®

<A NVIDIA

ADVANCED CUDA

5/11/2015

pmessmer@nvidia.com

Peter Messmer -

X7V

\

NN
NN
W
B
RN

il

il

N

!

\\

What has been covered so far?

B

"

AL
il

ﬁv |

Y
BTN
BT
NN\
IR

,”Mammmmnﬂﬂﬂﬂﬂﬂﬂﬂ
LI RRRY

\ L
l

{

HOW GPU ACCELERATION WORKS

Application Code

\
4

)

Compute-Intensive Functions
Throughput critical [

—

Rest of Sequential
5% of Code

CPU Code

Latency critical

p

a2

= |
O
(
L
O
=
5
Vel
L]
O
O
ad
al
L)
|
al
=
wn

d
h
_.I
g
(5]

‘

1. Copy input data from CPU memory/NIC to

-
o
S
@
S
)
al
Q)

SANVIDIA.

SIMPLE PROCESSING FLOW

HHR e

«
1K

GPU memory
2. Load GPU program and execute

1. Copy input data from CPU memory/NIC to

SANVIDIA.

SIMPLE PROCESSING FLOW

]|

@

g EEEEEEEE
-
-

o
| -
=]
@

afl | | [[|
-

1. Copy input data from CPU memory/NIC to
GPU memory

Load GPU program and execute

Copy results from GPU memory to CPU
memory/NIC

w N

SANVIDIA.

3 WAYS TO PROGRAM GPUS

)

Applications
4 N\ ([)
: : OpenACC Programmin
Libraries .p) Lg S
Directives anguages
. J Y,
“Drop-in” Easily Accelerate Maximum

Acceleration

Applications

Flexibility

CUDA EXECUTION MODEL

> Thread: Sequential execution unit
> Threads execute in parallel
> Thread Block: a group of threads
> Executes on a single Streaming Multiprocessor (SM)
> Threads within a block can cooperate
» Light-weight synchronization
> Data exchange
- Grid: a collection of thread blocks
> Thread blocks of a grid execute across multiple SMs
> Thread blocks do not synchronize with each other

- Communication between blocks is expensive

SANVIDIA.

EXECUTION MODEL

Software Hardware
||
3] Threads are executed by scalar CUDA Cores
CUDA
Thread Core

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

Thread Block

A kernel is launched as a grid of thread blocks

SANVIDIA.

CUDA Memory Architecture

GPU

Multiprocessor
Multiprocessor

DRAM

Multiprocessor
Local] Registers

Shared Memory

Global

Constant }

Constant and Texture
- > Caches

Texture

Kepler Memory Hierarchy

>5IVI-0

Registers Registers

[] -

Global Memory

.

0

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread
GPU architecture hides latency with computation from other (warps of) threads

GPU Streaming Multiprocessor — High-throughput Processor Computation Thread/Warp

Th]' Processing

Waiting for data

Ready to be processed

CPU core — Low-latency Processor

Ty

_ L RE

8. (] Context switch

W

AR
RRE
Zmﬁ ‘
I

W

I

Juil
:
I
w,‘%

jons

imizat

General Opt

o

&\ -

W

il

BT
TN

BNNANNNNNY

Y

NARNNNNNNNRNN

A\
DLLTLTLENAN Y

EIIENERRTTS

AN N
BRSO S S
BRI SSoOSSSS

]

\

\

\
t

NVVP: NVIDIA’S VISUAL PROFILER

[0] Tesla K40c¢
—| Context MPS (CUDA)
MemCpy (HtoD) NI (11 (I
I MemCpy (DtoH)

- Compute

7 100.0% Stepl0_c...

+ Streams

. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

oS

The first step in anal g an individual kernel is to ——
mine if the performan f the kern Stall Reasons

bounded by computation, m ry bandwidth, or Shared execution

instruction/memory latency The results at right Shared Stores de ;ndenr

indi hat the performanc rnel Global Loads 0 08/ P N

"Stepl0_cuda_kernel” is most likely limited by Global Stores

compute.

cal Lo
Local Stores

dy Perform Compute Analysis

ttle performance for this kernel is _
should first perform ysis to y | 23 data 7__|n>truttmn
fetch
Texture Cache request

Reads

uction and n y 7L
ely not the primary performance bottlenecks for thi otal 1570138
till want to perform those analyses
[PCle configuration: Gen3 x16, 8 Gbitfs 1
08/s synchronization —~
149.375 kBJs

149.375 kBJs

<ANVIDIA.

WHICH KERNEL SHOULD WE OPTIMIZE?

