CUDA OPTIMIZATION WITH A
NVIDIA NSIGHT™ ECLIPSE EDITION

JAKOB PROGSCH, NVIDIA (jprogsch@nvidia.com)
CHRISTOPH ANGERER, NVIDIA
JULIEN DEMOUTH, NVIDIA

A

WHAT YOU WILL LEARN

> An iterative method to optimize your GPU code

> A way to conduct that method with NVIDIA Nsight EE

> Companion Code: https://github.com/chmaruni/nsight-gtc2015

INTRODUCING THE APPLICATION

Grayscale

Edges

INTRODUCING THE APPLICATION

> Grayscale Conversion

// r, g, b: Red, green, blue components of the pixel p
foreach pixel p:
p = 0.298839f*r + 0.586811f*g + 0.114350f*b;

INTRODUCING THE APPLICATION

» Blur: 7x7 Gaussian Filter

foreac h pixel p:
p = weighted sum of p and its 48 neighbors

INTRODUCING THE APPLICATION

> Edges: 3x3 Sobel Filters

HEEEEEREEEEEEEEEEEEE foreach pixel p:
EEEEEEEEEEEEEEEEEEE Gx = weighted sum of p and its 8 neighbors
EEEEEEEEEEEEEEEEEEE Gy = weighted sum of p and its 8 neighbors
EEEEEEERE HEEN p = sqrt(Gx + Gy)

ENEEEEEEE
EEEEEEEEN
EEEEEEEEN
EEEEEEEEN
EEEEEEEEN
EEEEEEEEEN
EEEEEEEEEEER
AREEEEEEEEEEN
AREEEEEEEEEEN
EEEEEEEEEEEEN

Weights for Gx: Weights for Gy:

oPUB
PERFORMANCE OPTIMIZATION CYCLE

1. Profile
Application

2. ldentify
Performance
Limiter

5. Change and
Test Code

3. Analyze Profile
& Find Indicators

%8 4. Reflect

4b. Build Knowledge

Chameleon from http://www.vectorportal.com, Creative Commons

ITERATION 1

A

v

A0 THE PROFILER WINDOW

% NVIDIA Visual Profiler
File View Run Help
=Vl-ﬂ#‘.'i. 'I'D - ""1)' R E]
% *nsight-gtc2015-step-00.nvprof.device_K40m_cc35.aTimeline & =g
03155

E Properties &2

Compute
=l Process "claw.ppm” (40381)

4 Duration
=I Thread 1719408416

Session 522327 ms (522,326...
Kernels 5.903 ms (5,902,576 ...
Compute Utilization 1.1%

Runtime API

Driver AP
Profiling Overhead
=/ [0] Tesla K40m
=] Context 1 (CUDA)
T MemCpy (HtoD)
" 88.7% gaussian filter 7x7
T 8.1% sobel filter_3x3 v0(in...

" 3.2% rgba_to_grayscale k..
=] Streams

Default

4
Analysis &2 . o) Details| i Settings| Bl Console
B 4, Export PDF Report Results
1. CUDA Application Analysis

The guided analysis system walks you through the various analysis stages to *

help you understand the optimization opportunities in your application.
fnmsilimmmithtismntisinstinmmanasssmssenn explore
the indivi izing your
applicati¢ 1ovement
capabiliti cation's
overall G els.

Determing n
applicatio - - it is not
already available.

‘ iy, Examine Individual Kernels

Determine which kemels are the most performance critical and that have the most
oppertunity for improvement. This analysis requires utilization data from every
kernel, so your application will be run once to collect that data if it is not already
available,

iy, Delete Existing Analysis Information

¥ the application has changed since the last analysis then the existing analysis
information may be stale and should be deleted before continuing.

ARUEEEY EXAMINE INDIVIDUAL KERNELS

(GUIDED ANALYSIS)

ettings| & Console
iy, Export PDF Report
1. CUDA Application Analysis

The guided analy m w ou through the various ana

help you understand th timization opportunities in your applic

Once you become familiar with the optimization proc Ou can ex

the individual an: stages in an unguided mode. V ing your
application it is important to fully utilize the compute and data movement
capahbilities of the GPU. To do this you should look at your application's
overall GPU usage as well as the performance of individual kernels.

| iy, Examine GPU Usage
Determine your application's overall GPU usage. This analysis requires an

applicatic 1eling, so your application will be run once to collect it if it is not
already available,

| i, Examine Individual Kernels

Determir lich kernels are the most performance critical and that have the most
opportunity for impr ent. This analysis requires utilization data from every
: ur application will be run once to collect that data if it is not already

iy, Delete Existing Analysis Information

If the application has changed since the last analysis then the ing analysis
information may be stale and should be deleted before continuing.

