
HPCSE II

GPU programming and CUDA 



What is a GPU?

Specialized for compute-intensive, highly-parallel computation, 
i.e. graphic output 
Evolution pushed by gaming industry 
CPU: large die area for control and caches 
GPU: large die area for data processing
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picture source: Nvidia



GPGPUs

Graphics Processing Unit (GPU): Hardware designed for 
output to display 

General Purpose computing on GPUs (GPGPU) used for 
non-graphics tasks 

physics simulation 
signal processing 
computational geometry 
computer vision 
computational biology 
computational finance 
meteorology



Why GPUs?

GPU evolved into a very flexible and powerful processor 
It’s programmable using high-level languages 
It offers more GFLOP/s and more GB/s than CPUs

picture source: http://hemprasad.wordpress.com/category/computing-technology/parallel/gpu-cuda/



Low Latency or High Throughput?

CPU 
Optimized for low-latency access to 
cached data sets 
Control logic for out-of-order and 
speculative execution 

GPU 
Optimized for data-parallel, 
throughput computation 
Tolerant of memory latency 



Low Latency or High Throughput?

CPU minimized latency within each thread 
GPU hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1 
W2 

W3 
W4 
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Kepler GK110 Block Diagram

7.1B Transistors 
> 1 TFLOP FP64 
1.5 MB L2 Cache 
15 SMX units

contains 15 streaming multiprocessors (SMX units)



GK110 Streaming Multiprocessor (SMX)

Contains many specialized cores 

Up to 2048 threads concurrently  

192 fp32 ops/clock 
64 fp64 ops/clock 
160 int32 ops/clock 

48KB shared mem 
64K 32-bit registers



GPU Parallelism
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Simple Processing Flow

1. Copy input data from CPU 
memory/NIC to GPU memory

PCI Bus



Simple Processing Flow
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PCI Bus



Simple Processing Flow

1. Copy input data from CPU 
memory/NIC to GPU memory 

2. Load GPU program and execute 
3. Copy results from GPU memory 

to CPU memory/NIC

PCI Bus



3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in” 
Acceleration

Programming 
Languages

OpenACC  
Directives

Maximum 
Flexibility

Easily Accelerate 
Applications 

Similar to OpenMP 



GPU accelerated libraries

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal 
Image Processing

GPU Accelerated 
Linear Algebra

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT

C++ STL Features 
for CUDA

Sparse Linear 
Algebra

Building-block 
Algorithms for CUDA

IMSL Library



CUDA Math Libraries

cuFFT – Fast Fourier Transforms Library 
cuBLAS – Complete BLAS Library 
cuSPARSE – Sparse Matrix Library 
cuRAND – Random Number Generation (RNG) Library  
NPP – Performance Primitives for Image & Video Processing 
Thrust – Templated C++ Parallel Algorithms & Data Structures 
math.h - C99 floating-point Library 

Included in the free CUDA Toolkit 



Programming for GPUs

Early days:  
OpenGL (graphics API) 

Now 
CUDA: Nvidia proprietary API, works only on Nvidia GPUs 
OpenCL: open standard for heterogeneous computing 
OpenACC: open standard based on compiler directives



CUDA Example: Code

code 
compilation 
run on GPU node

main.cu device code (runs on CPU)

host code (runs on CPU)



Nvidia CUDA

C extension to write GPU code 
Only supported by Nvidia GPUs 
Code compilation (nvcc) and linking:

device.cu

host.cpp

program

device.o

host.o

nvcc

gcc

gcc host.cpp

device.cu
__global__ void kernel() 
{ 

// do something 
}

int main() 
{ 
}



Hello World



Hello World!

int main(void) { 
 printf("Hello World!\n");       
 return 0;       
} 

Standard C that runs on the host 

NVIDIA compiler (nvcc) can be used to compile programs with no 
device code



Hello World! with Device Code

__global__ void mykernel(void) { } 

int main(void) { 
 mykernel<<<1,1>>>();       
 printf("Hello World!\n");       
 return 0;       
} 

