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What has been covered so far? 



3  

HOW GPU ACCELERATION WORKS 

Application Code 

+ 

GPU CPU 
5% of Code 

Compute-Intensive Functions 
Throughput critical 

Rest of Sequential 
CPU Code 

 
Latency critical 
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SIMPLE PROCESSING FLOW 

 

1. Copy input data from CPU memory/NIC to 

GPU memory 

PCI Bus 
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SIMPLE PROCESSING FLOW 

 

1. Copy input data from CPU memory/NIC to 

GPU memory 

2. Load GPU program and execute 

3. Copy results from GPU memory to CPU 

memory/NIC 

PCI Bus 
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3 WAYS TO PROGRAM GPUS 

Applications 

Libraries 

“Drop-in” 

Acceleration 

Programming 

Languages 

Maximum 

Flexibility 

OpenACC 

Directives 

Easily Accelerate 

Applications 
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CUDA EXECUTION MODEL 
Thread: Sequential execution unit 

Threads execute in parallel 

Thread Block: a group of threads 

Executes on a single Streaming Multiprocessor (SM) 

Threads within a block can cooperate 

Light-weight synchronization 

Data exchange 

Grid: a collection of thread blocks 

Thread blocks of a grid execute across multiple SMs 

Thread blocks do not synchronize with each other 

Communication between blocks is expensive 
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Software Hardware 

Threads are executed by scalar CUDA Cores 

Thread 

CUDA 

Core 

Thread Block Multiprocessor 

Thread blocks are executed on multiprocessors 

 

Thread blocks do not migrate 

 

Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file) 

Grid 

A kernel is launched as a grid of thread blocks 

EXECUTION MODEL 

Device 
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Chipset 

DRAM 

Device 

DRAM 

 

 

 

 

 

 

Global 

Constant 

Texture 

Local 

GPU 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Multiprocessor 

Registers 

Shared Memory 

Constant and Texture  

Caches 

L1 / L2 Cache 

CUDA Memory Architecture 



Kepler Memory Hierarchy 

L2 

Global Memory 

Registers 

SM-N 

Registers 

SM-0 

Registers 

SM-1 

L1 SMEM Read 

only L1 SMEM Read 

only 
L1 SMEM Read 

only 



Low Latency or High Throughput? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other (warps of) threads 

GPU Streaming Multiprocessor – High-throughput Processor 

CPU core – Low-latency Processor 

Computation Thread/Warp 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

Context switch 

W1 

 

W2 

 

W3 

 

W4 

 

T1 

 

T2 

 

T3 

 

T4 
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General Optimizations 
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NVVP: NVIDIA’S VISUAL PROFILER 
Timeline 

Guided 

System 

Analysis 
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WHICH KERNEL SHOULD WE OPTIMIZE? 
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BEFORE OPTIMIZING YOUR KERNELS 

Always use NVVP to determine if the kernel is the limiter 

Remember Amdahl: 𝑺 =
𝟏

𝟏−𝑷 +
𝑷

𝑵

 ≈
𝟏

(𝟏−𝑷)
 

Kernels may not always be the limiter 

 

No Active 

Kernel! 
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OPTIMIZE LOCALITY AND CONCURRENCY 

Manage locality: Move data where it is used 

Primary focus of OpenACC 

Simplified by unified memory available since CUDA 6 

 

Keep both CPU and GPU busy 

 

Asynchronous transfers: No need to stall compute for transfer 
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Kernel Optimizations 
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KERNEL LAUNCH CONFIGURATION 

 A kernel is a function that runs on the GPU 

 A kernel is launched as a grid of blocks of threads 

 Launch configuration is the number of blocks and number of threads 
per block, expressed in CUDA with the <<< >>> notation: 

mykernel<<<blocks_per_grid,threads_per_block>>>(…); 

 What values should we pick for these? 