IDENTIFY HOTSPOT

Results

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved occup
performance compared to lower ranked kernels.

Rank Description

100 [1 kernel instances] gaussian_filter_7x7_v0(int, int, unsigned char const *, unsigned char*)

g [1 kernel instances | sobel_filter /0(int, int, unsigned char const * unsigned char*®)

.

3 [1 kernel instances] rgba_to_grayscale_kernel_v0{int, int, uchard const * unsigned char*)

> ldentify the hotspot: gaussian_filter_7x7_v0()

Original Version 5.233ms

AP \DENTIFY PERFORMANCE LIMITER

Results

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance
of "Tesla K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the
latency of arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60%

of peak typically indicates latency issues.

- Memory operations

|:| Caontrol-flow operations

B Arithmetic operations

- Memory (Load/Stare Instruc...

Utilization

ARUSESY PERFORMANCE LIMITER CATEGORIES

>Memory Utilization vs Compute Utilization
> Four possible combinations:

60%

—

Comp Mem

Compute
Bound

—

Comp Mem

Bandwidth
Bound

L]

Comp Mem

Latency
Bound

Comp Mem

Compute and
Bandwidth
Bound

APUY MEMORY TRANSACTIONS: BEST CASE

L :' /, _ =

> A warp issues 32x4B aligned and consecutive load/store request
> Threads read different elements of the same 128B segment

1x 128B load/store request per

1x 128B L1 transaction per

4x 32B L2 transactions per

> 1x L1 transaction: 128B needed / 128B transferred
» 4x L2 transactions: 128B needed / 128B transferred

AU MEMORY TRANSACTIONS: WORST CASE

N0 @'
—

> Threads in a warp read/write 4B words, 128B between words
> Each thread reads the first 4B of a 128B segment

1x 128B load/store request per

1x 128B L1 transaction per

1x 32B L2 transaction per

» 32x L1 transactions: 128B needed / 128B transferred
» 32x L2 transactions: 128B needed / 32B transferred

APUEY TRANSACTIONS AND REPLAYS

> Awarp reads from addresses spanning 3 lines of 128B

> 1 instr. executed and 2 replays = 1 request and 3 transactions

Instruction issued Instruction re-issued Instruction re-issued

v

Time

APUEY TRANSACTIONS AND REPLAYS

> With replays, requests take more time and use more resources
More instructions issued
> More memory traffic
Increased execution time

Inst. O Inst. 1 Inst. 2 Inst. O Inst. 1 Inst. 2
Issued Issued Issued Completed | | Completed | | Completed
| | 1
Extra work (SM) Extra latency

Transfer data for inst. 0

Transfer data for inst. 1

Transfer data for inst. 2

v

AP CHANGING THE BLOCK LAYOUT

» Qur blocks are 8x8

=========== threadIdx.x (strige-l, uchar)
EENEEEEEEEER
AEEEEEEEEEE

threadldx.y

ANEEEEEEEEEEEEEEEEE
SESEEEEEEEEEEaEaES
SEEERENEEEEEEREEER
SEEEEMEMEEEEEEEEER | 1
ANEEEEEEEEEEEEEEEEE Il Y
AEEEEEEEEEEEEEEEEEE

L Data Overtetch

IIIIIIIIIIIIIIII1

HEEEEE
ENEEEEEEEEEEEEEEEEEEEEEE
rlllll

» We should use blocks of size 32x2

APUEEY IMPROVED MEMORY ACCESS

> Blocks of size 32x2

> Memory is used more efficiently

Original Version 5.233ms

Better Memory Accesses 1.589ms

ITERATION 2

A

v

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved c

of higher ranked kernels (those that appear first in the list) is more likely to improve performance comp
kernels.

