
HPCSE II 

Vectorization with SIMD instructions



SIMD (vector instructions)

Recall SIMD: Single Instruction Multiple Data 
we perform the same operation on many values at once.  

This was pioneered by the vector  
supercomputers (e.g. Cray X/MP at ETH) 

Since 1999 part of all Intel CPUs 
SSE (Streaming SIMD Extensions) 
AVX (Advanced Vector Extensions) 

The easiest way of getting parallel speedup

now in basement of CAB



SIMD registers and operations

SIMD units contain vector registers 
128-bit registers XMM0 - XMM15 for SSE 
256-bit registers YMM0-YMM15 for AVX,   
overlapping the XMM registers 

The SSE XMM registers can store 

AVX register can store 8 float or 4 double, integers since AVX2
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SIMD vector operations

SIMD vector operations act on all values in the vector at once 
Example: adding four floats with one “packed floating point” instruction 

Advantages: 
One instruction instead of 4 
Memory access can be optimized 

An easy way to gain speed for almost any code
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SSE/AVX versions

Intel and AMD have introduced more and more SIMD instructions with 
every new processor generation. The history is complex, and only roughly 
summarized below 

Homework: determine which SIMD instructions your machine supports

Generation Year First Intel CPUs main features

SSE 1999 Pentium III

SSE2 2001 Pentium 4 SSE registers can be used together with scalar 
floating point registers

SSE3 2004 Pentium 4 - Prescott more instructions, and conversions between 
floating point and integer

SSE4 2006 Core 2 more instructions

AVX 2011 Sandy Bridge floating point 256 bit registers

AVX2 2013 Haswell integer 256 bit registers

AVX-512 ? ? 512 bit registers



SSE/AVX documentation

The best documentation tool is by Intel, at  
https://software.intel.com/sites/landingpage/IntrinsicsGuide/  

An excellent documentation tool 
lists all functions with clear  
explanation and documentation 
allows to search for functions 
can filter functions depending on  
SSE support 



Review: caches

Memory access speed did not keep up with Moore’s law 
Are added to speed up memory access  

Many GByte of slow but cheap DRAM 
2-20 MByte of fast L3-Cache 
256-512 kByte of faster L2-Cache per core 
2x32 - 2x64 kByte of fastest L1-Cache per core  
(instruction and data cache)  

Data that is read is stored in the caches and kept there until it needs to be 
evicted because new data is loaded 
Data written to memory is written to the cache and only further to 
memory if it needs to be evicted (or if we need to synchronize memory 
access between cores) 
Problems reusing memory will run faster!

L3-cache

memory

L2-cache

CPU 
core

L1-cache

L2-cache

CPU 
core

L1-cache



Comparison of memory/cache speeds

Data for Intel Sandy Bridge CPU

Size Access time in cycles

L1 cache 2x32 kB 4-5

L2 cache 256 kB 12-19

L3 cache 3-20 MB 30-50

Memory many GB ≈ 300



How does a cache work?

CPU requests a word (e.g. 4 bytes) from memory 
A full “cache line” (nowadays typically: 64 bytes) is read from memory 
and stored in the cache 
The first word is sent to the CPU 

CPU requests another word from memory 
Cache checks whether it has already read that part as part of the 
previous cache line 
If yes, the word is sent quickly from cache to CPU 
If not, a new cache line is read 

Once the cache is full, the oldest data is overwritten 
Locality of memory references are important for speed



Data alignment

To achieve optimal speed data should be aligned on cache line boundaries. 
Consider what happens if we load one value that is not at the start of a cache line  
(on an old machine with 16 byte cache lines):



Alignment

SSE registers are 16 bytes and need 16-byte alignment 
AVX registers are 32 bytes and need 32-byte alignment 
It is even better to align on cache line boundaries: 64 bytes on 
modern Intel CPUs



Allocating aligned data

Aligned memory can be allocated 
on POSIX (Linux, Unix) systems by calling posix_memalign 
On Windows systems by calling by calling _aligned_malloc 
Easiest using an alignment specifier in the declaration 

