R S i P TR A Sy SN GE g3




Waiting for Particular Shared State(s)

How do we wait for a certain state to be reached?
Check all the tine in a loop?

Wastes resources.

Sleep for a while before checking again?

Might waste time by waiting too long

Solution:

let the threading library help you by using a condition variable



Condition variable

Blocks a thread until some condition might be satisfied

Always used with a mutex to ensure the condition sees only non-
broken invariants

Always enter it with a locked lock

Always call in a loop that checks the condition at the end, to see
whether the notification condition is still valid (not needed for
the versions that take a predicate)

Two types in C++11:
condition_variable: optimized version, needs to be used with unique_lock<mutex>

condition_variable_any: can be used with any lock



std::condition variable any

class condition_variable_any // noncopyable but movable

{

void notify_one();
void notify_all();

template<class Lock>

void wait(Locka Ik): The non-predicate wait

functions must be called in a

template<class Lock, class Pred> loop that checks the condition
void wait(Lock& Ik, Pred p);

template <class Lock, class Clock, class Duration>

cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

template <class Lock, class Clock, class Dur, class Pred>

cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Dur >& abs_time, Pred pred);

template <class Lock, class Rep, class Period>

cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

template <class Lock, class Rep, class Period, class Pred>

cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Pred pred);

J&

enum class cv_status { no_timeout, timeout };



Condition Example: Message Queue

bounded_msg_queue q;

int main()
{
void sender() std::thread t1(sender);
{ std::thread t2(receiver);
for (intn =0; n < 100; ++n) t1.join();
t2.join();
g.send(n); }

g.send(-1); // end sentinel

}

void receiver()

¢ , If queue is full when sending,
for (intn=0;n !=-1;) :
{ must block until no longer full
n = g.receive();
std::cout << n << std::endl; Ifqueue ic empty when
} ; receiving, must block until no

longer empty



Condition Example: Message Queue

template <unsigned size, class T>

struct bounded_msg_queue T receive():;
{ private:
bounded_msg_queue() int begin, end, buffered;

std::condition_variable not_full, not_empty;

: begin(), end(), buffered() {} std::mutex broker:

T buf[size];
void send(T m) 3
{
std::unique_lock<std::mutex> Ik(broker);
not_full.wait(lk,[&] () { return buffered < size;}); Lock the mutex before checking the
buflend] = m; predicate

end = (end + 1) % size; Keep checking until true, in case of

++buffered; spurious wakeups, shared conditions

t_empty.notif ; - it]
not_empty.notify_one() notify_one wakes a waiting thread

look at example codes for receive



A barrier

Synchronization between threads

avoid it whenever possible since it serializes and slows down the code
(Amdahl’s law)!

is sometimes unavoidable: wait for all threads to finish between update
steps in a Monte Carlo simulation or integration of a PDE

No C++ intrinsic, but we can write a barrier class

class barrier void wait()
{ {
private: std::unique_lock<std::mutex> lock(m_mutex);
mutable std::mutex m_mutex; unsigned int gen = m_generation;
std::condition_variable m_cond;
unsigned int const m_total; // decrease the count
unsigned int m_count; if (=—m_count==0) {
unsigned int m_generation; // 1if done reset to new generation of wait
// and wake up all threads
public: m_count = m_total;
barrier(unsigned int count) m_generation++;
: m_total(count) m_cond.notify_all();
, m_count(count) +
, m_generation(0) else
{ while (gen == m_generation)
assert(count !'= 0); m_cond.wait(lock);
¥ I



std::call once

“Once routines”
Executed once, no matter how many invocations

No invocation will complete until the one execution finishes

Typical use: initialization of static and function-static data

Protocol:
Declare a global (namespace scope) once flag for each once routine

Invoke the once routine indirectly by passing its address and once flag to call once.

std: :once_flag printonce_flag;
void printonce() { std::cout << "This should be printed only once\n"; }

int main()
{
std::vector<std::thread> threads;
for (int n = 0; n < 10; ++n)
threads.push_back(
std::thread([&] (){std::call_once(printonce_flag,printonce);}));

for (std::thread& t : threads)
t.join();

return 0;



Thread-local data

C++11 has a new keyword thread local, a static variable for each thread

int times_called()

{

thread local int count=0;
return ++count;

}

Unfortunately not yet implemented by any compiler!!!

C++03 needs helps from Boost

boost::thread_specific_ptr<int> count;
int foo() // the function running in a thread

{

count.reset(new int(0)); // will be cleaned up at thread exit

.

int times_called()

{

return ++*count;



