
Exercise_2

October 3, 2018

1 Exercise 2

General hint: You can always ask for help from within python if you forgot how a certain function
works or what the correct ordering of input parameters is. Executing “some_function?” spawns
the docstring of the function and “some_function??” the source code.

In []: scipy.stats.kurtosis?

1.1 Probability density function (pdf)

We will look at a few common distributions and investigate their basic properties.

In []: from __future__ import print_function
import numpy as np
import scipy.stats
%matplotlib inline
import matplotlib.pyplot as plt

For your convenience, we define a few pdfs and functions to draw samples from them. Have
a look at https://docs.scipy.org/doc/scipy/reference/stats.html for more details.

In []: def gaussian_pdf(x, mu, sigma):
"""Gaussian distribution with mean mu and standard deviation sigma"""
return scipy.stats.norm.pdf(x, loc=mu, scale=sigma)

def gaussian_sample(number, mu, sigma):
"""Draw samples from a Gaussian distribution

mu: mean
sigma: standard deviation:
number: number of samples to be drawn
"""
return scipy.stats.norm.rvs(loc=mu, scale=sigma, size=number)

def lognormal_pdf(x, mu, sigma):
return scipy.stats.lognorm.pdf(x, loc=0, scale=1, s=sigma)

def lognormal_sample(number, mu, sigma):

1

return scipy.stats.lognorm.rvs(size=number, loc=0, s=sigma, scale=1)

def binomial_pmf(x, n, p):
return scipy.stats.binom.pmf(x, n, p)

def binomial_sample(number, n, p):
return scipy.stats.binom.rvs(n, p, size=number)

def poisson_pmf(k, mu):
return scipy.stats.poisson.pmf(k, mu)

def poisson_sample(number, mu):
return scipy.stats.poisson.rvs(mu, size=number)

1a) Generate arrays from the lognormal and poisson pdfs and draw an array of samples
from each distribution.

In []: # Generate arrays for parent pdf and samples
sample_size = 1000
x_float = np.linspace(0, 10, 1000)
x_int = np.arange(0, 30)
mu = 4
p = 1/2
sigma = 1

Gaussian
g_parent = gaussian_pdf(x_float, mu, sigma)
g_sample = gaussian_sample(sample_size, mu, sigma)

Lognormal
logn_parent = ...
logn_sample = ...

Binomial
bin_pdf = binomial_pmf(x_int, n=int(mu/p), p=p)
bin_sample = binomial_sample(sample_size, n=int(mu/p), p=p)

Poisson
#pois_parent = ...
#pois_sample = ...

1b) Display your results in axes 1 and 3 in the figure below.

In []: # Plot the generated arrays, comparing the parent distribution and a sample
f, ax = plt.subplots(2, 2, figsize=(10, 6))
ax = ax.flatten()
n_bins = 16

ax[0].set_title(r'Gauss')

2

ax[0].plot(x_float, g_parent, 'k', label='pdf')
ax[0].hist(g_sample, n_bins, density=True, rwidth=0.9, label='sample', range=(0, 8))
ax[0].set_xlim(0, 8)
ax[0].set_xlabel(r'x')
ax[0].legend()

ax[1].set_title(r'Lognormal')
...

ax[2].set_title('Binomial')
ax[2].plot(x_int, bin_pdf, 'k+', label='pmf', ms=8)
ax[2].hist(bin_sample, n_bins, density=True, rwidth=0.9, label='sample', range=(0, 15), align='mid')
ax[2].set_xlim(0, 15)
ax[2].set_xlabel(r'k')
ax[2].legend()

ax[3].set_title('Poisson')
...

f.tight_layout()

1.2 Mean, variance and their estimators

2a) To familiarize yourself with the properties of the distributions, write a function that calcu-
lates the first five moments of a sample as well as the mode and median values. Compare your
results with the expected values.
Hints: If you like, you can try your own implementations and test them against scipy.stats. You
can find functions in numpy and scipy implementing all tasks. The 0th moment is just the total
probability, following the convention in the lecture notes. Sometimes the value 3 is subtracted
from kurtosis to shift a normal distribution to zero kurtosis.

In []: def moments(sample):
pass

def mode(sample):
pass

def median(sample):
pass

In []: # Calculate moments

In []: print(mode(g_sample), median(g_sample))
print(mode(logn_sample), median(logn_sample))
print(mode(bin_sample), median(bin_sample))
print(mode(pois_sample), median(pois_sample))

3

What did you expect, knowing the parent distributions? Hint: scipy can also help you here,
see for example “scipy.stats.norm.stats”. You can check wikipedia to quickly recap some analytical
results if neccessary.
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Poisson_distribution

In []: # ...

1.2.1 Estimation

Obviously, there is some discrepancy between the expected or “true” values from the parent dis-
tribution and the calculated sample moments. We would like to work on the inverse problem of
guessing the first two moments given only a sample and knowing that the sample was drawn
from a normal distribution (but not knowing its “true” parameters).
2b) Remember how to estimate the mean and variance from a sample.

2c) How to quantify the uncertainty of the estimation of the mean?

In []: #

2d) Given that it can be very cheap to repeatedly sample a distribution with a computer, try
to come up with an alternative approach to estimate the uncertainty of the mean. We will come
back to this idea at the end of the course.

In []: #

1.3 Multidimensional pdf: covariance and correlation

Imagine your’re an astronomer and are measuring a specific parameter called the “Clumping
factor”. You’re interested whether the clumping factor varies with temperature and how. You
have 8 measurements with the following values:

In []: clumping = [0.5, 0.4, 0.3, 0.2, 0.4, 0.3, 0.3, 0.2]
temperature = [2700, 4600, 5120, 5550, 3600, 3990, 4190, 3900] # [K]

3a) Write a function in python that computes the Covariance and compare the result to a
python numpy or scipy function.

In []: #

3b) Calculate the correlation coefficient.

In []: #

3c) Interpret your results of covariance and correlation coefficient.
3d) If the two variables are uncorrelated, does this also mean they are independent of each

other?

In []: # Counter example?

4

1.4 Bonus

1.4.1 3D Plots

Try playing with three dimensional graphs to visualize properties of pdfs with two variables. For
example, try visualizing marginal and conditional distributions as was done in lecture 2.

1.4.2 nbextensions

There are some useful extensions to jupyter notebooks, check https://github.com/ipython-
contrib/jupyter_contrib_nbextensions if you are interested. There are features like a table of con-
tents to navigate around in notebooks, line numbering for all code cells and options to collapse
certain cells to to keep a better overview.

conda install -c conda-forge jupyter_contrib_nbextensions

5

	Exercise 2
	Probability density function (pdf)
	Mean, variance and their estimators
	Estimation

	Multidimensional pdf: covariance and correlation
	Bonus
	3D Plots
	nbextensions

