Dense linear algebra

Basic Linear Algebra Subprograms (BLAS)

BLAS is the de-facto standard API for any dense vector and matrix
operations, first published in 1979

A reference implementation is available on netlib.org:

http://www.netlib.org/blas/ for the original Fortran version

http://www.netlib.org/clapack/ for an f2c translated C version

BLAS is the building block of many other libraries and programs. These
libraries rely on an optimized BLAS library for optimal performance

LAPACK and LINPACK
NAG (commercial)

IMSL (commercial)
Matlab

Python (numpy and scipy)

Optimized BLAS implementations

Don’t get the reference implementation but an optimized one.

ATLAS (free) http://www.netlib.org/atlas/, self-tuned BLAS, included with many
Linux distributions

GOTO BLAS http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
hand-optimized by Kazushige Goto before he was hired by Microsoft

Optimized versions exist from many hardware vendors:

Apple: included with MacOS X in the Accelerate framework (-framework Accelerate)

IBM: part of the ESSL (Engineering and Scientific Subroutine Library)
Cray: part of libsci library

NEC: part of the PDLIB/SX library

And from CPU manufacturers

Intel MKL library http://software.intel.com/en-us/intel-mkl/, available on IDES
AMD ACML library http://developeramd.com/tools/cpu/acml/pages/default.aspx

Homework: get the fastest BLAS for all your computers

BLAS levels 1, 2 and 3

The BLAS functions are split into three groups

BLAS level 1

scalar and vector operations
scale as O(1) or O(N)

BLAS level 2

matrix-vector operations
scale as O(N?)

BLAS level 3

matrix-matrix operations
scale worse than O(N?), often O(N3)

Calling BLAS functions

BLAS is a Fortran library. It can be called from any language but you have to
learn some facts about Fortran and calling Fortran functions.

Function names and arguments:

The function names are all lowercase independent of what is written in (case-
insensitive) Fortran code

Function names on most machines add a trailing compared to C/C++ functions.

Parameter types are not mangled into the function name:
use extern “C” in the function declaration

all arguments are passed by address (or equivalently reference in C++). The best
convention is to

pass scalar arguments by reference
pass C-style arrays as pointers

Be careful about how integer types relate. This can depend on compiler options.
Typically a Fortran integer is a C/C++ int, but it can be a long.

Example: DDOT

The Fortran DDOT function

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(x*),DY(x)

DDOT forms the dot product of two vectors.
uses unrolled loops for increments equal to one.

* X ¥ %

has the following C++ prototype

extern “C” double ddot_(int& n, double *x, int& incx, double xy, int& incy);

and can easily be called.

int main()

{
std::vector<double> x(10, 1.); // intialize a vector with ten 1s
std::vector<double> y(10, 2.); // intialize a vector with ten 2s

// calculate the inner product

int n=x.size();

int one = 1;

double d = ddot_(n,&x[0],0ne,&y[0],0ne);

std:: cout << d << "\n"; // should be 20
}

Don't forget to link against the BLAS library

Linking against Fortran libraries

The C++ compiler automatically links against the C++ and C runtime
libraries. Use the --verbose option with g++ to see what it does.

The Fortran compiler automatically links against the Fortran runtime
libraries. Use a --verbose option or similar with your Fortran compiler.

Fortran libraries might need the Fortran runtime libraries but your C++
compiler does not know them. Hence we need to:

find the Fortran runtime libraries

add them to the link command of your C/C++ code

Instructions that work on many common machines:
MacOS X: -framework Accelerate

Linux: -lgfortran

Fortran indices by default start at 1, while C/C++ starts at o
Fortran stores arrays in column-major order,

Array storage

while C/C++ uses row-major order

column-major (Fortran)

row-major (C/C++)

O EAI0 L 15 E20

b o Rl i o

e i b il o)

318 |13[18]23

v|i 419 74(19 24
Consequence:

matrices are typically transposed

>
O A2 VA
S FOF Ly e e
1o azP
15 (16117 [18 | 19
P10 e 4 b et NS

Ali][j] in C/C++is A(j+1,i+1) in Fortran

Another look at DDOT: increments

The DDOT dot product function takes two pointers and two increments

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION DX(x*),DY (%)

DDOT forms the dot product of two vectors.
uses unrolled loops for increments equal to one.

