(Advanced) Physics Lab 3 (HS18) - Exercise 1

Dr. Mauro Donega, Dr. Severian Gvasaliya

September 24, 2018

Use the provided Exercise_l.ipynb Jupyter notebook to solve the exercises, some code is al-
ready present which helps you in getting started. The TODO: indicates where you should fill in
the missing code. (You are also free to start a new notebook from scratch.)

We recommend to use Python version 2.7, but Python 3 should also work.

1 1. Basic plotting with matplotlib

In our first example, we plot a simple curve with matplotlib.

1.1 a) Generating set of data

First we need to create an array of our x values for the curve to plot.
Import basic libraries:

In [36]: from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt

Jmatplotlib inline
the commands above ©s needed to have the plots displayed instde thts
notebook instead of in an external window

In []: def equallySpacedNumbers(start, end, number):
return # TO0DO: use numpy to return a 1-d array of equidistant
floating point numbers between start and end

look at the function output by printing:
print (equallySpacedNumbers(2.0,3.0,4))

test your function, <t should print 'True' twice
print(all(equallySpacedNumbers(2.0,10.0,9)
= [2.,3.,4.,5.,6.,7.,8.,9.,10.1))
print(all(abs(equallySpacedNumbers(-1.2,0.2,6)
- [-1.2,-0.92,-0.64,-0.36,-0.08,0.2]) < 1le-6))

Note that in the second case, we can not make an exact comparison due to rounding errors.
Having such test functions is useful in case we want to replace our generator of equally spaces
numbers with a different (e.g. faster) version later.

1.1.1 b) Simple plots

As example, we now want to make a plot of the fall time vs. the height of which an apple is
dropped. For both x and y we need one-dimensional numpy arrays of the same length.
You find some help on basic plot functionalities here:
https:/ /matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
For more special plots, first have a look in the gallery:
https:/ /matplotlib.org/gallery /index.html
which already includes many common types of plots.

In []: def Falltime(x, g):
return np.sqrt(2*x/g)

create a dataset

true_g = 9.8

data_x = # T0DO: create array of 50 equally spaced points
between 0 and 2.0 (height in m)

TODO: compute fall time for all height values

data_y

the stmplest way to plot
TODO: create plot out of z/y data

always label the azes (the '$...$' for latex style)
hint: use raw strings, e.g. r'height [m]'
TODO: set labels for z and y-azis

H*:

make the plot appear
TODO: draw plot

1.1.2 ¢) Load measurements from text file

Above plot now shows the prediction of the fall time. To make a comparison with our measure-
ments, we first have to load them from the text file measurement.txt.

Numpy provides a very convenient function for this purpose! look at the Numpy reference:
https:/ /docs.scipy.org/doc/numpy /reference/generated /numpy.loadtxt.html

In [1: # load data from textfile
format: height[m] time[s] height_error[m] time_error[s]
measurements = # T0D0: load measurements from measurement.tzt

look at 1t

print("shape:", measurements.shape, "\n")

print("data:\n", measurements, "\n")

print("first column:", measurements[:, 0], "\n")
print("last row, first two columns:", measurements[-1,0:2])

1.1.3 d) Plot with error bars

Now we want to plot the measurement data (from the text file) with error bars together with the
prediction from theory. In many cases there is a non-negligible uncertainty also on the theoretical

2

prediction. One way of visualizing this is to plot an error band, which in practice can be done by
shading the area between two curves.
In this example, use 0y = 0.4 as the uncertainty of g.

There are examples of plots with error bars in the gallery linked above. For more detailed
options look at the reference here:
https:/ /matplotlib.org/api/_as_gen/matplotlib.pyplot.errorbar.html

In [1: # create additional dataset for the uncertainty band
use 0.4 m/s"2 as symmetric uncertainty on g
data_y_m = # T0D0: g warted down by the uncertainty
data_y_p = # T0D0: g wvarted up by the uncertainty

plot uncertainty band of theory prediction
TODO: plot felled area between the two curves created
above, hint: use plt.fell_between

plot mean value on top
TODO: add curve for mominal value of g in a different
color than the uncertainty band

TODO: label the azes

plot measurement with errors

TODO: plot measurements loaded from text file on top of

the theory curve with circular markers, no line between
them and also include errorbars! hint: plt.errorbar

legend

TODO: create a legend, hint(1): you can give a label to the

wndividual plots with e.g. label='theory' in the creation
of the plots above

hint(2): use numpoints=1 as argument for plt.legend to
have only 1 point of your measurements in the legend

optional: set azis limits

TODO: set azes limits to [0, 2.0] for z and [0, 0.8] for y-azis

optional: grid lines
TODO: display gred lines

save the figure to a pdf file
TODO: save the plot as "exercise-1-plot.pdf"

make the plot appear
TODO: show the plot <n the nmotebook

1.1.4 e) Histograms

A qualitative way to check compatibility of the measurement points with theory is to make a
histogram of the pulls (pulls are defined below in the code). Create the histogram of pulls and
overlay the expected pull distribution, which is Gaussian.