Need enough total threads to process entire input 

Need enough threads to keep the GPU busy 

Selection of block size is an optimization step involving warp occupancy 
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HIGH-LEVEL VIEW OF GPU ARCHITECTURE 

 Several Streaming Multiprocessors 

E.g., Kepler GK110 has up to 15 SMs 

 L2 Cache shared among SMs 

 Multiple channels to DRAM 

Kepler GK110 
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KEPLER STREAMING MULTIPROCESSOR (SMX) 

Per SMX: 

192 SP CUDA Cores 

64 DP CUDA Cores 

4 warp schedulers 

Up to 2048 concurrent threads 

One or two instructions issued per 
scheduler per clock from a single 
warp 

Register file (256KB) 

Shared memory (48KB) 
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LAUNCH CONFIGURATION: GENERAL 
GUIDELINES 

How many blocks should we use? 

1,000 or more thread blocks is best 

Rule of thumb: enough blocks to fill the GPU at least 10s of times over 

Makes your code ready for several generations of future GPUs 
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LAUNCH CONFIGURATION: GENERAL 
GUIDELINES 

How many threads per block should we choose? 

 The really short answer: 128, 256, or 512 are often good choices 

 

 The slightly longer answer: 

Pick a size that suits the problem well 

Multiples of 32 threads are best 

Pick a number of threads per block (and a number of blocks) that is sufficient 
to keep the SM busy 
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Multiprocessor 

32 Threads 

Warps 

A thread block consists 

of warps of 32 threads 

 

A warp is executed 

physically in parallel on 

some multiprocessor. 

 

Threads of a warp issue 

instructions in lock-step 

(as with SIMD) 

= 

WARPS 

Thread Block 

32 Threads 

32 Threads 

32 Threads 
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CONCURRENCY OFFERED BY A K20X (GK110) 

Number of SMX   :  14  (15 on K40, K80) 

Number of warps per SM  :  64 

Number of threads/warp  :  32 

 

Warps per device   :   14*64 = 896 

Active threads per device  :  14*64*32 = 28’672 
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LATENCY HIDING 

ide it 



Occupancy 

Need enough concurrent warps per 

SM to hide latencies: 

Instruction latencies 

Memory access latencies 

 

Hardware resources determine 

number of warps that fit per SM 

 

Occupancy = Nactual / Nmax  

 



Occupancy Limiters 

Full occupancy: Maximum choice for scheduler 

 

Hardware limits 

Registers per thread 

Shared memory per thread block 

Threads per thread block 

Thread blocks per SMX 

 

Optimal choice: balance resource consumption and concurrency 

Kepler SM resources: 
 

– 64K 32-bit registers 

– Up to 48 KB of shared memory 

– Up to 2048 concurrent threads 

– Up to 16 concurrent thread blocks 



Occupancy and Performance 

Note that 100% occupancy isn’t needed to reach maximum 

performance 

Once the “needed” occupancy (enough warps to switch among to cover 

latencies) is reached, further increases won’t improve performance 

 

Level of occupancy needed depends on the code 

More independent work per thread -> less occupancy is needed 

Memory-bound codes tend to need more occupancy 

Higher latency than for arithmetic, need more work to hide it 



Thread Block Size and Occupancy 

Thread block size is a multiple of warp size (32) 

Even if you request fewer threads, hardware rounds up 

Thread blocks can be too small 

Kepler SM can run up to 16 thread blocks concurrently 

SM can reach the block count limit before reaching good occupancy 

E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ – probably not enough) 

Thread blocks can be too big 

Enough SM resources for more threads, but not enough for a whole block 

A thread block isn’t started until resources are available for all of its threads 
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Thread Block Sizing 

SM resources: 

Registers 

Shared memory 

Number of warps allowed by SM resources 
Too few 

threads per block 

Too many 

threads per block 



CUDA Occupancy Calculator 

 

 

 

Analyze effect of 

resource consumption on 

occupancy 
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Thank You! 