C++03 with gcc, clang, icc 
C++03 with MSVC 
C++11 

In C++11 we can declare alignment for a data type: 

g++ 4.7 and MSVC11 do not support alignas. We provide a workaround in alignas.hpp

// every object of these types will be aligned to 32-byte boundary 
struct alignas(32) avx_double 
{ 
  double data[4]; 
}; 

template <class T> 
struct alignas(32) avx_t 
{ 
  T data[32/sizeof(T)]; 
}; 

float  __declspec(align(32)) sse[8];

float  __attribute__((aligned(32))) sse[8];

float  alignas(32) sse[8];



Allocating aligned data with allocators

For C++ containers we need an aligned allocator.  
Recall the usually ignored second template parameter of standard containers: 
Allocators are used to allocate and free the memory for a container. 

Potential use of allocators: 
allocate memory for small objects in a fast pool (boost::pool_allocator) 

allocate specially aligned memory (used here!) 

We provide an aligned allocator in the git repository, and will discuss it now.

template<class T, class Alloc = std::allocator<T> > class vector;



When can a loop be vectorized?

A loop can only be vectorized (or parallelized by threads) if there are no 
dependencies between the iterations: 

A linear congruential generator cannot be vectorized since one iteration depends on 
the previous one. We have to wait for it to finish. 

adding vectors by saxpy can be vectorized (no dependencies) 

a lagged Fibonacci generator can be vectorized for vector lengths up to min(p,q). 
Dependencies only beyond a distance min(p,q) 

Vector supercomputers had vector lengths up to 1024 elements.  
SSE has at most 16 bytes and AVX at most 32 bytes => the lagged Fibonacci is easier to 
vectorize

for (int i=1 ; i<N; ++i) 
  rnd[i] = a* rnd[i-1] + c;

for (int i=0 ; i<N; ++i) 
  x[i] = a*x[i] + y[i];

for (int i=std::max(p,q) ; i<N; ++i) 
  rnd[i] = rnd[i-p] + rnd[i-q];



Detecting dependencies

Look at every variable in the loop and check whether it might be written or 
read by another loop iteration. If so there is a dependency. 
Some dependencies can be removed by introducing additional variables:  
 
 
 
 
 
 
now both loops can be safely vectorized or parallelized 

Another special case are reductions: 

reductions can be vectorized, but it needs special care 
in OpenMP parallelization there is the reduction clause

for (int i=0; i<N-1; i++) { 
  x = (b[i] + c[i])/2; 
  a[i] = a[i+1] + x; 
}

for (int i=0; i<N-1; i++) 
  a2[i] = a[i+1]; 

for (int i=0; i<N-1; i++) { 
  x = (b[i] + c[i])/2; 
  a[i] = a2[i] + x; 
}

double s=0; 
for (int i=0; i<N; i++) 
  s += x[i]*y[i];



Using SIMD instructions

SIMD instructions can be used through assembly language. Complicated! 
Compilers offer support through intrinsics. Special types and functions that will be 
mapped directly to registers and SIMD instructions. 
Include the appropriate header 
 
or use the header <x86intrin.h>  
that is available with some compilers  
to load all headers available depending  
on the target platform 

Enable code generation for SSE or AVX with the right compiler switches 
Homework: study your favorite’s compilers manual to find the switches 
With g++ or clang++ one option is to use the -msse3, -msse4 or -maxv to enable 
SSE3, SSE4 or AVX support

 MMX <mmintrin.h> 
SSE <xmmintrin.h>

SSE2 <emmintrin.h>
SSE3 <pmmintrin.h> 

SSSE3 <tmmintrin.h>
SSE4.1 <smmintrin.h>
SSE4.2 <nmmintrin.h> 
SSE4A <ammintrin.h>

AES <wmmintrin.h> 
AVX and AVX2 <immintrin.h>



Intrinsics: register data types

The intrinsics headers define a few datatypes that map directly to SSE or 
AVX registers. The compiler will place such variables in the registers. 
Note: these start with two underscores!