Instead of putting the formula for the Gaussian yourself, you can use scipy.stats.norm.pdf,
see here: https://docs.scipy.org/doc/scipy/reference/generated /scipy.stats.norm.html

In [1:

import scipy.stats

as approxzimation we tgnore the errors on the measured
hetght since they are relatively small!

heights = measurements[:, 0]

times = measurements[:, 1]

time_errors = measurements[:, 3]
predictions = Falltime(heights, true_g)

compute pulls
pulls = (times - predictions)/time_errors

htstogram of pulls

TODO: create mormalized histogram (meaning sum of all bin
contents equals 1) with 10 bins

hint: use histtype='stepfilled'

untt gausstan

x = # TODO: 50 points between -3.0 and 3.0

y = # T0ODO: untt gausstan, hint: scipy.stats.norm.pdf
plt.plot(x, y, '--', color='r', linewidth=3.0)

always label the azes, also for histograms
TODO: labels

annotation

+*

TODO: create a annotation with text 'unit gaussian' pointing
to the curve plotted above. hint: plt.annotate

save the figure to a pdf file
TODO: save as 'exercise-1-histogram.pdf'’

TODO: show im motebook

1.1.5 f) (optional) Creating a text file of toy measurements

In [9]:

create toy experiments instead of real measurements here

TODO: create a text file 2n the same format as the

4

'measurement.txt’' with 1000 random toy experiments,
assuming the same uncertainties as above

2 2. Error propagation with Python

We consider a LC circuit with resonance frequency wy = \/%
C =150+ 8pF
L=1£01mH

What is the resonance frequency and its uncertainty?

2.1 a) Calculation by hand

The mean value is computed to:

wo =

Since the uncertainties for both quantities come from independent electronic components, they
can safely be assumed as uncorrelated and one can compute the uncertainty of wy to

Owy =

2.2 b) Installation of "uncertainties” package

There are packages, which make handling of uncertainties very easy, e.g. the package simply
called "uncertainties". It is not included in standard packages of Anaconda and therefore has to
be installed with:

conda install -c conda-forge uncertainties

This can take several minutes, since anaconda has to resolve a lot of dependencies.

2.3 ¢) Use of "uncertainites’ package

Look at the example on the official website on how to use the library:
https:/ /pythonhosted.org/uncertainties /

Define L and C as ufloats and compute the resonance frequency and print the result.
How can one obtain the central value and the uncertainty separately from the ufloat object?

In [1]: from uncertainties import ufloat
from uncertainties.umath import *

TODO:

2.4 d) (optional) write your own uncertainty package

We can also try to write our own class for propagating uncertainties. Look at the myufloat class
below and add the missing pieces marked with TODO:. Then test your myufloat class with the
LC circuit example from above. It should lead to the same result (up to floating point rounding
errors).

Addition and the square root already have been implemented, complete the minimal example
by adding subtraction, multiplication and division.

In [35]: class myufloat:
def __init__(self, n, s=0.0):
self.n = float(n)
self.s = float(s)

def __add__(self, operand):
n = self.n + operand.n
s = np.sqrt(self.s * self.s + operand.s * operand.s)
return myufloat(n, s)

def __sub__(self, operand):
return # I0D0: tmplement subtraction

def __mul__(self, operand):
return # TODO: <implement multiplication

def __div__(self, operand):
return # TODO: implement division

for Pythond
def __truediv__(self, operand):
return self.__div__(operand)
used in np.sqrt
def sqrt(self):
return myufloat(np.sqrt(self.n), np.abs(0.5/np.sqrt(self.n)*self.s))

def __str__(self):
return "%1.2e £ %1.2e"%(self.n, self.s)

used for print function

def __repr__(self):
return "%1.2e £ %1.2e"%(self.n, self.s)

In[]:C

1]

myufloat(150e-12, 8e-12)
myufloat(le-3, 0.1le-3)

=
1]

print (myufloat(1.0)/np.sqrt(C*L))

So the results agree for this case! (If not check your implementation)
Lets check some other cases:
create two values with uncertainties:
a=10=£0.1
b=20%£0.05
and compute the result including uncertainty both with the uncertainties package (ufloat) and

your own implementation (using myufloat) of:
¢ = oth
a—b

are they the same? If not, why?

In []: al = ufloat(1.0, 0.1)
bl = ufloat(2.0, 0.05)
a2 = myufloat(1.0, 0.1)
b2 = myufloat(2.0, 0.05)
cl = (al+bl)/(al-bl)
c2 = (a2+b2)/(a2-b2)
print(cl)
print(c2)

What is happening here?

	1. Basic plotting with matplotlib
	a) Generating set of data
	b) Simple plots
	c) Load measurements from text file
	d) Plot with error bars
	e) Histograms
	f) (optional) Creating a text file of toy measurements

	2. Error propagation with Python
	a) Calculation by hand
	b) Installation of 'uncertainties' package
	c) Use of 'uncertainites' package
	d) (optional) write your own uncertainty package