Rank Description

100 [1 kernel instances] gaussian_filter_7x7_v0(int, int, unsigned char const *, unsigned char*)

28 [1 kernel instances] sobel_filter_3x3_v0(int, int, unsigned char const * unsigned char*)

11 [1 kernel instances | rgba_to_grayscale_kernel_v{int, int, uchar4 const * unsigned char*)

> gaussian_filter_7x7_v0() still the hotspot

Original Version 5.233ms

Better Memory Accesses 1.589ms

AP \DENTIFY PERFORMANCE LIMITER

Results
i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla
K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates

latency issues.

c
o
=
]
N
=
2

AP | 0OOKING FOR MORE INDICATORS

_| Properties i = 0O

gaussian_filter_7x7_vO0(int, int, unsigned char const *, unsigned char*)

Start 308.193 ms (308,19 =
End 309.782 ms (309,78
Duration 1.59 ms (1,589,569
Grid Size [80,8001]
Block Size [32,21]
Registers/Thread
Shared Memory/Block
Occupancy

Achieved

Theoretical

Limiter
Shared Memory Configuration

AP | ATENCY

GPUs cover latencies by having a lot of work in flight

>

o
L]

Exposed latency

Fully covered latency

wapO L T T T T T T T T MM TTTTTTTT]

warp 1

warp 2

warp 3

ﬂlmD

. IEEEEEEEE B

warp 4

warp 5

warp 6
warp 7
warp 8
warp 9

|l BEEEEN BN

No warp issuing

AP | ATENCY: LACK OF OCCUPANCY

> Not enough active warps

wapO L T T T T T T T T MM TTTTTTTT]
wapt ML LT T T T TN TTTTTTT]
warp 2 W[[[T T T TTTTTT]
warp 3 W[[T TTTTATTTTT]

| INNEEN | | EEEEEE

No warp issues

> The schedulers cannot find eligible warps at every cycle

AP STALL REASONS:

EXECUTION DEPENDENCY

a=b+c; // ADD a = b[i], // LOAD

d=a+ e; // ADD d=a+ e; // ADD

> Memory accesses may influence execution dependencies
- Global accesses create longer dependencies than shared accesses

> Read-only/texture dependencies are counted in Texture

> Instruction level parallelism can reduce dependencies

Q

b + ¢; // Independent ADDs
e + T;

APUERY 1LP AND MEMORY ACCESSES

No ILP 2-way ILP (with loop unrolling)
float a = 9.0f; float a, a@ = 0.0f, al = 0.0f;
for(int i =0 ; i < N ;)

for(int i =0 ; i < N ; ++i)

= i > {
a += logf(b[i]); a0 += logf(b[i]);

al += logf(b[i+1]);

c = b[0@] }

a += logf(c) a = ao + al

c = b[1] @ = b[o]

a += logf(c) et i 1 = b[1]

c = b[2] 0 = b[2] al += logf(cl)
a += logf(c) 0 +- LogF(Y) i c1 = b[3]

c = b[3] al += logf(cl)

a += logf(c) l a =ao + al

> #pragma unroll is useful to extract ILP
> Manually rewrite code if not a simple loop

AP | 0OOKING FOR MORE INDICATORS

Warps

T Analysis 23 . Co) Details | Cw Settings | B Console

Threads/Block 1024
iy, Export PDF Report
Warps/Block

1. CUDA Application Analysis

. Block Limit
2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

Varying Block Size Varying Register Count Varying Shared Memory Usage
4. Instruction and Memory Latency

Instruction and memary latency limit the
performance of a kernel when the GPU does not
have enough work to keep busy. The results at right
indicate that the GPU does not have enough work

Warps Per SM

Threads Per Block Registers Per Thread Shared Memory Per Block (bytes)

APUY IMPROVED OCCUPANCY

> Bigger blocks of size 32x4

> Increases achieved occupancy slightly (from 47.6% to 52.4%)

Original Version 5.233ms
Better Memory Accesses 1.589ms

Higher Occupancy 1.562ms

ITERATION 3

A

v

APUY DENTIFY HOTSPOT

Results

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved oc
of higher ranked kernels (those that appear first in the list) is more likely to improve performance compa
kernels.

