
HPCSE II 

Sparse linear algebra



1-d diffusion equation

Recall the one dimensional diffusion equation 
Discretize space on a regular mesh 

Replace the spatial derivative by a finite difference stencil 

Discretize time and replace the temporal derivative by a finite difference 

We get a forward-Euler integrator
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Rewriting as a matrix problem

Interpret the function at time t as a vector f(t) with elements 

Then the integrator can be written as 

Boundary conditions: let us fix them to keep it simple 

This is just a matrix equation  
with a tridiagonal matrix M
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2-d diffusion equation

Let’s go to two dimensions 
Discretize space on a regular 2D mesh 

And we get a two-dimensional version of the finite difference equation 

This uses the second order “stencil” for the two-dimensional Laplacian
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2d diffusion equation as matrix equation

We can again rewrite this as a matrix equation.  
On an L x L mesh use the indexing 

We again get a matrix equation, but now with a banded matrix 

nonzero entries only for 
 i-j=0,±1,±L

 fi+Lj (t) = f (!ri, j ,t)
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Differential equations as sparse matrix problems

The mapping is much more general. We can map any iteration 
procedure for differential equations to a matrix problem 

finite differences, finite elements or other finite basis sets 
regular or unstructured grids 
arbitrary graphs
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The Poisson equation

A widely used partial differential equation 
It relates the potential of gravity to the mass distribution 

It relates the electric potential to the charge distribution 

We can put it on a mesh like the diffusion equation and write it as a matrix equation

Δφ = f

Δφ = 4πGρ
G = 6.673×10−11m3kg−1s−2  is the gravitational constant
ρ  is the mass density

ΔV = − ρ
ε

ε =  permitivity of the medium (8.85 ×10−12F /m in vacuum)
ρ  is the charge density
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Iteratively solving the Poisson equation

The Poisson equation can be solved easily by iteration, after realizing that 
the central value of the solution is the average of the surrounding values 
minus the local density: 

Start with a random guess 
Iterate the fixed point equation 

Speed up convergence with successive overrelaxation (SOR) 
apply the proposed change multiplied by a factor 
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Sparse and dense matrices

A sparse vector of length N has m << N non-zero entries 
vector operations can be performed with O(m) instead of O(N) effort 
storage requirements are O(m) instead of O(N) 
store the indices and values of non-zero entries in two vectors of size m 

A sparse matrix of size NxN has m= O(N) or m= O(N log N) 
often  

storage requirements are O(m) instead of O(N2) 
many operations are faster 

Sparse matrix examples: 
tridiagonal matrix for 1d diffusion equation: 3N-4 nonzero entries 
band matrix for 2d diffusion equation: less than 5N non-zero entries



Complexity of matrix operations

The first two only need to iterate over non-zero elements 
Linear equations and eigenvalue problems can be solved by iterative 
methods using only matrix-vector multiplications, such as in

Operation Dense matrix Sparse matrix with  
O(N) non-zero entries

Matrix additions O(N2) O(N)

Matrix-vector 
multiplications O(N2) O(N)

Linear equation solvers O(N3) O(N)

Calculate some eigenvalues O(N2) O(N)

 
φ
! (n+1)

= (1−α )φ
! (n)

+α Mφ
! (n)

−πGρ
"!⎡

⎣
⎤
⎦



Iterative linear solvers

Sparse linear equations can be solved by iterative methods that only need 
the matrix in the form of matrix-vector products, and hence have linear 
scaling for sparse matrices! 

SOR for the Poisson equation was a very simple example. but there are 
more and better ones 

Conjugate Gradient (CG) 
BiCG 
GMRES 
... 