* X ¥ ¥

In arrays the increments is typically 1

The increments exist as arguments to be able to treat columns and rows in
matrices as vectors

o |= 1o k15120

Lelnli e DX = start of storage + 2
2|7 112]17]22 INCX = 5

318 |13(18](23

419 |14|19|24

BLAS naming conventions

BLAS functions always have one (or two) prefix indicating the type of the
arguments and optional return value

I int
float
double

std::complex<float>

N O] Ol wv

std::complex<double>

Example: dot product

generic name DOt
float SDOT

double DDOT
std::complex<float> CDOT
std::complex<double> ZDOT

BLAS-1: vector operations

Reduction operations:
s <+ Xy inner product __DOT_
s <« max{|x|} pivot search I|_ AMAX
s <+ |1x||2 norm of a vector _NRM?2
s — X sum of abs _ASUM

Vector to vector transformations:
y X copy x into y _COPY
X y swap _SWAP
y - X scale x SCAL
y < a-x+y saxpy _AXPY

Generate and apply Givens rotations:

Compute rotation:

(C S> S r c,s>r=+va*+ b2 _ROTG

—s C 0]
Apply rotation:

G e (S]] o

(o

BLAS matrix types and naming conventions

BLAS 2 and BLAS 3 support various matrix types, given as two letters after the prefix.

GE general dense matrix

GB banded matrix, stored packed

S symmetric, stored like a general dense matrix

SP symmetric, stored packed

SB symmetric banded, stored packed

HE hermitian, stored like a general dense matrix

HP hermitian, stored packed

HB hermitian banded, stored packed

TR upper or lower triangular, stored like a general dense matrix
R upper or lower triangular, stored packed
B upper or lower triangular band matrix, stored packed

Example: DGEMV is matrix-vector multiplication for a general matrix of doubles

Packed storage formats

Recall for banded matrices:

Dense storage of matrix

Packed storage as a packed matrix

a;n a12
az a2 a3
a3z1 4azz 4agzg
G4y Q43
as3

34

44 Qa4

a54 455

* 412
a1l a2
a3z a3z
a3z a42

a3
a33
Q43
a5y

34 G45

44 455

(15:%) *
* #*

For triangular matrices, depending on the UPLO parameter:

UPLO Dense storage of matrix Packed storage as array
an a2 413 a4
a2 a3 a4
U (1] G12 G (13 (3 (33 G14 24 G34 Q44
(133 (134 P i e " £
4
a1
L a1 a2 (11 G21 A3 441 G2 Q33 A4y Gz3 Q43 (44
a3z 4azz dgy
41 Q42 Q43 G44

Symmetric and hermitian packed formats store only one triangle

Dense matrix storage

It'’s a bit more complicated than you thought
Fortran-77 and earlier did not allow dynamical allocation

One might want to operate just on a submatrix

Matrix operations accept three size arguments:
matrix size: rows and columns of the matrix

leading dimension: increment between columns

o]s5 |10]15]20

1|6 |1n|16]|21 number of rows: 3

2| 71272 number of columns: 3
leading dimension: 5

318]13]18(23

419 14]19 |24

BLAS-2: matrix-vector operations

Matrix times Vector

X

+— aAx+ By

— Ax

general
general band
general hermitian
hermitian banded
hermitian packed
general symmetric
symmetric banded
symmetric packed
triangular
triangular banded
triangular packed

Rank one and rank two updates:

“GEMV A axy! + A general _GER_
-GBMV A axx* + A general hermitian _HER
-HEMV hermitian packed _HPR
-HBMV A + alxy*+yx*)+A gen. Hermitian _HER2
-HPMV hermitian packed _HPR2
SYMV A axx” + A general symmetric _SYR
-SBMV symmetric packed _SPR
-SPMV A +— oalxy" +yx")+A gen. symmetric _SYR2
-TRMV symmetric packed _SPR2
_TBMV

_TPMV

Triangular solve:

A lx

triangular
triangular banded
triangular packed

_TRSV
_TBSV
_TPSV

BLAS-3 matrix-matrix operations

Matrix product:

C <+ aA- B+ BC general _GEMM
symmetric _SYMM
hermitian _HEMM

B <+ aA- B triangular _TRMM

Rank k update:

