
HPCSE II

Vectorization with SIMD instructions

SIMD (vector instructions)

Recall SIMD: Single Instruction Multiple Data
we perform the same operation on many values at once.

This was pioneered by the vector  
supercomputers (e.g. Cray X/MP at ETH)

Since 1999 part of all Intel CPUs
SSE (Streaming SIMD Extensions)
AVX (Advanced Vector Extensions)

The easiest way of getting parallel speedup

now in basement of CAB

SIMD registers and operations

SIMD units contain vector registers
128-bit registers XMM0 - XMM15 for SSE
256-bit registers YMM0-YMM15 for AVX,  
overlapping the XMM registers

The SSE XMM registers can store

AVX register can store 8 float or 4 double, integers since AVX2

x m m
x1 x2

y1 y2 y3 y4
i1 i2

j1 j2 j3 j4
k1 k2 k3 k4 k5 k6 k7 k8

XMM register
2 doubles

4 floats
2 64-bit integer

4 32-bit integers
8 16-bit integer

16 bytes

SIMD vector operations

SIMD vector operations act on all values in the vector at once
Example: adding four floats with one “packed floating point” instruction

Advantages:
One instruction instead of 4
Memory access can be optimized

An easy way to gain speed for almost any code

x0 x1 x2 x3

y0 y1 y2 y3

x0+y0 x1+y1 x2+y2 x3+y3

+

=

SSE/AVX versions

Intel and AMD have introduced more and more SIMD instructions with
every new processor generation. The history is complex, and only roughly
summarized below

Homework: determine which SIMD instructions your machine supports

Generation Year First Intel CPUs main features

SSE 1999 Pentium III

SSE2 2001 Pentium 4 SSE registers can be used together with scalar
floating point registers

SSE3 2004 Pentium 4 - Prescott more instructions, and conversions between
floating point and integer

SSE4 2006 Core 2 more instructions

AVX 2011 Sandy Bridge floating point 256 bit registers

AVX2 2013 Haswell integer 256 bit registers

AVX-512 ? ? 512 bit registers

SSE/AVX documentation

The best documentation tool is by Intel, at  
https://software.intel.com/sites/landingpage/IntrinsicsGuide/  

An excellent documentation tool
lists all functions with clear  
explanation and documentation
allows to search for functions
can filter functions depending on  
SSE support

Review: caches

Memory access speed did not keep up with Moore’s law
Are added to speed up memory access

Many GByte of slow but cheap DRAM
2-20 MByte of fast L3-Cache
256-512 kByte of faster L2-Cache per core
2x32 - 2x64 kByte of fastest L1-Cache per core  
(instruction and data cache)

Data that is read is stored in the caches and kept there until it needs to be
evicted because new data is loaded
Data written to memory is written to the cache and only further to
memory if it needs to be evicted (or if we need to synchronize memory
access between cores)
Problems reusing memory will run faster!

L3-cache

memory

L2-cache

CPU
core

L1-cache

L2-cache

CPU
core

L1-cache

Comparison of memory/cache speeds

Data for Intel Sandy Bridge CPU

Size Access time in cycles

L1 cache 2x32 kB 4-5

L2 cache 256 kB 12-19

L3 cache 3-20 MB 30-50

Memory many GB ≈ 300

How does a cache work?

CPU requests a word (e.g. 4 bytes) from memory
A full “cache line” (nowadays typically: 64 bytes) is read from memory
and stored in the cache
The first word is sent to the CPU

CPU requests another word from memory
Cache checks whether it has already read that part as part of the
previous cache line
If yes, the word is sent quickly from cache to CPU
If not, a new cache line is read

Once the cache is full, the oldest data is overwritten
Locality of memory references are important for speed

Data alignment

To achieve optimal speed data should be aligned on cache line boundaries.
Consider what happens if we load one value that is not at the start of a cache line  
(on an old machine with 16 byte cache lines):

Alignment

SSE registers are 16 bytes and need 16-byte alignment
AVX registers are 32 bytes and need 32-byte alignment
It is even better to align on cache line boundaries: 64 bytes on
modern Intel CPUs

Allocating aligned data

Aligned memory can be allocated
on POSIX (Linux, Unix) systems by calling posix_memalign
On Windows systems by calling by calling _aligned_malloc
Easiest using an alignment specifier in the declaration

C++03 with gcc, clang, icc
C++03 with MSVC
C++11

In C++11 we can declare alignment for a data type:

g++ 4.7 and MSVC11 do not support alignas. We provide a workaround in alignas.hpp

// every object of these types will be aligned to 32-byte boundary
struct alignas(32) avx_double
{
 double data[4];
};

template <class T>
struct alignas(32) avx_t
{
 T data[32/sizeof(T)];
};

float __declspec(align(32)) sse[8];

float __attribute__((aligned(32))) sse[8];

float alignas(32) sse[8];

Allocating aligned data with allocators

For C++ containers we need an aligned allocator.
Recall the usually ignored second template parameter of standard containers:
Allocators are used to allocate and free the memory for a container.