All methods nicely explained including  
pseudo-code in the templates book 

http://www.netlib.org/linalg/html_templates/Templates.html 
PDF version http://www.netlib.org/templates/templates.pdf 



Unstructured grids: PageRank

The page rank matrix, used to rank web pages is a prime example of an 
unstructured sparse matrix problem.  
It is a diffusion matrix on the graph of all web pages, mimicking a random 
surfer. The simplest version is 

pick one of the links on a page at random. Jump to a random page from all pages if 
there is no link on a page 
the matrix row for a given page s contains an entry 1/L(s) in every column 
corresponding to one of the L(s) pages that it links to. 
since all entries are positive and the row sums are 1, this is a Markov transition 
matrix. 
The equilibrium distribution gives the page rank. Recall that this is the largest left 
eigenvector of the matrix:
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The power method

The power method is the simplest iterative eigensolver. Just multiply the 
vector many times with the matrix. 
Algorithm from the template book  
http://web.eecs.utk.edu/~dongarra/etemplates/



Why the power method works

Proof of the power method for Hermitian matrices 
decompose the starting vector into a sum of eigenvectors 

after n iterations the vector is 

now normalize and take the limit
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Iterative eigensolvers solvers

Sparse eigenproblems can be solved by iterative methods that only need 
the matrix in the form of matrix-vector products, and hence have linear 
scaling for sparse matrices if only a few eigenvectors are needed! 

Power method was a very simple example but there are more and better 
ones 

Lanczos  
Arnoldi 
Jacobi-Davidson 
... 

All methods nicely explained including  
pseudo-code in the eigenvalues templates book 

http://www.cs.ucdavis.edu/~bai/ET/contents.html  



Variants of PageRank

The PageRank matrices actually used are a bit more complicated 
The “surfer” gets bored after a while: 

with probability d the surfer follows a link 
with probability (1-d) the surfer randomly jumps to a new page.  

This will raise the weight of not so popular pages 
it means that all the zeros get replaces by a small finite probability (1-d)/N 

Making all zero entries finite makes the matrix dense: 

A better way is to incorporate it explicitly in the multiplication function: 
multiplying a vector by a constant matrix gives a constant vector 

we perform a sparse matrix-vector product and add a constant vector 

M = ConstantMatrix((1− d) / N )+ dW T

 

!′p = M!p = ConstantMatrix((1− d) / N ) !p + dW T !p
= ConstantVector((1− d) / N)+ dW T !p



Sparse matrix problems

Many problems in CSE can be mapped to sparse matrix problems 
Explicit integrators for time integration of PDEs, such as the diffusion equation 

Implicit time integrators require solving a sparse linear systen of equations 

Solving PDEs by mapping to sparse linear systems of equations 

Sparse eigenproblems, such as the equilibrium state of diffusion or page rank 

All of these problems boil down to  
sparse matrix-vector multiplication, either directly or through iterative solvers 
dense vector operations
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Sparse matrix storage

Discussion: how would you store a sparse matrix?



Matrix-free:  
just code the matrix-vector multiplication instead of storing the matrix 

Packed band matrices with  u upper and l lower subdiagonals 
store the diagonals only.  

Sparse storage formats:  
store indices and values of non-zero elements 
many options exist. What do you prefer?  

Sparse matrix storage

Dense storage of matrix a Packed storage as a matrix p

aij  stored in packed format in pu+1+i- j , j



Compressed storage formats

Dictionary of keys (DOK) 
an associative array mapping an index pair (i,j) to a value 
stored as a tree or hash map of non-zero values 
fast for iteratively building a matrix, slow access later 

List of lists (LIL) 
stores one list per row, containing column index and value of the non-
zero entries 
the “list” can be a linked list, array, or vector, sorted by column index 
fast for iteratively building a matrix 

Coordinate list (COO) 
a list of triples (column, row, value), sorted by column and row 
fast for iteratively building a matrix, slow access later



Compressed storage formats (cont.)

Compressed sparse row (CSR)  
stores the matrix in three arrays: column indices, values, and row starts 

Compressed sparse column (CSC) is similar but with row indices and 
column starts  
These are space-saving and efficient once the matrix is constructed. It 
make sense to change matrix storage format to CSR or CSC after building 
the matrix if another format is used for efficient construction.
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Parallelizing sparse matrix operations

Discussion: how would you parallelize a sparse matrix-vector 
multiplication?