Two new syntactic elements…



Hello World! with Device Code

mykernel<<<gridDim, blockDim>>>(…); 

Triple angle brackets mark a call from host code to device code, 
also called a “kernel launch” 

gridDim is the number of instances of the kernel 

blockDim is the number of threads within each instance 

gridDim and blockDim may be 2D or 3D vectors (type vec3) to 
simplify application programs



Hello World! with Device Code

__global__ void mykernel(void) {  } 

CUDA C/C++ keyword __global__ indicates a function that 
Runs on the device 
Is called from host code 

nvcc separates source code into host and device components 
Device functions (e.g. mykernel()) processed by NVIDIA compiler 
Host functions (e.g. main()) processed by standard host compiler



GPU Kernel qualifiers

Function qualifiers: 
__global__: called from CPU, runs on GPU 
__device__: called from GPU, runs on GPU 
__host__: called from CPU, runs on CPU 
__host__ and __device__ can be combined



Parallel Programming in CUDA C/C++

We need a more interesting example… 
GPU computing is about massive parallelism! 
We’ll start by adding two integers and build up to vector addition

a b c



Addition on the Device

A simple kernel to add two integers 

__global__ void add(int *a, int *b, int *c)  
{ 
  *c = *a + *b;       
} 

As before __global__ is a CUDA C/C++ keyword meaning 
add() will execute on the device 
add() will be called from the host



Addition on the Device

Note that we use pointers for the variables 

 __global__ void add(int *a, int *b, int *c) {      
  *c = *a + *b;       
 }    

add() runs on the device, so a, b and c must point to device 
memory 

We need to allocate memory on the GPU



Memory Management

Host and device memory are separate entities 

Device pointers point to GPU memory 
May be passed to/from host code 
May not be dereferenced in host code 

Host pointers point to CPU memory 
May be passed to/from device code 
May not be dereferenced in device code 

Simple CUDA API for handling device memory 
cudaMalloc(), cudaFree(), cudaMemcpy() 
Similar to the C equivalents malloc(), free(), memcpy()



Data Transfer

      cudaMemcpy(void* dst, void* src, size_t num_bytes,  
                 enum cudaMemcpyKind direction) 

direction can be either of 
cudaMemcpyHostToDevice 
cudaMemcpyDeviceToHost 
cudaMemcpyDeviceToDevice



Addition on the Device:  main()

int main(void) { 
  // host copies of a, b, c 
  int a, b, c;  

  // device copies of a, b, c   
  
  int *d_a, *d_b, *d_c;   
  
  int size = sizeof(int); 
        
  // Allocate space for device copies      
   cudaMalloc((void **)&d_a, size); 
   cudaMalloc((void **)&d_b, size); 
   cudaMalloc((void **)&d_c, size); 

   // Setup input values 
   a = 2; 
   b = 7; 

   // Copy inputs to device 
   cudaMemcpy(d_a, &a, size,   
        cudaMemcpyHostToDevice); 
  cudaMemcpy(d_b, &b, size, 
        cudaMemcpyHostToDevice); 

        
  // Launch add() kernel on GPU 
  add<<<1,1>>>(d_a, d_b, d_c); 

  // Copy result back to host 
  cudaMemcpy(&c, d_c, size,  
        cudaMemcpyDeviceToHost); 

  // Cleanup 
  cudaFree(d_a); 
  cudaFree(d_b); 
  cudaFree(d_c); 
        
  return 0; 
}



Going parallel



Moving to Parallel

GPU computing is about massive parallelism 
How do we run code in parallel on the device? 

  add<<< 1, 1 >>>();      

  add<<< N, 1 >>>();      

Instead of executing add() once, execute N times in parallel



Vector Addition on the Device

With add() running in parallel we can do vector addition 

Each parallel invocation of add() is referred to as a block 
The set of blocks is referred to as a grid 
Each invocation can refer to its block index using blockIdx.x 