Potential use of allocators:
allocate memory for small objects in a fast pool (boost::pool_allocator)

allocate specially aligned memory (used here!)

We provide an aligned allocator in the git repository, and will discuss it now.

template<class T, class Alloc = std::allocator<T> > class vector;

When can a loop be vectorized?

A loop can only be vectorized (or parallelized by threads) if there are no
dependencies between the iterations:

A linear congruential generator cannot be vectorized since one iteration depends on
the previous one. We have to wait for it to finish.

adding vectors by saxpy can be vectorized (no dependencies)

a lagged Fibonacci generator can be vectorized for vector lengths up to min(p,q).
Dependencies only beyond a distance min(p,q)

Vector supercomputers had vector lengths up to 1024 elements.
SSE has at most 16 bytes and AVX at most 32 bytes => the lagged Fibonacci is easier to
vectorize

for (int i=1 ; i<N; ++i)
 rnd[i] = a* rnd[i-1] + c;

for (int i=0 ; i<N; ++i)
 x[i] = a*x[i] + y[i];

for (int i=std::max(p,q) ; i<N; ++i)
 rnd[i] = rnd[i-p] + rnd[i-q];

Detecting dependencies

Look at every variable in the loop and check whether it might be written or
read by another loop iteration. If so there is a dependency.
Some dependencies can be removed by introducing additional variables:  
 
 
 
 
 
 
now both loops can be safely vectorized or parallelized

Another special case are reductions:

reductions can be vectorized, but it needs special care
in OpenMP parallelization there is the reduction clause

for (int i=0; i<N-1; i++) {
 x = (b[i] + c[i])/2;
 a[i] = a[i+1] + x;
}

for (int i=0; i<N-1; i++)
 a2[i] = a[i+1];

for (int i=0; i<N-1; i++) {
 x = (b[i] + c[i])/2;
 a[i] = a2[i] + x;
}

double s=0;
for (int i=0; i<N; i++)
 s += x[i]*y[i];

Using SIMD instructions

SIMD instructions can be used through assembly language. Complicated!
Compilers offer support through intrinsics. Special types and functions that will be
mapped directly to registers and SIMD instructions.
Include the appropriate header 
 
or use the header <x86intrin.h>  
that is available with some compilers  
to load all headers available depending  
on the target platform

Enable code generation for SSE or AVX with the right compiler switches
Homework: study your favorite’s compilers manual to find the switches
With g++ or clang++ one option is to use the -msse3, -msse4 or -maxv to enable
SSE3, SSE4 or AVX support

 MMX <mmintrin.h>
SSE <xmmintrin.h>

SSE2 <emmintrin.h>
SSE3 <pmmintrin.h>

SSSE3 <tmmintrin.h>
SSE4.1 <smmintrin.h>
SSE4.2 <nmmintrin.h>
SSE4A <ammintrin.h>

AES <wmmintrin.h>
AVX and AVX2 <immintrin.h>

Intrinsics: register data types

The intrinsics headers define a few datatypes that map directly to SSE or
AVX registers. The compiler will place such variables in the registers.
Note: these start with two underscores!

__m128 4 floats

__m128d 2 doubles

__m128i integers of any size

__m256 8 floats

__m256d 4 doubles

__m256i integers of any size, AVX2

Intrinsics: naming of operations

SSE and AVX instructions have a certain naming scheme
SSE operations: _mm_name_type
AVX operations: _mm256_name_type

operations on types shorter than a full register will not modify the higher bits
256 bit integer operations are available from AVX2

type length in bits description
ss 32 a single float
ps 128 or 256 4 or 8 floats
sd 64 a single double
pd 128 or 256 2 or 4 doubles

si64 64 any integers
si128 128 any integers
si256 256 any integers
pi8 64 8 8-bit integer

pi 16 64 4 16-bit integers
pi32 64 2 32-bit integer
epi8 128 or 256 16 or 32 8-bit integers
epi16 128 or 256 8 or 16 16-bit integers
epi32 128 or 256 4 or 8 32-bit integers
epi64 128 or 256 2 or 4 64-bit integers

A first example: sscal

Multiply a vector by a scalar, assuming aligned data and a vector length
that is a multiple of 4

We are using four instructions: two loads, a multiplication and a store

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_set1_ps(a);

