
HPCSE II

More m

Waiting for Particular Shared State(s)

How do we wait for a certain state to be reached?
Check all the tine in a loop?  
 

Sleep for a while before checking again?  
 
 

Solution:  
 
let the threading library help you by using a condition variable

Wastes resources.

Might waste time by waiting too long

Condition variable

Blocks a thread until some condition might be satisfied

Always used with a mutex to ensure the condition sees only non-
broken invariants

Always enter it with a locked lock
Always call in a loop that checks the condition at the end, to see
whether the notification condition is still valid (not needed for
the versions that take a predicate)

Two types in C++11:
condition_variable: optimized version, needs to be used with unique_lock<mutex>
condition_variable_any: can be used with any lock

std::condition_variable_any

class condition_variable_any // noncopyable but movable
{
 void notify_one();
 void notify_all();

 template<class Lock>
 void wait(Lock& lk);

 template<class Lock, class Pred>
 void wait(Lock& lk, Pred p);

 template <class Lock, class Clock, class Duration>
 cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);

 template <class Lock, class Clock, class Dur, class Pred>
 cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Dur >& abs_time, Pred pred);

 template <class Lock, class Rep, class Period>
 cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);

 template <class Lock, class Rep, class Period, class Pred>
 cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Pred pred);
};

enum class cv_status { no_timeout, timeout };

The non-predicate wait
functions must be called in a
loop that checks the condition

Condition Example: Message Queue

bounded_msg_queue q;

void sender()
{
 for (int n = 0; n < 100; ++n)
 q.send(n);
 q.send(-1); // end sentinel
}

void receiver()
{
 for (int n = 0; n != -1;)
 {
 n = q.receive();
 std::cout << n << std::endl;
 }
}

int main()
{
 std::thread t1(sender);
 std::thread t2(receiver);
 t1.join();
 t2.join();
}

If queue is full when sending,
must block until no longer full

If queue is empty when
receiving, must block until no
longer empty

Condition Example: Message Queue

Lock the mutex before checking the
predicate
Keep checking until true, in case of
spurious wakeups, shared conditions
notify_one wakes a waiting thread
look at example codes for receive

template <unsigned size, class T>
struct bounded_msg_queue
{
 bounded_msg_queue()
 : begin(), end(), buffered() {}

 void send(T m)
 {
 std::unique_lock<std::mutex> lk(broker);
 not_full.wait(lk,[&] () { return buffered < size;});
 buf[end] = m;
 end = (end + 1) % size;
 ++buffered;
 not_empty.notify_one();
 }

 …

 …

 T receive();
 private:
 int begin, end, buffered;
 std::condition_variable not_full, not_empty;
 std::mutex broker;
 T buf[size];
};

A barrier

Synchronization between threads
avoid it whenever possible since it serializes and slows down the code
(Amdahl’s law)!
is sometimes unavoidable: wait for all threads to finish between update
steps in a Monte Carlo simulation or integration of a PDE

No C++ intrinsic, but we can write a barrier class
class barrier
{
private:
 mutable std::mutex m_mutex;
 std::condition_variable m_cond;
 unsigned int const m_total;
 unsigned int m_count;
 unsigned int m_generation;

public:
 barrier(unsigned int count)
 : m_total(count)
 , m_count(count)
 , m_generation(0)
 {
 assert(count != 0);
 }

 void wait()
 {
 std::unique_lock<std::mutex> lock(m_mutex);
 unsigned int gen = m_generation;

 // decrease the count
 if (--m_count==0) {
 // if done reset to new generation of wait
 // and wake up all threads
 m_count = m_total;
 m_generation++;
 m_cond.notify_all();
 }
 else
 while (gen == m_generation)
 m_cond.wait(lock);
 }
};

std::call_once

“Once routines”
Executed once, no matter how many invocations
No invocation will complete until the one execution finishes

Typical use: initialization of static and function-static data

Protocol:
Declare a global (namespace scope) once_flag for each once routine
Invoke the once routine indirectly by passing its address and once_flag to call_once.

std::once_flag printonce_flag;

void printonce() { std::cout << "This should be printed only once\n"; }

int main()
{
 std::vector<std::thread> threads;
 for (int n = 0; n < 10; ++n)
 threads.push_back(
 std::thread([&](){std::call_once(printonce_flag,printonce);}));

 for (std::thread& t : threads)
 t.join();

 return 0;

Thread-local data

C++11 has a new keyword thread_local, a static variable for each thread  
 
int times_called()  
{ 
 thread_local int count=0; 
 return ++count; 
}

Unfortunately not yet implemented by any compiler!!!

C++03 needs helps from Boost 
 
boost::thread_specific_ptr<int> count;  
int foo() // the function running in a thread  
{ 
 count.reset(new int(0)); // will be cleaned up at thread exit  
 … 
} 
 
int times_called()  
{ 
 return ++*count; 