Rank Description

100 [1 kernel instances] gaussian_filter_7x7_vO(int, int, unsigned char const *, unsigned char*)

20 [1 kernel instances] sobel_filter_3 0(int, int, unsigned char const *, unsigned char*)

12 [1 kernel instances] rgba_to_grayscale_kernel_vO(int, int, uchar4 const * unsigned char®)

> gaussian_filter_7x7_v0() still the hotspot

Original Version 5.233ms
Better Memory Accesses 1.589ms

Higher Occupancy 1.562ms

IDENTIFY PERFORMANCE LIMITER

Results
i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla
K40m". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic
or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates

latency issues.

Utilization

APUEY SHARED MEMORY

> Adjacent pixels access similar neighbors in Gaussian Filter

> We should use shared memory to store those common pixels

__shared__ unsigned char smem_pixels[10][64];

» Apart from higher bandwidth shared memory also has lower
latency!

APUY SHARED MEMORY

> Using shared memory for the Gaussian Filter

> Significant speedup, < 1ms

Original Version 5.233ms
Better Memory Accesses 1.589ms
Higher Occupancy 1.562ms

Shared Memory 0.911ms

ITERATION 4

A

v

APUY DENTIFY HOTSPOT

i Kernel Optimization Priorities

The following kernels are ordered by optimization importance based on execution time and achieved ¢
higher ranked kernels (those that appear first in the list) is more likely to improve performance compars

Rank
100

L

20

Description

[1 kernel instances | gaussian_filter_7x7_v2(int, int, unsigned char const *, unsigned char®)
[1 kernel instances] sobel_filter_3x3_v0(int, int, unsigned char const * unsigned char®)

[1 kernel instances] rgba_to_grayscale_kernel_v0{int, int, uchard const * unsigned char®)

» gaussian_filter_7x7_v0() still the hotspot

Original Version

5.233ms

Better Memory Accesses 1.589ms

Higher Occupancy

Shared Memory

1.562ms
0.911ms

AP \DENTIFY PERFORMANCE LIMITER

Results

i Kernel Performance Is Bound By Compute And Memory Bandwidth

For device "Tesla K40m" compute and memory utilization are balanced. These utilizatio
good, but that additional performance improvement may be possible if either of both ¢

are increased.

Utilization

AR | OOKING FOR INDICATORS

Analysis o) Details | Cal Settings | B Co
3| Iy, Export PDF Report
1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwi..., or Latency Bound

The first step in analyzing an individual kernel
is to determine if the performance of the

kernel is bounded by computation, memaory
bandwidth, or instruction/memary latency. The
results at right indicate that the performance

of kernel "gaussian_filter_7x7 _v5" is most likely
limited by both compute and memory

bandwidth.

@
=
@
-
=
o
=
]
M
=
2

r Bandwidth Analysis
ly bottlenecks to
performance for this kernel, yu should fi
perferm both compute and memory analy
deterrine how they are limiting performance,
dy, Perform Latency Analysis

Latency is likely not the primary perfermance

AP READ-ONLY PATH

> Annotate read-only parameters with const __ restrict (or use the __ldg
intrinsic)

__global void gaussian_filter 7x7 _v2(int w, int h, const uchar *__restrict src, uchar *dst)

> The compiler generates LDG instructions that load through TEX instead of
Load/Store

Original version 5.233ms
Better memory accesses 1.589ms

Higher Occupancy 1.562ms

Shared memory 0.911ms
Read-Only path 0.808ms

Results

i Kernel Performance Is Bound By Compute And Memory Bandwidth
and memory utilization are balanced. The:
performance rovement may be

levels indicate that kernel
ither of both of compute and

THE RESULT: 6.5X

Utilization

> Looking much better

> Things to investigate next
Reduce computational intensity (separable filter)
Increase Instruction Level Parallelism (process two elements per thread)

> The sobel filter is starting to become the bottleneck

Results

i Kernel Optimization Priorities
The following kernels are ordered by optimization importance based on execution time and achieved occu
of higher ranked kernels (those that appear first in the list) is more likely to improve performance compareq

kernels.

Rank Description
[1 kernel instances] sobel_filter (int, int, unsigned char const *, unsigned char®)

[1 kernel instances] gaussian_filte
[1 kernel instances] rgba_to_graysca

THANK YOU

A

v

