
JAKOB PROGSCH, NVIDIA (jprogsch@nvidia.com)

CHRISTOPH ANGERER, NVIDIA

JULIEN DEMOUTH, NVIDIA

CUDA OPTIMIZATION WITH
NVIDIA NSIGHT™ ECLIPSE EDITION

An iterative method to optimize your GPU code

A way to conduct that method with NVIDIA Nsight EE

Companion Code: https://github.com/chmaruni/nsight-gtc2015

WHAT YOU WILL LEARN

Blur

INTRODUCING THE APPLICATION

Grayscale

Edges

Grayscale Conversion

// r, g, b: Red, green, blue components of the pixel p
foreach pixel p:
 p = 0.298839f*r + 0.586811f*g + 0.114350f*b;

INTRODUCING THE APPLICATION

Blur: 7x7 Gaussian Filter
foreach pixel p:
 p = weighted sum of p and its 48 neighbors

16 12 8 4

9 6 3

6 4 2

3 2 1

6 3

4 2

9

6

3 2 1

4 8 12

3 6 9

2 4 6

1 2 3

3 6 9

2 4 6

1 2 3

12

8

4

4

8

12

Image from Wikipedia

INTRODUCING THE APPLICATION

Edges: 3x3 Sobel Filters

foreach pixel p:
 Gx = weighted sum of p and its 8 neighbors
 Gy = weighted sum of p and its 8 neighbors
 p = sqrt(Gx + Gy)

-1 0 1

-2 0 2

-1 0 1

Weights for Gx:

1 2 1

0 0 0

-1 -2 -1

Weights for Gy:

INTRODUCING THE APPLICATION

PERFORMANCE OPTIMIZATION CYCLE
1. Profile

Application

2. Identify

Performance

Limiter

3. Analyze Profile

& Find Indicators
4. Reflect

5. Change and

Test Code

4b. Build Knowledge
Chameleon from http://www.vectorportal.com, Creative Commons

ITERATION 1

THE PROFILER WINDOW

Timeline

Analysis Results

Summary

Guide

EXAMINE INDIVIDUAL KERNELS
(GUIDED ANALYSIS)

Launch

Identify the hotspot: gaussian_filter_7x7_v0()

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

IDENTIFY PERFORMANCE LIMITER

Memory Ops

Load/Store

Memory Related Issues?

Memory Utilization vs Compute Utilization

Four possible combinations:

PERFORMANCE LIMITER CATEGORIES

Comp Mem

Compute

Bound

Comp Mem

Bandwidth

Bound

Comp Mem

Latency

Bound

Comp Mem

Compute and

Bandwidth

Bound

60%

MEMORY TRANSACTIONS: BEST CASE

A warp issues 32x4B aligned and consecutive load/store request

Threads read different elements of the same 128B segment

1x L1 transaction: 128B needed / 128B transferred

4x L2 transactions: 128B needed / 128B transferred

1x 128B L1 transaction per warp

4x 32B L2 transactions per warp

1x 128B load/store request per warp

MEMORY TRANSACTIONS: WORST CASE

Threads in a warp read/write 4B words, 128B between words

Each thread reads the first 4B of a 128B segment

32x L1 transactions: 128B needed / 32x 128B transferred

32x L2 transactions: 128B needed / 32x 32B transferred

1x 128B L1 transaction per thread

1x 32B L2 transaction per thread

1x 128B load/store request per warp Stride: 32x4B warp 2

Threads 24-31 Threads 0-7

TRANSACTIONS AND REPLAYS

A warp reads from addresses spanning 3 lines of 128B

1 instr. executed and 2 replays = 1 request and 3 transactions

Threads 8-15

Threads 16-23

Time

Instruction issued Instruction re-issued

1st replay

Threads

0-7/24-31

Threads

8-15

Instruction re-issued

2nd replay

Threads

16-23

1st line:

2nd line:

3rd line:

TRANSACTIONS AND REPLAYS

With replays, requests take more time and use more resources

More instructions issued

More memory traffic

Increased execution time

Inst. 0

Issued

Inst. 1

Issued

Inst. 2

Issued

Execution time

Threads

0-7/24-31

Threads

8-15

Threads

16-23

Inst. 0

Completed

Inst. 1

Completed

Inst. 2

Completed

Threads

0-7/24-31

Threads

8-15

Threads

16-23

Transfer data for inst. 0

Transfer data for inst. 1

Transfer data for inst. 2

Extra latency Extra work (SM)

Extra memory traffic

CHANGING THE BLOCK LAYOUT

Our blocks are 8x8

We should use blocks of size 32x2

Warp 0

Warp 1

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

4 5 6 0 1 2 3 7 13 14 12 8 9 10 11 15 21 22 20 16 17 18 19 23 27 28 29 30 24 25 26 31