 __global__ void add(int *a, int *b, int *c) {      
  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];       
 }    

By using blockIdx.x to index into the array, each block handles 
a different element of the array



Vector Addition on the Device

 __global__ void add(int *a, int *b, int *c) {      
  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];       
 }    

On the device, each block can execute in parallel:

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1];

c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];

Block 0 Block 1

Block 2 Block 3



Block Scheduling
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This decomposition preserves language expressivity by allowing threads to 
cooperate when solving each sub-problem, and at the same time enables automatic 
scalability. Indeed, each block of threads can be scheduled on any of the available 
multiprocessors within a GPU, in any order, concurrently or sequentially, so that a 
compiled CUDA program can execute on any number of multiprocessors as 
illustrated by Figure 1-4, and only the runtime system needs to know the physical 
multiprocessor count. 

This scalable programming model allows the CUDA architecture to span a wide 
market range by simply scaling the number of multiprocessors and memory 
partitions: from the high-performance enthusiast GeForce GPUs and professional 
Quadro and Tesla computing products to a variety of inexpensive, mainstream 
GeForce GPUs (see Appendix A for a list of all CUDA-enabled GPUs). 
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Special variables

•Some variables are predefined

•gridDim size (or dimensions) of grid of blocks
•blockIdx index (or 2D/3D indices) of block  
•blockDim size (or dimensions) of each block  
•threadIdx index (or 2D/3D indices) of thread



Vector Addition on the Device: main()

#define N 512 
int main(void) { 
 int *a, *b, *c;  // host copies of a, b, c      
 int *d_a, *d_b, *d_c;  // device copies of a, b, c      
 int size = N * sizeof(int);      
       
 // Alloc space for device copies of a, b, c      
 cudaMalloc((void **)&d_a, size);      
 cudaMalloc((void **)&d_b, size);      
 cudaMalloc((void **)&d_c, size);      

// Alloc space for host copies of a, b, c and setup input values 
 a = (int *)malloc(size); random_ints(a, N);      
 b = (int *)malloc(size); random_ints(b, N);      
 c = (int *)malloc(size);     



Vector Addition on the Device: main()

  // Copy inputs to device       
  cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);       
  cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);       

  // Launch add() kernel on GPU with N blocks       
  add<<<N,1>>>(d_a, d_b, d_c);       

  // Copy result back to host       
  cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);       

  // Cleanup       
  free(a); free(b); free(c);       
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);       
  return 0;       
 }  



CUDA Threads

Terminology: a block can be split into parallel threads 

Let’s change add() to use parallel threads instead of parallel 
blocks

 __global__ void add(int *a, int *b, int *c) {      
  c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];       
 }  

We use threadIdx.x instead of blockIdx.x 

Need to make one change in main()…



One change in main

  // Copy inputs to device       
  cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);       
  cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);       

  // Launch add() kernel on GPU with N blocks       
  add<<<N,1>>>(d_a, d_b, d_c);       

  // Copy result back to host       
  cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);       

  // Cleanup       
  free(a); free(b); free(c);       
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);       
  return 0;       
 }  



One change in main

  // Copy inputs to device       
  cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);       
  cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);       

  // Launch add() kernel on GPU with N threads       
  add<<<1,N>>>(d_a, d_b, d_c);       

  // Copy result back to host       
  cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);       

  // Cleanup       
  free(a); free(b); free(c);       
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);       
  return 0;       
 }  



Vector addition

add <<< B,T>>> ( )

add <<<N,1>>> ( ) 

B=N=16 
T=1

add <<<1,N>>> ( ) 

T=N=16 
B=1 

B: Number of Blocks 
T:  Number of threads/ Block



Combining Blocks and Threads

We’ve seen parallel vector addition using: 
Several blocks with one thread each 
One block with several threads 

Let’s adapt vector addition to use both blocks and threads 

Why? We’ll come to that… 

First let’s discuss data indexing…



Indexing with Blocks and Threads

No longer as simple as using blockIdx.x and threadIdx.x 
Consider indexing an array with one element per thread (8 threads/block) 

With M threads per block, a unique index for each thread is given by: 
 
 int index = blockIdx.x * M + threadIdx.x;

0 1

7

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3



Using Blocks and Threads

Use the built-in variable blockDim.x for threads per block 
 int index = blockIdx.x * blockDim.x + threadIdx.x;      

Combined version of add() to use parallel threads and parallel 
blocks

What changes need to be made in main()?