& profile_30411.csv &3

[= 3] Tesla M2090
[=] Context1 (CUDA)

T MemCpy HtoD) |0 0 0 0
T MemCpy (toH 0 000 0 0 00O 0000”00 0 O
=l compure IO OO O 00000 00000000

T 2.9% [629] hh_kernel
TR PR 0

T 1.7% (2177) var_gemm_val(.] LI

LN
T 0.45% 1481) var_gemm_vai(.] OOt

T 0.1% B3] fermiDgemm_v2_kernel_vall...)
T 0.0% 33] fermiDgemm_v2_kernel_vall...)

T 0.0% [47] gemm._kemel2_tile_mutiple_val(.] | Aty A e (AT

T 0.0% 37] gemm_kernel2x2_vall...)

W 0.0% [630] trmm_right_kernel_valf...) |||||||||||||||||| @ profile 30411.csv | @ profile 32660.csv | profile_14405.csv £3

T 0.0% [163] gemm_kernel2x2_tile_multiple_vall...) 4?.|9 5 48I 5 48.|1 5 48'.2 5 48.|3 5 48.:1 5
T 0.0% [90] gen_dgemmMM_vall...} =l 3] Tesla M2090

T 0.0% B15] trmm_left_kernel_val|...) |=| Context 1 [CUDA]

T 0.0% [40] dgemmNN_valf..) T MemCpy (HtoD) (T U R A D RO 1|

¥ 0.0% [5] __pgi_dev_cumemset_& F MemCpy (DtoH) | |
|=l Streams | & Ii ' I' I

Stream 1 IIIIIIIIIII F 3.7% [629] hh_kernel

T 2.29% [2177] var_gem... || | || |
TP 0.5% [1481] var_gem... ||| |||
“F 0.1% [33] fermiDgem...
F 0.1% [33] fermiDgem...
F 0.0% [447] gemm_ker...
F 0.0% 37] gemm_kern...
F 0.0% [630] trmm_righ...
“F 0.0% [163] gemm_ker...
F 0.0% [90] gen_dgem...
¥ 0.0% [315] trmm_left_...
¥ 0.0% [40] dgemmMNM_...
¥ 0.0% [5] __pgi_dev_cu...
|=| Streams

Stream 1 I B werrr . N N owrrrrr nmmem owerronod

BEFORE OPTIMIZING YOUR KERNELS

> Always use NVVP to determine if the kernel is the limiter

> Remember Amdahl: § = —— 5 R !
(1_P)+N (1-P)

> Kernels may not always be the limiter

.. NoActive 7|
wam . Kernell - | |

(1] (il 1 (1] Ll (]
| I || I I |

OPTIMIZE LOCALITY AND CONCURRENCY

> Manage locality: Move data where it is used
> Primary focus of OpenACC

> Simplified by unified memory available since CUDA 6

> Keep both CPU and GPU busy

> Asynchronous transfers: No need to stall compute for transfer

SANVIDIA.

W

AR
RRE
Zmﬁ ‘
I

W

I

Juil
:
I
w,‘%

jons

imizat

Kernel Opt

o

&\ -

W

il

BT
TN

BNNANNNNNY

Y

NARNNNNNNNRNN

A\
DLLTLTLENAN Y

EIIENERRTTS

AN N
BRSO S S
BRI SSoOSSSS

]

\

\

\
t

KERNEL LAUNCH CONFIGURATION

® A kernel is a function that runs on the GPU
® A kernel is launched as a grid of blocks of threads

® Launch configuration is the number of blocks and number of threads
per block, expressed in CUDA with the <<< >>> notation:

mykernel<<<blocks per grid, threads per block>>>(..);

® What values should we pick for these?
* Need enough total threads to process entire input
* Need enough threads to keep the GPU busy

® Selection of block size is an optimization step involving warp occupancy

SANVIDIA.

® Several Streaming Multiprocessors

* E.g., Kepler GK110 has up to 15 SMs
® L2 Cache shared among SMs

® Multiple channels to DRAM

20 <ANVIDIA.

KEPLER STREAMING MULTIPROCESSOR (SMX)

Per SMX:

® 192 SP CUDA Cores
® 64 DP CUDA Cores
® 4 warp schedulers

* Up to 2048 concurrent threads

One or two instructions issued per
scheduler per clock from a single
warp

® Register file (256KB)
® Shared memory (48KB)

_"‘Ill-lll- =l
| e e

- Dispatch Dispatch Dispatch ~ Dispatch = Dispatch = Dispatch Dispatch Dispatch
Register File (65,536 x 32-bit)

e N i - o e e e
LOST
e o i [5 O 6
e - O 9
5 N O -~ = 6 I 6 6
o o i i - o 5 o N o 4
o o N i - o 6 O o 6
o o N o v - o o 4
e -~ 5 I 5 6
N i o 5 O 6
o o N o e - o 5 o N o
| o e o
-
-

Tex Tex

Tex

SANVIDIA.

LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many blocks should we use?

® 1,000 or more thread blocks is best
® Rule of thumb: enough blocks to fill the GPU at least 10s of times over

® Makes your code ready for several generations of future GPUs

<ANVIDIA.

LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many threads per block should we choose?

® The really short answer: 128, 256, or 512 are often good choices

® The slightly longer answer:
® Pick a size that suits the problem well
® Multiples of 32 threads are best

® Pick a number of threads per block (and a number of blocks) that is sufficient
to keep the SM busy

SANVIDIA.

4l

Thread Block

32 Threads
32 Threads

32 Threads

32 Threads
Warps

WARPS

Multiprocessor

A thread block consists
of warps of 32 threads

A warp is executed
physically in parallel on
some multiprocessor.

Threads of a warp issue

instructions in lock-step
(as with SIMD)

<ANVIDIA.

CONCURRENCY OFFERED BY A K20X (GK110)

Number of SMX
Number of warps per SM

Number of threads/warp

Warps per device

Active threads per device

14 (15 on K40, K80)
64
32

1464 = 896
14*64*32 = 28’672

SANVIDIA.

LATENCY HIDING

The warp issues

The warp waits (latency)

Fully covered latency Exposed latency

Mo warp issues

<ANVIDIA.

Occupancy

Start . 588.755ms
End | 588.808ms
Duration :
* Need enough concurrent warps per S o
SM to hide latencies: Registers/Thread 2

Shared Memory/Block 1.062 KB

Instruction latencies Memory

Global Load Efficiency 100%
Memory access latencies e | 100%
Local Memory Overhead
DRAM Utilization | 92.7% (169.74 GB/s)
Instruction E
. Branch Divergence Overhead
* Hardware resources determine Total Replay Overhead
. Shared Memory Replay Overhead
number of warps that fit per SM Global Memory Replay Overhead
Global Cache Replay Overhead
L oa@WTIe Replay Overhead
Occupancy

Occupancy = N_ uat / Niay Achieved o

Theoretical . 100%

A ——

Occupancy Limiters

* Full occupancy: Maximum choice for scheduler

» Hardware limits Kepler SM resources:
* Registers per thread — 64K 32-bit registers
* Shared memory per thread block — Up to 48 KB of shared memory

— Up to 2048 concurrent threads
— Up to 16 concurrent thread blocks

* Threads per thread block
* Thread blocks per SMX

* Optimal choice: balance resource consumption and concurrency

Occupancy and Performance

* Note that 100% occupancy isn’t needed to reach maximum
performance

® Once the “needed” occupancy (enough warps to switch among to cover
latencies) is reached, further increases won’t improve performance

* Level of occupancy needed depends on the code
* More independent work per thread -> less occupancy is needed

* Memory-bound codes tend to need more occupancy

® Higher latency than for arithmetic, need more work to hide it

Thread Block Size and Occupancy

® Thread block size is a multiple of warp size (32)

* Even if you request fewer threads, hardware rounds up

* Thread blocks can be too small
* Kepler SM can run up to 16 thread blocks concurrently
* SM can reach the block count limit before reaching good occupancy
® E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ - probably not enough)
* Thread blocks can be too big
* Enough SM resources for more threads, but not enough for a whole block
* Athread block isn’t started until resources are available for all of its threads

Thread Block Sizing

Number of warps allowed by SM resources .
T fe SM resources:
threads per block BERERRRRRERERER * Registers
® Shared memory
ﬁ
D D G

ﬁ
1 |

CUDA Occupancy Calculator

1.} Select Compute Capability (click):
1.b) Select Shared Memory Size Config (bytes)

2.) Enter your resource usage:
Threads Per Black

Regizters Per Thread

Shared Memory Per Bl

Active Threads per Multiprocessor

Active Warps per Multiprocessor

Active Thread Blocks per Multiprocessor
of each Multiprocessor

* Analyze effect of
resource consumption on &t

Total # o
Register allo

occupancy =

ion granulari
cimum Thread Blo

aximum Thread Bl er Multiprocessor
ited by Max Warps or Max Blocks per Multi

irrhaunina,

Thank You!

1

g

=\

N

)| L
g%%%gzzé_
- OARRAY
RN
BT
BT
BN RRN