__m128 4 floats

__m128d 2 doubles

__m128i integers of any size

__m256 8 floats

__m256d 4 doubles

__m256i integers of any size, AVX2



Intrinsics: naming of operations

SSE and AVX instructions have a certain naming scheme 
SSE operations: _mm_name_type 
AVX operations: _mm256_name_type 

operations on types shorter than a full register will not modify the higher bits 
256 bit integer operations are available from AVX2

type length in bits description
ss 32 a single float
ps 128 or 256 4 or 8 floats
sd 64 a single double
pd 128 or 256 2 or 4 doubles

si64 64 any integers
si128 128 any integers
si256 256 any integers
pi8 64 8 8-bit integer

pi 16 64 4 16-bit integers
pi32 64 2 32-bit integer
epi8 128 or 256 16 or 32 8-bit integers
epi16 128 or 256 8 or 16 16-bit integers
epi32 128 or 256 4 or 8 32-bit integers
epi64 128 or 256 2 or 4 64-bit integers



A first example: sscal

Multiply a vector by a scalar, assuming aligned data and a vector length 
that is a multiple of 4 

We are using four instructions: two loads, a multiplication and a store

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_set1_ps(a); 
   
  // loop over chunks of 4 values 
  for (int i=0; i<n/4; ++i) { 
    __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(x+4*i,x2);         // store back aligned 
  } 
} 



A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary 
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_set1_ps(a); 
   
  int ndiv4 = n/4; 
  // loop over chunks of 4 values 
  for (int i=0; i<ndiv4; ++i) { 
    __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(x+4*i,x2);         // store back aligned 
  } 

  // do the remaining entries 
  for (int i=ndiv4*4 ; i< n ; ++i) 
    x[i] *= a; 
} 



A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary 
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_set1_ps(a); 
   
  int ndiv4 = n/4; 
  // loop over chunks of 4 values 
  for (int i=0; i<ndiv4; ++i) { 
    __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(x+4*i,x2);         // store back aligned 
  } 

  // do the remaining entries 
  int i = ndiv4*4; 
  switch (n-i) { 
    case 3: x[i+2] *= a; 
    case 2: x[i+1] *= a; 
    case 1: x[i] *= a; 
  } 
} 

the switch statement may be faster than the for loop



load / store

An incomplete summary of load/store instruction 

The streaming loads and stores bypass the cache. This reduces cache eviction but it is 
hard to see a difference in many codes.

Instruction Types explanation
set1 all sets all elements to a given value
set all set each element to a different value
setr all set in reverse order
setzero pd, ps, si64, si128, si256 set to zero
load1 pd, ps load a single value into each element of the register
broadcast pd, ps same as load1 but much faster (AVX only)
load pd, ps, ss, sd, si128, si256 load values from memory into a register
loadr pd, ps load values in reverse order
loadu pd, ps, ss, sd, si128, si256 load unaligned values from memory (slow!)
streamload si128 load integer values bypassing the cache 
store pd, ps, ss, sd, si128, si256 store values from register into memory
storeu pd, ps, ss, sd, si128, si256 store values from register into unaligned memory (slow!)
stream pd, ps, pi, si128, si256 store values into memory bypassing the cache



Prefetch

Prefetch instruction can be used to hint that some data will be used later 
and should already be fetched into the cache since they will soon be used 

Example use: 

You’ll need to play with it and see if it helps

void _mm_prefetch (char const *p, int hint)

hint meaning
_MM_HINT_T0 prefetch into L1 (and L2 and L3) cache. Use for integer data.

_MM_HINT_T1 prefetch into L2 (an L3) cache. Use for floating point data.

_MM_HINT_T2 prefetch into L3 cache. Use if the cache line is not reused much.