 __global__ void add(int *a, int *b, int *c) {      
  int index = blockIdx.x * blockDim.x + threadIdx.x       

 c[index] = a[index] + b[index]; 
 }  



Addition with Blocks and Threads: main()

 #define N (2048*2048)       
 #define THREADS_PER_BLOCK 512       
 int main(void) {       
  int *a, *b, *c;   // host copies of a, b, c        
  int *d_a, *d_b, *d_c;  // device copies of a, b, c        
  int size = N * sizeof(int);        
       
  // Alloc space for device copies of a, b, c        
  cudaMalloc((void **)&d_a, size);        
  cudaMalloc((void **)&d_b, size);        
  cudaMalloc((void **)&d_c, size);        

  // Alloc space for host copies of a, b, c and setup input values        
  a = (int *)malloc(size); random_ints(a, N);        
  b = (int *)malloc(size); random_ints(b, N);        
  c = (int *)malloc(size);       



Addition with Blocks and Threads: main()

  // Copy inputs to device        
  cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);        
  cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);        

  // Launch add() kernel on GPU        
  add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);        

  // Copy result back to host        
  cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);        

  // Cleanup        
  free(a); free(b); free(c);        
  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);        
  return 0;        
 }  



Handling Arbitrary Vector Sizes

Typical problems are not even multiples of blockDim.x 

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n)  
{ 
  int index = blockIdx.x * blockDim.x + threadIdx.x 
  if (index < n) 

 c[index] = a[index] + b[index]; 
} 

}



Why Bother with Threads?

Threads seem unnecessary 
They add a level of complexity 
What do we gain? 

Unlike parallel blocks, threads have mechanisms to efficiently: 
Communicate 
Synchronize 

To look closer, we need a new example…



Using stencils



in

out

1D Stencil

Consider applying a 1D stencil to a 1D array of elements 
Each output element is the sum of input elements within a radius 
If radius is 3, then each output element is the sum of 7 input elements:



Shared memory within a block

Each thread processes one output element 
blockDim.x elements per block 

Input elements are read several times 
With radius 3, each input element is read seven times 

Within a block, threads can share data via shared memory 
Extremely fast on-chip memory, but very small 
Like a user-managed cache 
Declare using __shared__, allocated per block 
Data is not visible to threads in other blocks

radius radius



Implementing With Shared Memory

Cache data in shared memory 
Read (blockDim.x + 2 * radius) input elements from global memory 
to shared memory 
Compute blockDim.x output elements 
Write blockDim.x output elements to global memory 

 Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

in

out



Stencil Kernel (1 of 2)

__global__ void stencil_1d(int *in, int *out) { 
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
    int lindex = threadIdx.x + RADIUS; 

    // Read input elements into shared memory 
    temp[lindex] = in[gindex]; 
    if (threadIdx.x < RADIUS) { 
        temp[lindex - RADIUS] =  
          in[gindex - RADIUS]; 
        temp[lindex + BLOCK_SIZE] =  
          in[gindex + BLOCK_SIZE]; 
    } 

    // Apply the stencil 
    int result = 0; 
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
        result += temp[lindex + offset]; 

    // Store the result 
    out[gindex] = result; 
}

Race condition!