36 37 38 32 33 34 35 39 44 45 46 40 41 42 43 47 52 53 54 48 49 50 51 55 60 61 62 56 57 58 59 63

threadIdx.x (stride-1, uchar)

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

27 28 29 30

36 37 38

44 45 46

52 53 54

21 22

13 14

20

12

4 5 6

24 25 26

32 33 34

40 41 42

48 49 50

16 17 18

8 9 10

0 1 2

19

11

3

51

43

35

31

39

47

55

23

15

7

60 61 62 56 57 58 59 63

Data Overfetch

IMPROVED MEMORY ACCESS

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Blocks of size 32x2

Memory is used more efficiently

ITERATION 2

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

IDENTIFY PERFORMANCE LIMITER

Latency Bound

LOOKING FOR MORE INDICATORS

LATENCY

GPUs cover latencies by having a lot of work in flight

warp 0

warp 1

warp 2

warp 3

warp 4

warp 5

warp 6

warp 7

warp 8

warp 9

The warp issues

The warp waits (latency)

Fully covered latency Exposed latency

No warp issuing

LATENCY: LACK OF OCCUPANCY

Not enough active warps

The schedulers cannot find eligible warps at every cycle

warp 0

warp 1

warp 2

warp 3

No warp issues

STALL REASONS:
EXECUTION DEPENDENCY

Memory accesses may influence execution dependencies

Global accesses create longer dependencies than shared accesses

Read-only/texture dependencies are counted in Texture

Instruction level parallelism can reduce dependencies

a = b + c; // ADD

d = a + e; // ADD

a = b[i]; // LOAD

d = a + e; // ADD

a = b + c; // Independent ADDs
d = e + f;

ILP AND MEMORY ACCESSES

#pragma unroll is useful to extract ILP

Manually rewrite code if not a simple loop

float a = 0.0f;
for(int i = 0 ; i < N ; ++i)
 a += logf(b[i]);

c = b[0]

No ILP 2-way ILP (with loop unrolling)

float a, a0 = 0.0f, a1 = 0.0f;
for(int i = 0 ; i < N ; i += 2)
{
 a0 += logf(b[i]);
 a1 += logf(b[i+1]);
}
a = a0 + a1 a += logf(c)

c = b[1]

a += logf(c)

c = b[2]

a += logf(c)

c = b[3]

a += logf(c)

c0 = b[0]

a0 += logf(c0)

c0 = b[2]

a0 += logf(c0)

c1 = b[1]

a1 += logf(c1)

c1 = b[3]

a1 += logf(c1)

a = a0 + a1

...

Not enough active warps to hide latencies?

LOOKING FOR MORE INDICATORS

IMPROVED OCCUPANCY

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Bigger blocks of size 32x4

Increases achieved occupancy slightly (from 47.6% to 52.4%)

ITERATION 3

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

IDENTIFY PERFORMANCE LIMITER

Still Latency Bound

Adjacent pixels access similar neighbors in Gaussian Filter

We should use shared memory to store those common pixels

Apart from higher bandwidth shared memory also has lower
latency!

SHARED MEMORY

__shared__ unsigned char smem_pixels[10][64];

SHARED MEMORY

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared Memory 0.911ms 5.74x

Using shared memory for the Gaussian Filter

Significant speedup, < 1ms

ITERATION 4

gaussian_filter_7x7_v0() still the hotspot

IDENTIFY HOTSPOT

Hotspot

Kernel Time Speedup

Original Version 5.233ms 1.00x

Better Memory Accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared Memory 0.911ms 5.74x

IDENTIFY PERFORMANCE LIMITER

Aha!

Getting into the high

utilization region

LOOKING FOR INDICATORS

Launch

Can we move LD/ST work here?

READ-ONLY PATH

Annotate read-only parameters with const __restrict (or use the __ldg
intrinsic)

The compiler generates LDG instructions that load through TEX instead of
Load/Store

__global__ void gaussian_filter_7x7_v2(int w, int h, const uchar *__restrict src, uchar *dst)

Kernel Time Speedup

Original version 5.233ms 1.00x

Better memory accesses 1.589ms 3.29x

Higher Occupancy 1.562ms 3.35x

Shared memory 0.911ms 5.74x

Read-Only path 0.808ms 6.48x

THE RESULT: 6.5X

Looking much better

Things to investigate next

Reduce computational intensity (separable filter)

Increase Instruction Level Parallelism (process two elements per thread)

The sobel filter is starting to become the bottleneck

THANK YOU