_MM_HINT_NTA prefetch into L2 but not L3 cache. Use if the data is needed only once

    // loop over chunks of 4 values 
    for (int i=0; i<ndiv4; ++i) { 
      _mm_prefetch((char*) y+4*i+8,_MM_HINT_NTA ); // prefetch data for two iterations later 
      __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
      __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
      _mm_store_ps(x+4*i,x2);         // store back aligned 
    }



Arithmetic floating point instructions

An incomplete summary of arithmetic instructions

Instruction explanation
add, sub +, -

addsub - on even + on odd elements

mul, div *, /

ceil ceil, round up

floor floor, round down
round round, allows specification of rounding policy

min min

max max

rcp reciprocal (inverse)

sqrt sqrt

rsqrt reciprocal (inverse) square root

and, andnot bitwise &, &!

or, xor bitwise |, ^



Arithmetic integer instructions

An incomplete summary of arithmetic instructions

Instruction explanation
add, adds +. adds is saturated add: assigns maximum/minimum if  overflow or underflow

sub, subs -, subs is saturated sub: assigns maximum/minimum if  overflow or underflow

avg rounded average of x and y: (x+y+1)/2

mul *, multiplies low words into result of twice the size - ignores every second input value

mullo *, low word of product (result has twice the number of bits)

mulhi *, high word of product (result has twice the number of bits)

sign transfers sign of one integer to another and sets it to zero if “sign” is 0
min, max min, max

and, andnot &, &!

or, xor |, ^

sll, slli <<, the version ending in i needs an integer constant shift

srl, srli >> for unsigned integers, shifting in 0 bits

sra, srai >> for signed integer, shifting in the sign bit



Comparisons

An incomplete summary of important comparison instructions

Instruction Types explanation

cmpeq, cmpneq all   x==y , x!=y

cmpgt, cmpge all x>y, x>=x

cmplt, cmple all x<y, x<=y

cmpngt, cmpnge floating point !(x>y), !(x>=x)

cmpnlt, cmpnle floating point !(x<y), !(x<=y)

cmpord, cmpunord floating point tests whether the number are ordererd or unordered (e.g. if NaN)

test_all_ones i128 test if all bits are 1

test_all_zeros i128 test if all bits are 0

test_mix_ones_zeros i128 test if either all are 0 or all are 1



_axpy operations

Alignment is trickier with operations involving two vectors 
Example _axpy 

We need both arrays aligned 
in the same way. 

Two solutions: 
either always require alignment 
or code a slow version to use if not aligned

 
!y =α !x + !y



saxpy

a vectorized saxpy implementation assuming alignment

void saxpy(int n, float a, float* x, float* y) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_set1_ps(a); 
   
  // we assume alignment 
  assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0); 

  int ndiv4 = n/4; 
   
  // loop over chunks of 4 values 
  for (int i=0; i<ndiv4; ++i) { 
    __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
    __m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x3 = _mm_mul_ps(x0,x1);  // multiply 
    __m128 x4 = _mm_add_ps(x2,x3);  // add 
    _mm_store_ps(y+4*i,x4);         // store back aligned 
  } 
   
  // do the remaining entries 
  for (int i=ndiv4*4 ; i< n ; ++i) 
    y[i] += a*x[i]; 
} 
  



sdot

a vectorized dot product assuming alignment 
we have to manually do the reduction

float sdot(int n, float* x, float* y) 
{ 
  // set the total sum to 0, one sum per vector element 
  __m128 x0 = _mm_set1_ps(0.); 
   
  // we assume alignment 
  assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0); 
   
  // loop over chunks of 4 values 
  int ndiv4 = n/4; 
  for (int i=0; i<ndiv4; ++i) { 
    __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load 
    __m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x3 = _mm_mul_ps(x1,x2);  // multiply 
    x0 = _mm_add_ps(x0,x3);         // add 
  } 
   
  // store the 4 partial sums back to aligned memory 
  float alignas(16) tmp[4]; 
  _mm_store_ps(tmp,x0);    
   
  // do the reduction over the vector elements by hand 
  float sum = tmp[0]+tmp[1]+tmp[2]+tmp[3]; 
   
  // do the remaining entries 
  for (int i=ndiv4*4 ; i< n ; ++i) 
    sum += x[i]*y[i]; 
   
  return sum; 
}



Mixing SSE and AVX

Be careful when mixing SSE and AVX instructions: 
Manual claims that SSE instructions do not touch the higher bits of the AVX registers 
What actually happens is that if the higher bits are nonzero they get stored to 
memory if you call an SSE instruction and get reloaded when you cal an AVX 
instruction. SLOW!!!! 