C « aA- Al +38C SYRK

C « aA- AP+ 5C _HERK

C «+ oalA-B"+B-A")+p5C SYRK2

C + aofA-BF+B-AM)+3C _HERK?2

Triangular solve for multiple r.h.s.:
B <+ aA~l. B triangular _TRSM

Transpose arguments

_GEMV, GBMV, T MV,and T SV take arguments indicating whether the
matrix should be transposed

real matrix complex matrix
TRANS 5D Cz
‘N’ or ‘n’ no transpose no transpose
T or‘t transposed transposed
‘€ or‘c’ transposed transposeq and complex
conjugated

Similarly some of the BLAS-3 calls take one or two transpose arguments:
_GEMM, TRMM
SYRK, HERK, SY2RK,
_TRSM

Optimizing linear algebra operations

BLAS-1is best optimized by SIMD vectorization

we will optimize at DOT and SCAL and look at | AMAX

BLAS-2 and BLAS-3 build on top of BLAS-1

reuse all optimizations done for BLAS-1
potential for further optimization by multithreading

we will optimize GEMV
you will optimize GEMM

Other libraries, like LAPACK, are built on top of BLAS

reuse all optimizations done for BLAS-1, 2 and 3
further parallelization may be possible

we will optimize Gaussian elimination (GEFA)

Parallelizing GEMYV

We have two loops in GEMV over i and |

yi= 2 A,
j

Four versions:

loop order can be i,j or j,i

either the inner or the outer loop can be parallelized
Two more versions:

split the matrix into blocks and use a single-threaded BLAS GEMV for
each block

hope for a parallel BLAS and just call GEMV

Case 1:1,J, parallelizing outer loop

Parallelize the outer loop over i

#pragma omp parallel for
for (int i=0; i<M; i++) {
yl[i]l = 0.;
for (int j=0; j<N; j++)
ylil += A(i,j) * x[jl;

}

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 2:1,J, parallelizing inner loop

Parallelize the inner loop over |

for (int i=0; i<M; i++) {
double tmp = 0.
#pragma omp parallel for reduction(+ : tmp)
for (int j=0; j<N; j++)
tmp += A(i,j) * x[j];
y[i] = tmp;

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 3:].1, parallelizing outer loop

std:: fill(y.begin(),y.end(),0.);
double z[M];
#pragma omp parallel private(z)

Parallelize the outer loop over |

followed by a vector reduction

b

std::fill(z,z+M,0.);

#pragma omp for

for (int j=0; j<N; j++)
for (int i=0; i<M; i++)

z[i] += A(4,j) * x[jl;

#pragma omp critical

for (int i=0; i<M; i++)
y[il += z[il;

Colors indicate splitting of
the matrix over threads for
2 the case of 4 threads

Case 4:},1, parallelizing inner loop

Parallelize the inner loop over i

for (int i=0; i<M; i++)
yl[i] = 0.;

for (int j=0; j<N; j++)
#pragma omp parallel for
for (int 1=0; i<M; i++)
y[i]l += A (i,j) * x[jl;

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 5: calling BLAS from every thread

double DONE
double DZERO
int ONE
int lda H
#pragma omp parallel
{

Inm
Z2RroRr

int p = omp_get_num_threads();
int ne = (M + p - 1)/p;
#pragma omp for
for (int i=0; i<p; i++) {
int nl1 = std::min(n@®, M-i%xn0);
dgemv_("N", nl1, n, DONE, A.data()+ixn@, lda, &x[0], ONE, DZERO, &y[i*n@], ONE);
+

¥

Colors indicate splitting of
the matrix over threads for
the case of 4 threads

What code is the fastest?

Give us your best guess. Which code is the fastest?

MacBookpro | MacBook pro =
Case 1 9.5 ms 9.4 ms
Case 2 70 Ms 67 ms
Case 3 1.67 ms 1.57 ms
Case 4 119 MSs 5-2 M5
Case 5 2.1ms
Case 6 1.58 ms

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

1. start with system of equations

2.swap largest coefficient of x to the first row
(pivot) and store the pivot

plver =752

3.divide the coefficient of x in other rows by
that of the first row. For each row multiply

the first row by that factor and subtract it (2_%3
from the row. Store the coefficients. 3
e

0 (—2+—3

X+

Xt

2x+y—z=38
= 3x—a Pz
2Ny 2E =3
= ey
2x+y—2z=38
=X Yy 27=5
—3x=—y+2z=~11

2 2
T (=l =8l
Ea G, 3

o) 2
o i A P e R e
y(3jz 3

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

1. start with system of equations

2. swap largest coefficient of x to the first row
(pivot) and store the pivot

plver =752

3.divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

2x+y—z=38
= 3x—a Pz
2Ny 2E =3
= ey
2x+y—z=38
=2X+y+27=7=3
—3x—y+2z=-11
1 [z
L
S s
3353