Parallelizing sparse matrix operations

A CSR matrix class
// an (incomplete) CSR class 

template <class ValueType, class SizeType=std::size_t> 
class csr_matrix 
{ 
  typedef ValueType value_type; 
  typedef SizeType size_type; 
   
  csr_matrix(size_type s = 0) 
  : n_(s) 
  , row_starts(s+1) 
  {} 
   
  // we are missing functions to actually fill the matrix 
   
  size_type dimension() const { return n_;} 
   
  std::vector<value_type> multiply(std::vector<value_type> const& x) const; 
   
private: 
  size_type n_; 
  std::vector<size_type> col_indices; 
  std::vector<size_type> row_starts; 
  std::vector<value_type> data; 
};



Parallelizing sparse matrix operations

Matrix-vector multiplication in CSR representation 

The loop over all rows can easily be parallelized 
There are no race conditions since each iteration writes into a different 
variable y[row]

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all rows 
  for (size_type row = 0 ; row < dimension() ; ++ row) 
     // loop over all non-zero elements of the row 
    for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i) 
      y[row] += data[i] * x[col_indices[i]]; 

  return y; 
}

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all rows 
  #pragma omp parallel for 
  for (size_type row = 0 ; row < dimension() ; ++ row) 
     // loop over all non-zero elements of the row 
    for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i) 
      y[row] += data[i] * x[col_indices[i]]; 

  return y; 
}



Parallelizing sparse matrix operations

Matrix-vector multiplication in CSC representation 

The loop over all columns can also be parallelized 
But there are potential race conditions since different iteration may write 
into the same variable y[row_indices[i]] 
An atomic update is needed and makes the code inefficient!

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all columns 
  for (size_type col = 0 ; col < dimension() ; ++ col) { 
    // loop over all non-zero elements of the row 
    for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i) 
      y[row_indices[i]] += data[i] * x[col]; 
  } 
  return y; 
}

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all columns 
  #pragma omp parallel for 
  for (size_type col = 0 ; col < dimension() ; ++ col) { 
    // loop over all non-zero elements of the row 
    for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i) 
      y[row_indices[i]] += data[i] * x[col]; 
  } 
  return y; 
}

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all columns 
  #pragma omp parallel for 
  for (size_type col = 0 ; col < dimension() ; ++ col) { 
    // loop over all non-zero elements of the column 
    for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i) 
      #pragma omp atomic 
      y[row_indices[i]] += data[i] * x[col]; 
  } 
  return y; 
}



Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSR 

Potential race conditions!

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all rows 
  for (size_type row = 0 ; row < dimension() ; ++ row)  
    // loop over all non-zero elements of the row 
    for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i) 
      y[col_indices[i]] += data[i] * x[row]; 

  return y; 
}

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all rows 
  #pragma omp parallel for 
  for (size_type row = 0 ; row < dimension() ; ++ row)  
    // loop over all non-zero elements of the row 
    for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i) 
      #pragma omp atomic 
      y[col_indices[i]] += data[i] * x[row]; 

  return y; 
}



Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSC 

All is safe!

template <class ValueType, class SizeType> 
std::vector<ValueType>  
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const 
{ 
  assert( x.size()== dimension()); 
  std::vector<value_type> y(dimension()); 
   
  // loop over all columns 
  #pragma omp parallel for 
  for (size_type col = 0 ; col < dimension() ; ++ col) 
    // loop over all non-zero elements of the column 
    for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i) 
      y[col] += data[i] * x[row_indices[i]]; 

  return y; 
}



Summary of sparse matrix operations

If possible use a matrix-free method and hard-code the matrix-vector 
multiplication. This uses less memory and is faster. 

To iteratively build a matrix use DOK, LIL, COO or similar formats unless the 
data comes in the right order for CSR or CSC  

To use the matrix 
prefer CSR format or similar for matrix-vector multiplication 
prefer CSC format or similar for matrix-vector multiplication with the transposed 
matrix 

We might have to copy the matrix into a new format 

What do we do if we need to multiply vectors with both the original and 
the transposed matrix?


