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If we want to spread the heat beyond a single node we need message passing. In this exercise
we will parallelize the 2D diffusion equation with MPI.

a) Parallelize the serial 2D diffusion code found in skeleton/diffusion2d_serial.cpp with
MPI. Divide the 2D domain with an MPI cartesian grid and use appropriate MPI datatypes
for the data transfer.

A straightforward way is to split the grid into square tiles with one tile per process. For
simplicity we adjust the local grid size in each direction to a multiple of the number of
corresponding processes. To minimize communication overhead we compute the interior
of the local domain while waiting for the boundaries by using non-blocking asynchronous
communication.

Parallel code: solution_code/diffusion2d_mpi.cpp

b) Estimate (on paper) the communication overhead of the 2D grid decomposition compared
to the horizontal strips that we used in the previous semester. Which one achieve better
scaling?

The total amount of communication per process if the domain is divided into tiles is
2[Nx/Px + Ny/Py] and for strips along the y-axis 2Nx, where Nx,y and Px,y is the num-
ber of grid points and processes in each direction. As we are doing sparse matrix-vector
multiplication the computation scales as NxNy/PxPy. Hence finite difference discretization
should scale much better if we use tiles rather than strips.

c) Make a strong scaling plot up to 48 cores.

Looking at the strong scaling fig. 1, for a total grid size Nx = Ny = 210 the sub-matrix
fits entirely into the cache minimizing memory access and resulting in perfect scaling. As
we increase the system size we exceed the cache size and additional memory access reduces
performance. Scaling gets better again for larger systems as the ratio between communica-
tion and computation decreases. The drop in scaling as the number of processes exceeds
24 is due to inter-node communication which is much more expensive than message passing
within a node when using less than 24 processes.

In Figure 2 and 3 we show the same scaling when a different MPI schedule is used, i.e.
changing the mapping “rank to node". In particular we tried out -bynode in Figure 2
and -loadbalance in Figure 3. The Open MPI documentation man mpirun has a very
explanation of how ranks are distributed to the nodes in each case.
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Figure 1: Strong scaling for 20 time-steps. Nx,y is the global grid dimension. Ranks are
distributed according to the Open MPI ‘default’ schedule.

The scaling plots for small system sizes present some strage behavior between 24 and 32
processes. We understand this behavior by checking the domain decompositions: for P = 24
we have a grid 6 × 4, for P = 28 we have a grid 7 × 4, for P = 32 we have a grid 8 × 4,
for P = 36 we have a grid 6 × 6. Because of this change in the shapes, the amount of
communication which takes place between nodes varies substantially.

Summary

Summarize your answers, results and plots into a short PDF document. Furthermore, elucidate
the main structure of the code and report possible code details that are relevant in terms of
accuracy or performance. Send the PDF document and source code to your assigned teaching
assistant.
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Figure 2: Strong scaling for 20 time-steps. Nx,y is the global grid dimension. Ranks are
distributed according to the Open MPI ‘bynode’ schedule.

Figure 3: Strong scaling for 20 time-steps. Nx,y is the global grid dimension. Ranks are
distributed according to the Open MPI ‘loadbalance’ schedule.
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