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

—3x—y+2z=—11
4.now continue with the next row Vel
s
Rl ol
gl e
5.swap largest coefficient of x to the current row —3x—y+2z=-11
(pivot) and store the pivot 5 48
_y+_Z:_
pivot = [2, 3] ire
Ll
e
6.divide the coefficient of x in other rows by
that pfthe first row. For each row multip.ly e sy aday
the first row by that factor and subtract it L
from the row. Store the coefficients. Tt

0 0
_% 0
.

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

—3x—y+2z=—11
4.now continue with the next row Vel
s
Rl ol
gl e
5.swap largest coefficient of x to the current row —3x—y+2z=-11
(pivot) and store the pivot e
e
pivot = [2, 3] i
el
e
6.divide the coefficient of x in other rows by
that of the first row. For each row multiply 2
the first row by that factor and subtract it ke 2 sl
from the row. Store the coefficients. §y+2Z: i
SEERL 3
0 0 1 1
s ey
% 0 5 5

.

7.finally solve the last equation and substitute backwards

Gaussian elimination / LU factorization

Now let us look at the coefficient matrices

2 =728
1. start with system of equations i) Xty—z
D =Xl e I
D 2x+y+2z=-3
2. swap largest coefficient of x to the first row e B i e
(pivot) and store the pivot S dx+y—z=8
plvoti=sla27] 2) =2X+y+27=7=3
3.divide the coefficient of x in other rows by e
that of the first row. For each row multiply Saige X—y+2z=
the first row by that factor and subtract it L el o
b o 1 1 y+=2z
from the row. Store the coefficients. ol B sld
Ul ddzal
0 3 3 3

Gaussian elimination / LU factorization

Now let us look at the coefficient matrices

—3x—y+2z=-11
4. now continue with the next row L Ve el %2

o 1 X 31373

o

Aisr 3 3
5.swap largest coefficient of x to the current —3x—y+2z=-11
row (pivot) and store the pivot B8 P T

_y+_Z:_
pinot = le 2 3% 0%% 3iaisizg

/7 1 e +lz—%
0)5) e

6.divide the coefficient of x in other rows by
that of the first row. For each row multiply

the first row by that factor and subtract it e ot s
from the row. Store the coefficients. Dr il Al
0 % ¥ e

0 0 0 o 1 1 1

7 5 S

% 0 5 5

(S

o 5

Gaussian elimination / LU factorization

Now let us look at the matrices

Pivot Coefficients Triangular

0 0 -3 -1 2
pIvOE =23] _%0 05/3%

7) 00 7

[

Gaussian elimination / LU factorization

Now let us look at the matrices

Expand the coefficient matrices to a lower triangular matrix L

Pivot Coefficients Triangular
giag -3 -1 2
- 5D
pivot = [2, 3] Il s 0D 0 % %
2/
el 06

Gaussian elimination / LU factorization

Now let us look at the matrices
Expand the coefficient matrices to a lower triangular matrix L

Put ones on the diagonal of L and correct for the permutations

Pivot Coefficients Triangular
L St
2 2
pivot = [2, 3] Feeeaz i D U= //
o]
el 0 6o/

Gaussian elimination / LU factorization

Now let us look at the matrices
Expand the coefficient matrices to a lower triangular matrix L

Put ones on the diagonal of L
Convert the pivot array into permutation matrices L

And we get an LU factorization

Pivot Coefficients Triangular
pIvOt =2 e dv]
Ol 20 HF 00 i s =
2 2
P—PIZP%—[I 0 0}[0 0 1} E=riggaad i v=| © % /
O ol DD e
el 0 6o/

gy ool a0 b0 el

= 2 5/ 2

A=[—3 i 2}=PLU={IOOHOOI} 2y 60 2
R e e P Rl 1
e 0 o

Coding a linpack-style LU factorization

void dgefa(hpcl2::matrix<double,hpcl2::column_major>& a,
std::vector<int> pivot)
{

assert(a.num_rows() == a.num_cols());

pivot.clear();

int one=1;

int n=a.num_rows();

int lda=a.leading_dimension();

for(int k=0; k < a.num_rows()-1; k++){
// 1. find the index of the largest element in column k
// starting at row k
int nk = n-k;
int 1 = idamax_(nk,&a(k,k),one) + k;
pivot.push_back(1l); // and save it
assert(a(l,k) ='0.0); // error if pivot is zero

