Exercises 7

November 5, 2018

1 Exercise 7

Maximum Likelihood method

In []: from __future__ import print_function
import numpy as np
Jmatplotlib inline
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, minimize, fsolve
from scipy.stats import norm, chi2, lognorm

In [151]: measurements = np.array([97.8621, 114.105, 87.7593, 93.2134, 86.6624, 87.4629, 79.77
91.5024, 87.7737, 89.6926, 133.506, 91.4124, 94.4401, 97.3968, \
108.424, 103.197, 88.2166, 142.217, 89.0393, 102.438, 95.7987, \
94.5177, 96.8171, 90.903, 132.463, 92.3394, 84.1451, 87.3447, \
92.2861, 84.4213, 124.017, 90.4941, 95.7992, 92.3484, 95.9813, \
88.0641, 101.002, 97.7268, 137.379, 96.213, 140.795, 99.9332, \
130.087, 108.839, 90.0145, 100.313, 87.5952, 92.995, 114.457, \
90.7526, 112.181, 117.857, 95.2804, 115.922, 117.043, 104.317, \
126.728, 87.8592, 89.9614, 100.377, 107.38, 88.8426, 93.3224, \
138.947, 102.288, 123.431, 114.334, 88.5134, 124.7, 87.7316, 84.7141, \
91.1646, 87.891, 121.257, 92.9314])

1.1 1-D Maximum likelihood fit

We have a set of measurements which are distributed according to the sum of two Gaussians (e.g.
this can be signal and background).

1(x=p\2 _1(xm)?
= e O 1 3)
where for one of the two peaks the parameters are known already
pb=:910
oy = 5.0

In [228]: def likelihood_point(x, position, width):
return ...

First, we assume the width of the peak we want to fit is already known: ¢ = 15.0. Perform a
1-D Maximum Likelihood fit for the position of the peak p.
Complete the functions below which return the likelihood and negative log likelihood (NLL).

In [347]: def likelihood_1d(params):
hint: for products use np.prod
return ...

def nll_id(params):
return -np.log(likelihood_1d(params))

Minimize the NLL and give the best-fit result, including asymetric errors and plot the NLL.

In [1: # find numeric minimum of NLL
hint: use e.g. minimize from scipy.optimize

hint: to compute the errors (solve roots of equation) use fsolve from scipy.optimize

print("position:", ...)
print("negative error:", ...)
print("positive error:", ...)
plt.show()

What happens if you try to maximize the likelihood directly?

1.2 2-D Likelihood fit

Now we perform the 2-D Maximum Likelihood fit, fitting for both ¢ and p at the same time.

In [350]: def likelihood(params):
return ...

def nll(params):
return -np.log(likelihood(params))

Minimize the NLL and find the best-fit result.

In []: solution = ...
print("position:", ..., "width:", ...)

Create a 2D contour plot of the 1, 2 and 3 ¢ contours of the NLL and plot the best-fit solution.

In []: #
pl = plt.contour(...)

Compute numerically the error matrix of the NLL for the 2-D fit.

In []: from scipy.misc import derivative

compute the error matriz

hint: * you can use "derivative" from scipy.misc to compute numeric derivatives

* for the mized partial terms, the use of lambda functions might be practical
function depending on more than one wariable to a function depending on one

A = np.linalg.inv([

[
derivative(...),
derivative(...)
1,
[
derivative(...),
derivative(...)
]

D
print(A, "\nsigma(position):", np.sqrt(A[0,0]), "sigma(width):", np.sqrt(A[1,1]))

1.3 Binned ML fit

With the same data as above, we now perform a binned ML fit and compare with the unbinned
fit. First, create a histogram of the data using np.histogram.

In []: nBins = 10

histoMax = 170
histoMin = 70
binWidth = (histoMax - histoMin)/nBins

hO = np.histogram(...)
print (h0[0])
print (hO[1])

Compute the binned NLL:

In [375]: def nll_binned(params):
params is a list of [position, sigmal
#. ..
return #...

Minimize the binned NLL:

In [376]: solution_binned=...
print(solution_binned)

fun: -138.93433719876123
jac: array([-1.90734863e-06, 1.90734863e-06])
message: 'Optimization terminated successfully.'

nfev: 60
nit: 6
njev: 15
status: O

success: True
x: array([116.43876363, 15.33581135])

Make a contour plot of the 1,2, and 3 ¢ contours for the binned NLL and overlay it with the
unbinned contours.

In []: # show the two contour plots superimposed
plt.show()

Repeat the same for 50 bins:

In []: # show the two contour plots superimposed for 50 bins

	Exercise 7
	1-D Maximum likelihood fit
	2-D Likelihood fit
	Binned ML fit