Solution: call _mm256_zeroupper to clear the upper bits before switching 
from AVX to SSE 
Be extra careful: 

all instructions starting with _mm256_... are AVX 
all SSE instructions start with _mm_... 
some instructions starting with _mm_ are also AVX, e.g. broadcast. You 
need to look at the documentation tool to check!



Warning about mixing AVX and SSE

Original sscal: 

Naively optimize sccal using broadcast:

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_load1_ps(&a); 
   
  // loop over chunks of 4 values 
  for (int i=0; i<n/4; ++i) { 
    __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(y+4*i,x2);         // store back aligned 
  } 
}

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_broadcast_ss(&a); 
   
  // loop over chunks of 4 values 
  for (int i=0; i<n/4; ++i) { 
    __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(y+4*i,x2);         // store back aligned 
  } 
}

SLOW! 
we mix AVX and SSE



Warning about mixing AVX and SSE

Original sscal: 

Naively optimize sccal using broadcast:

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_load1_ps(&a); 
   
  // loop over chunks of 4 values 
  for (int i=0; i<n/4; ++i) { 
    __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(y+4*i,x2);         // store back aligned 
  } 
}

void sscal(int n, float a, float* x) 
{ 
  // load the scale factor four times into a register 
  __m128 x0 = _mm_broadcast_ss(&a); // an AVX instruction! 
  _mm256_zeroupper(); 

  // loop over chunks of 4 values 
  for (int i=0; i<n/4; ++i) { 
    __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load 
    __m128 x2 = _mm_mul_ps(x0,x1);  // multiply 
    _mm_store_ps(y+4*i,x2);         // store back aligned 
  } 
}

Now it’s fast 
we clear the higher 

bits and they will not 
be stored



Automatic vectorization with g++

Modern compilers try to automatically vectorize loops. This can save you 
time but will sometimes not be as good as vectorization by hand. 
Compiler options for g++ 

Turn vectorization on: -ftree-vectorize 
Generate vectorization reports: -Om -ftree-vectorizer-verbose=n 

Further reading 
GNU documentation: http://gcc.gnu.org/projects/tree-ssa/vectorization.html 
Critical analysis of what autovectorization in gcc  can and cannot do:  
 http://locklessinc.com/articles/vectorize/

n description
0 No output at all.
1 Report vectorized loops.
2 Also report unvectorized "well-formed" loops and respective reason.
3 Also report alignment information (for "well-formed" loops).
4 Like level 3 + report for non-well-formed inner-loops.
5 Like level 3 + report for all loops.
6  Print all vectorizer dump information 



Automatic vectorization with iCC

Compiler options with iCC 
Get optimization suggestions: -guide 
Turn vectorization on and generate vectorization reports:  
 -qopt-report=n -qopt-report-phase=vec 

Further reading 
Intel documentation and sample codes: 
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/ 

n description

0 No output at all.

1 Report vectorized loops.

2 Also report unvectorized loops and respective reason.

3 Adds dependency Information

4 Reports only non-vectorized loops

5 Reports only non-vectorized loops and adds dependency info



Automatic vectorization with clang

Compiler options with clang 
Automatic vectorization is on by default! 
Turn vectorization off: -fno-vectorize 
Turn vectorization on and set vector width: -mllvm -force-vector-width=n 
Enable vectorization reports: 

-Rpass=loop-vectorize identifies loops that were successfully vectorized. 
-Rpass-missed=loop-vectorize identifies loops that failed vectorization 
-Rpass-analysis=loop-vectorize identifies the statements that caused 
vectorization to fail. 