__syncthreads()

void __syncthreads(); 

Synchronizes all threads within a block 
All threads must reach the barrier 

In conditional code (if statements),  
 the condition must be uniform across the block



Stencil Kernel

__global__ void stencil_1d(int *in, int *out) { 
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
    int lindex = threadIdx.x + RADIUS; 

    // Read input elements into shared memory 
    temp[lindex] = in[gindex]; 
    if (threadIdx.x < RADIUS) { 
        temp[lindex - RADIUS] =  
          in[gindex - RADIUS]; 
        temp[lindex + BLOCK_SIZE] =  
          in[gindex + BLOCK_SIZE]; 
    } 

    // Apply the stencil 
    int result = 0; 
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
        result += temp[lindex + offset]; 

    // Store the result 
    out[gindex] = result; 
}

Race condition!



Stencil Kernel

__global__ void stencil_1d(int *in, int *out) { 
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
    int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
    int lindex = threadIdx.x + RADIUS; 

    // Read input elements into shared memory 
    temp[lindex] = in[gindex]; 
    if (threadIdx.x < RADIUS) { 
        temp[lindex - RADIUS] =  
          in[gindex - RADIUS]; 
        temp[lindex + BLOCK_SIZE] =  
          in[gindex + BLOCK_SIZE]; 
    } 

     // Synchronize (ensure all the data is available) 
     __syncthreads(); 

    // Apply the stencil 
    int result = 0; 
    for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
        result += temp[lindex + offset]; 

    // Store the result 
    out[gindex] = result; 
}



Review

Launching parallel threads 
Launch N blocks with M threads per block with kernel<<<N,M>>>(…); 
Use blockIdx.x to access block index within grid 
Use threadIdx.x to access thread index within block 

Assign elements to threads: 
 int index = blockIdx.x * blockDim.x + threadIdx.x;     

Use __shared__ to declare a variable/array in shared memory 
Data is shared between threads in a block 
Not visible to threads in other blocks 

Use __syncthreads() as a barrier to avoid race conditions



Managing the Device



Coordinating Host & Device

Kernel launches are asynchronous 
CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete. copy 
begins when all preceding CUDA calls have 
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have 
completed



Reporting Errors

All CUDA API calls return an error code (cudaError_t) 

Get the error code for the last error: 

 cudaError_t cudaGetLastError()        

Get a string to describe the error: 

char *cudaGetErrorString(cudaError_t) 
if(cudaGetLastError() != cudaSuccess) 
    std::cerr << cudaGetErrorString(cudaGetLastError());



Device Management

Application can query and select GPUs 
 cudaGetDeviceCount(int *count)          

 cudaSetDevice(int device)         
 cudaGetDevice(int *device)         
 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)         

Multiple host threads can share a device 

A single host thread can manage multiple devices 
 cudaSetDevice(i) to select current device          

 cudaMemcpy(…) for peer-to-peer copies       



Multiplying matrices



Parallelize

Kernel

GPU GEMM

for (int i=0; i<N; i++) 
   for (int j=0; j<N; j++)  
      for (int k=0; k<N; k++)  
         c[i*N+j] += a[i*N+k] * b[k*N+j];

Matrix-Matrix Multiplication

x =A B C



A matrix multiplication kernel

Let us use a 2D grid of blocks and threads 

__global__ void matrix(float * a, float * b, float * c, int N) 
{ 
 int ix = threadIdx.x + blockIdx.x*blockDim.x;  
 int iy = threadIdx.y + blockIdx.y*blockDim.y;  
   
 if (ix<N && iy<N)  
 {  
  c[ix*N + iy] = 0;   
     
  for (int k=0; k<N; k++)   
   c[ix*N + iy] += a[ix*N + k] * b[k*N + iy];    
 }  
}

can you optimize it using shared memory?



A matrix multiplication kernel

And call it by creating a 2D grid 

 dim3 blocks(N/4,N/4);  
 dim3 threads(4,4);   
 matrix<<< blocks, threads >>>(dev_a, dev_b, dev_c,N); 

what number of threads is ideal on your GPU?