// 2. swap rows 1l and k, starting at column k
dswap_(nk,&a(l,k),lda,&a(k,k),lda);

// 3. scale the column k below row k by the inverse

// negative pivot element, to store L in the lower part
double t = -1./a(k,k);

int nmkl = n-k-1;

dscal_(nmkl,t,&a(k+1,k),one);

0
N - k
-
k+1
pivot 1
n—1

0

// 4. add the scaled k-th row to all rows in the lower right corner

for(int j=k+1; j<n; j++) { // multiple daxpy
double t = a(j,k);
daxpy_(nmkl,t,&a(k,k+1),one,&a(j,k+1),one);
}
¥
b

k‘lTi§+1

n—1

Coding a linpack-style LU factorization

void dgefa(hpcl2::matrix<double,hpcl2::column_major>& a, 3%

{

}

std::vector<int> pivot) N
assert(a.num_rows() == a.num_cols()); N

pivot.clear();

int one=1;

int n=a.num_rows();

int lda=a.leading_dimension();

for(int k=0; k < a.num_rows()-1; k++){
// 1. find the index of the largest element in column k

// starting at row k pivot

int nk = n-k; -

int 1 = idamax_(nk,&a(k,k),one) + k;
pivot.push_back(1l); // and save it
assert(a(l,k) ='0.0); // error if pivot is zero

// 2. swap rows 1l and k, starting at column k
dswap_(nk,&a(1,k), lda,&a(k,k),lda);

// 3. scale the column k below row k by the inverse

// negative pivot element, to store L in the lower part 0
double t -1./a(k,k);

int nmkl = n-k-1;

dscal(nmkl,t,&a(k+1,k),one);

// 4. add the scaled k-th row to all rows in the lower right corner
#pragma omp parallel for
for(int j=k+1; j<n; j++) { // multiple daxpy
double t = a(j,k);
daxpy(nmkl,t,&a(k,k+1),one,&a(j,k+1),one);
}
b

k‘lTiﬁ+1

n—1

-
k+1

n—1

Optimizing the LU factorization

LU factorization is the key operation in the LINPACK benchmark used to
measure supercomputer performance

All low-level vector operations are dispatched to optimized BLAS
DSCAL
DSWAP
IDAMAX
DAXPY

The loop over many DAXPY operations can be multithreaded, e.g. by
OpenMP

Better yet: call a multi-threaded BLAS 2 outer product DGER if you have
one, or parallelize DGER in your BLAS2, instead of putting the
multithreading here

Coding a linpack-style LU factorization

void dgefa(hpcl2::matrix<double,hpcl2::column_major>& a,
std::vector<int> pivot)
{

assert(a.num_rows() == a.num_cols());

pivot.clear();

int one=1;

int n=a.num_rows();

int lda=a.leading_dimension();

for(int k=0; k < a.num_rows()-1; k++){
// 1. find the index of the largest element in column k
// starting at row k
int nk = n-k;
int 1 = idamax(nk,&a(k,k),one) + k;
pivot.push_back(1l); // and save it
assert(a(l,k) ='0.0); // error if pivot is zero

// 2. swap rows 1l and k, starting at column k
dswap(nk,&a(l,k),lda,&a(k,k),lda);

// 3. scale the column k below row k by the inverse

// negative pivot element, to store L in the lower part
double t = -1./a(k,k);

int nkml = n-k-1;

dscal(nkml, t,&a(k+1,k),one);

0
N - k
-
k+1
pivot 1
n—1

0

// 4. add the scaled k-th row to all rows in the lower right corner

double alpha=1.;

dger_(nmkl,nmkl,alpha,&a(k+1,k),one,&a(k,k+1),lda,&a(k+1,k+1),lda);

k‘lTi§+1

n—1

What do we need to optimize?

Write the fastest possible BLAS-1 and BLAS-2 functions

Are we optimal now?
No, BLAS-2 performs N2 operations on N? data
We are limited by memory-band width

What can we do?
Rewrite DGEFA to use BLAS-3

If we can use matrix multiplication DGEMM instead of vector outer
product DGER then we can reuse data, perform O(N3) operations on
O(N?) data and get peak performance.

Do you have ideas how we can do that?