Pragmas available to help the compiler vectorize loops 

More information on http://llvm.org/docs/Vectorizers.html



Aliasing prevents optimization

Consider the saxpy operation: 

Naïvely it seems this can be vectorized since there are no 
dependencies:each iteration accesses different elements 
Now consider the following call: 
 
 
 
Problem: now y=x+1 and we have an “aliasing” problem. The loop becomes  

We have potential dependencies! No optimization or vectorization is 
actually possible unless we prevent aliasing.

void saxpy(int n, float a, float* x, float* y) 
{ 
  for (int i=0; i<n; ++i) 
    y[i] += a*x[i]; 
}

float x[1000]; 
saxpy( 999, 1., x, x+1)

for (int i=0; i<n; ++i) 
    x[i+1] += a*x[i];



restrict

Fortran-77 can optimize aggressively since aliasing is forbidden 
Fortran-90 and later, C, C++, ... have pointers and with pointers aliasing 
becomes a potential problem and prevents many optimizations. 

Solution in C: restrict keyword to declare that pointers are not aliased.  

The compiler now assumes no aliasing. 
Note that the compiler does not check for aliasing. The caller has to be careful! 

No C++ standard support for restrict, but 
g++ supports a __restrict__ keyword 
iCC allows the restrict keyword when using the compiler switch -restrict.

void saxpy(int n, float a, float* restrict x, float* restrict y) 
{ 
  for (int i=0; i<n; ++i) 
    y[i] += a*x[i]; 
}



Declaring alignment

In our manually vectorized code we assumed the absence or presence of 
alignment. We can also tell this to the compiler: 

On g++ there is a   __builtin_assume_aligned(variable,alignment); extension 

iCC has a pragma to declare alignment for a loop

void saxpy(int n, float a,  float* __restrict__ x, float* __restrict__ y) 
{ 
  __builtin_assume_aligned(x,32); 
  __builtin_assume_aligned(y,32); 
  for (int i=0; i<n; ++i) 
    y[i] += a*x[i]; 
} 

void saxpy(int n, float a,  float* restrict x, float* restrict y) 
{ 
  #pragma vector aligned 
  for (int i=0; i<n; ++i) 
    y[i] += a*x[i]; 
}



`

g++ matches your code against common patterns and vectorizes the loops 
if there is a match. The vectorization reports can help you find out what 
was done and how it can be improved. 

Documented with many examples at  
http://gcc.gnu.org/projects/tree-ssa/vectorization.html 
However, only quite simple loops can be vectorized, as shown here  
http://locklessinc.com/articles/vectorize/ 

Let us time an auto-vectorized loop against our manual SSE and AVX codes

SSE manual AVX manual g++ clang iCC

vectorized ––– ––– 35 26 26

not vectorized 27 26 55 26 55



Automatic vectorization on clang

The clang compiler provides pragmas to further help vectorize loops 
Documented at  http://llvm.org/docs/Vectorizers.html and  
http://clang.llvm.org/docs/LanguageExtensions.html#id20  

pragma explanation
 clang loop vectorize(enable) the compiler can ignore potential dependencies and vectorize

clang loop interleave(enable) the compiler can ignore potential dependencies and interleave 
iterations, i.e. perform them out of order

 clang loop vectorize(disable) don’t vectorize

clang loop interleave(disable) don’t interleave

 clang loop vectorize_width(n) vectorize up to n iterations

 clang loop interleave_count(n) interleave up to n iterations

clang loop unroll(full) can be fully unrolled

clang loop unroll_count(n) unroll up to n iterations

clang loop unroll(disable) don’t unroll



Automatic vectorization on iCC

The Intel compiler provides  
the -guide option to give hints how code can be vectorized 
a set of pragmas to help the compiler  

Documented with many examples at  
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

pragma explanation
ivdep the compiler can ignore potential dependencies
loop count (n) 
loop count min (n)

specify the typical or minimum loop count to help decide whether 
vectorization is worthwhile

vector always always attempt to vectorize the loop
novector don’t vectorize the loop
vector aligned tell the compiler to assume aligned data

vector nontemporal the data will not be reused , use streaming instructions for data 
access

simd always attempt SIMD vectorization
simd vectorlength(n) declare absence of dependencies for n iterations
simd reduction (op:variable) a reduction loop (similar to OpenMP)



iCC example 1: potential aliasing

Consider the copying loop in example1[abc].cpp 

The Intel compiler produces two versions and tests at runtime for aliasing 
You can help either using restrict 
 
