens to the relative difference as n increases?

In []: n_trials = 100

p0 = 0.45

mu = ... # Expectation

std = ... # Standard deviation

#...

print('Binomial (exact):', ...)

print('Gaussian (approximate):', ...)

Plots

...

1.2 2. Random walk

Consider a simple 1D random walk. A person starts at the position x = 0. With equal probability
p = 0.5, they may take one step forwards or one step backwards, corresponding to a displacement
of +1 and -1 respectively.

• Show that for an N step walk, the expected absolute distance from the starting position is
given by

√
N.

• Write a function to simulate such a random walk, parameterised by the number of steps.
The output should be an array, with the displacement at each step index.

• Plot a single walk.

In []: def random_walk(n_steps):

return ...

n_steps = 100

w = random_walk(n_steps)

...

• Simulate ~1000 random walks of 500 steps.

• Plot the average distance (rms) of these over the whole set with respect to step index (time).
Does the average converge to the expected distance?

• (Optional) sample and plot the running average to show how the convergence improves
with number of walks.

In []: n_steps = 500

n_walks = 1000

2

n = np.arange(n_steps) +1

print('Expected distance for {} steps: {}'.format(...))

W = [] # Final distance

A = [] # Running average over whole set

T = 0

for idx in range(n_walks):

...

...

• Now consider the case p ̸= 0.5, where the "person" is more likely to step in one direction
than another. Find again analytically the expectation and the variance for the (rms) distance
travelled in terms of N and p.

• Modify the random_walk function to account for the unequal probability between the direc-
tions.

• Run a series of random walks as before, and plot again the histogram of distances travelled.
On top of this, plot the Gaussian PDF with the µ and σ parameters as determined above.

In []: # Plot histogram

n_steps = 2000

n_trials = 5000

p = 0.4

V = []

for n in range(n_trials):

...

...

1.3 3. Small sample sizes: t-distribution

1.3.1 3.1 Compare to normal distribution

Student’s t-distributions are interesting for cases where you have few samples and the population
variance is unknown, but the underlying distribution of the means can be assumed normal. They
are parameterised by the degrees of freedom ("df"), which is usually equal the number of samples
minus one. As the number of degrees of freedom increases, the t-distribution converges to the
normal distribution.

• Plot the standard t-distribution for several increasing degrees of freedom and compare this
to the normal PDF.

• Plot and compare the cumulative distribution functions
• Plot the variance of the t-distribution as a function of degrees of freedom. Compare to the

standard normal variance (=1)
• (optional) make a Q-Q plot (see Wiki) and compare the distributions

3

In []: x = np.linspace(-5, 5, 200)

df_all = [1,2,5,10,30]

fh, ax = plt.subplots(2,2, figsize=(10,8))

PDF

for df in df_all:

...

ax[0,0].plot(...)

CDF

for df in df_all:

...

ax[1,0].plot(...)

ax[1,0].plot(...)

Variance vs degrees of freedom

...

ax[0,1].set_xlabel('DOF')

ax[0,1].set_ylabel('Var(T)')

Q-Q plot (optional)

for df in df_all:

...

ax[1,1].plot(...)

plt.show()

1.3.2 3.2 Eggs

An egg producer claims to supply eggs with an average egg weight of 63 g. In a box of 12, the
following weights were measured (all in g):

62.75, 56.98, 53.30, 62.65, 57.63, 57.23, 56.65, 64.89, 57.87, 60.42, 57.01, 63.65

• Calculate the sample mean and (adjusted -- see ddof option) sample standard deviation.

• What is the probability of obtaining this average weight or lighter, given the supplier’s
claim?

In []: s = [62.75, 56.98, 53.30, 62.65, 57.63, 57.23, 56.65, 64.89, 57.87, 60.42, 57.01, 63.65]

n_samples = ...

dof = ... # degrees of freedom

mu_samp = ... # Sampling mean

sig_samp = np.std(s, ddof=1)

mu_claim = ... # Claimed population mean

...

print('Probability of this sample mean ({:.2f}) against claimed mean ({:.2f}): {:.2f} %'.format(

4

...))

plt.figure()

...

plt.xlabel('Egg weight (g) (W)')

plt.ylabel('P(W)')

plt.show()

• Within what range would 95% of samples follow? And how would this compare with an
equivalent normal distribution?

• Plot again the two distributions, marking the 95% intervals

In []: ...

print('Normal: 95% of samples between {} and {}'.format(...))

print('T-distribution: 95% of samples between {} and {}'.format(...))

plt.figure()

...

plt.xlabel('Egg weight (g) (W)')

plt.ylabel('P(W)')

1.4 Bonus

A pair of independent, standard normal random variables can be generated by sam-
pling a uniform distribution. One approach to this is the Box-Muller transform (see
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform).

• Generate a long sequence of numbers drawn from U(0,1)
• Use the Box-Muller transform to convert these to normal random variables
• Plot the normal samples on a scatter plot - verify they are not correlated
• Plot the histograms, and superimpose the normal PDF

In []: u1 = ...

u2 = ...

n1 = ...

n2 = ...

...

1.4.1 Improbable events

In this example, we tabulate the amplitude deviation against the probability, odds (inverse prob-
ability), and equivalent timescale (once in 10 thousand years). Modify the code and try with
different distributions - especially those which look similar to the normal distribution, but carry a
fatter tail.

In []: from IPython.display import display

import pandas as pd

5

def format_days(d):

if d < 365:

if d > 90:

return '{:1.0f} months'.format(d/30)

elif d > 7:

return '{:1.0f} weeks'.format(d/7)

else:

return '{:1.0f} days'.format(d)

d /= 365

if d > 1e9:

return '{:1.1f} billion years'.format(d*1e-9)

elif d > 1e6:

return '{:1.1f} million years'.format(d*1e-6)

elif d > 1e3:

return '{:1.1f} millenia'.format(d*1e-3)

else:

return '{:1.1f} years'.format(d)

z = np.linspace(0, 10, 500)

data = []

for n in range(1,8):

p = 2*(1-stats.norm.cdf(n))

data.append([n, p, 1/p, format_days(1/p)])

display(pd.DataFrame(data, columns=[r'|X| ($\sigma)$', 'p', '1 in', 'time equivalent']))

1.4.2 Code to generate "egg" distribution

In []: # Generate small dataset for T-dist question

True parameters:

sig = 3

mu = 58

n_samples = 12

s = stats.norm.rvs(size=n_samples, loc=mu, scale=sig)

print(('{:.2f}, '*n_samples).format(*s)[:-2])

6

	Exercise 4
	1. Approximations to the binomial
	2. Random walk
	3. Small sample sizes: t-distribution
	3.1 Compare to normal distribution
	3.2 Eggs

	Bonus
	Improbable events
	Code to generate "egg" distribution