 
 
 
 
or using the ivdep pragma

void copy(char *cp_a, char *cp_b, int n) 
{ 
  for (int i = 0; i < n; i++) 
    cp_a[i] = cp_b[i]; 
}

void copy(char * restrict cp_a, char * restrict cp_b, int n) 
{ 
  for (int i = 0; i < n; i++) 
    cp_a[i] = cp_b[i]; 
}

void copy(char *cp_a, char *cp_b, int n) 
{ 
#pragma ivdep 
  for (int i = 0; i < n; i++) 
    cp_a[i] = cp_b[i]; 
}



iCC example 2: dependencies

Loop at the gap.cpp example: 

It will not vectorize since there is a dependence on b: the next loop might 
use the modified value of b. Use guide to learn what can be done:  
remark #30515: (VECT) Assign a value to the variable(s) "b" at the beginning of the body of 
the loop in line 28. This will allow the loop to be vectorized. [VERIFY] Make sure that, in the 
original program, the variable(s) "b" read in any iteration of the loop has been defined 
earlier in the same iteration.

void test_scalar_dep(double *A, int n) 
{ 
  double b; 
  for (int i=0; i<n; i++) { 
    if (A[i] > 0) {b=A[i]; A[i] = 1 / A[i]; } 
    if (A[i] > 1) {A[i] += b;} 
  } 
} 

void test_scalar_dep(double *A, int n) 
{ 
  for (int i=0; i<n; i++) { 
    double b = A[i]; 
    if (A[i] > 0) {A[i] = 1 / A[i];} 
    if (A[i] > 1) {A[i] += b;} 
  } 
}



iCC example 3: reductions

Look at the simd3.cpp for a reduction example 

In the meantime iCC manages to detect this reduction automatically. The 
pragma is  not needed. 
In the following more complicated reduction in simd4.cpp it is needed:

char foo(char *A, int n){ 
  char x = 0; 
#pragma simd reduction(+:x)    
  for (int i=0; i<n; i++) 
    x = x + A[i]; 
  return x; 
}

// saturate integers to maximum or minimum of short in reduction 

short sat2short(unsigned char *p, char *q, int n) { 
  short x = 0; 
#pragma simd reduction(+:x) 
  for (int i=0; i<n; i++)  
    x = std::max(std::min(x + p[i]*q[i],32767),-32768); 
  return x; 
}



iCC example 4: dependencies

Some dependencies still allow vectorization, as in simd4.cpp: 

There are dependencies after 16 iterations. We can still vectorize up to 16 
elements, but need to tell the compiler: 

Homework: vectorize if possible: 
a linear congruential random number generator? 
a lagged Fibonacci random number generator?

for (int i=0; i<32767; i++) { 
    if (i >= 16 && i < 32767) { 
      b[i] = b[i-16] - 1; 
    }

#pragma simd vectorlength(16) 
  for (int i=0; i<32767; i++) { 
    if (i >= 16 && i < 32767) { 
      b[i] = b[i-16] - 1; 
    }



iCC example 5: loop private variables

Some dependencies can be removed by making the variable private to each 
iteration, as in simd5.cpp

void foo(int *A, int *B, int *restrict C, int n) 
{ 
  int t = 0; 

#pragma simd private(t) 
  for (int i=0; i<n; i++){ 
    if (A[i] > 0) { 
      t = A[i]; 
    } 
    if (B[i] < 0) { 
      t = B[i]; 
    } 
    C[i] = t; 
  } 
} 



i_amax

How would you implement isamax and similar functions that 
should give the index of the largest element? 
Interested students should look at the isamax_sse.cpp example 
to see some really neat tricks of what you can do with vector 
instructions.