 // loop over chunks of 4 values
 for (int i=0; i<n/4; ++i) {
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(x+4*i,x2); // store back aligned
 }
}

A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_set1_ps(a);

 int ndiv4 = n/4;
 // loop over chunks of 4 values
 for (int i=0; i<ndiv4; ++i) {
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(x+4*i,x2); // store back aligned
 }

 // do the remaining entries
 for (int i=ndiv4*4 ; i< n ; ++i)
 x[i] *= a;
}

A first example: sscal

Multiply a vector by a scalar, assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_set1_ps(a);

 int ndiv4 = n/4;
 // loop over chunks of 4 values
 for (int i=0; i<ndiv4; ++i) {
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(x+4*i,x2); // store back aligned
 }

 // do the remaining entries
 int i = ndiv4*4;
 switch (n-i) {
 case 3: x[i+2] *= a;
 case 2: x[i+1] *= a;
 case 1: x[i] *= a;
 }
}

the switch statement may be faster than the for loop

load / store

An incomplete summary of load/store instruction

The streaming loads and stores bypass the cache. This reduces cache eviction but it is
hard to see a difference in many codes.

Instruction Types explanation
set1 all sets all elements to a given value
set all set each element to a different value
setr all set in reverse order
setzero pd, ps, si64, si128, si256 set to zero
load1 pd, ps load a single value into each element of the register
broadcast pd, ps same as load1 but much faster (AVX only)
load pd, ps, ss, sd, si128, si256 load values from memory into a register
loadr pd, ps load values in reverse order
loadu pd, ps, ss, sd, si128, si256 load unaligned values from memory (slow!)
streamload si128 load integer values bypassing the cache
store pd, ps, ss, sd, si128, si256 store values from register into memory
storeu pd, ps, ss, sd, si128, si256 store values from register into unaligned memory (slow!)
stream pd, ps, pi, si128, si256 store values into memory bypassing the cache

Prefetch

Prefetch instruction can be used to hint that some data will be used later
and should already be fetched into the cache since they will soon be used

Example use:

You’ll need to play with it and see if it helps

void _mm_prefetch (char const *p, int hint)

hint meaning
_MM_HINT_T0 prefetch into L1 (and L2 and L3) cache. Use for integer data.

_MM_HINT_T1 prefetch into L2 (an L3) cache. Use for floating point data.

_MM_HINT_T2 prefetch into L3 cache. Use if the cache line is not reused much.

_MM_HINT_NTA prefetch into L2 but not L3 cache. Use if the data is needed only once

 // loop over chunks of 4 values
 for (int i=0; i<ndiv4; ++i) {
 _mm_prefetch((char*) y+4*i+8,_MM_HINT_NTA); // prefetch data for two iterations later
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(x+4*i,x2); // store back aligned
 }

Arithmetic floating point instructions

An incomplete summary of arithmetic instructions

Instruction explanation
add, sub +, -

addsub - on even + on odd elements

mul, div *, /

ceil ceil, round up

floor floor, round down
round round, allows specification of rounding policy

min min

max max

rcp reciprocal (inverse)

sqrt sqrt

rsqrt reciprocal (inverse) square root

and, andnot bitwise &, &!

or, xor bitwise |, ^

Arithmetic integer instructions

An incomplete summary of arithmetic instructions

Instruction explanation
add, adds +. adds is saturated add: assigns maximum/minimum if overflow or underflow

sub, subs -, subs is saturated sub: assigns maximum/minimum if overflow or underflow

avg rounded average of x and y: (x+y+1)/2

mul *, multiplies low words into result of twice the size - ignores every second input value

mullo *, low word of product (result has twice the number of bits)

mulhi *, high word of product (result has twice the number of bits)

sign transfers sign of one integer to another and sets it to zero if “sign” is 0
min, max min, max

and, andnot &, &!

or, xor |, ^

sll, slli <<, the version ending in i needs an integer constant shift

srl, srli >> for unsigned integers, shifting in 0 bits

sra, srai >> for signed integer, shifting in the sign bit

Comparisons

An incomplete summary of important comparison instructions

Instruction Types explanation

cmpeq, cmpneq all x==y , x!=y

cmpgt, cmpge all x>y, x>=x

cmplt, cmple all x<y, x<=y

cmpngt, cmpnge floating point !(x>y), !(x>=x)

cmpnlt, cmpnle floating point !(x<y), !(x<=y)

cmpord, cmpunord floating point tests whether the number are ordererd or unordered (e.g. if NaN)

test_all_ones i128 test if all bits are 1

test_all_zeros i128 test if all bits are 0

test_mix_ones_zeros i128 test if either all are 0 or all are 1

_axpy operations

Alignment is trickier with operations involving two vectors
Example _axpy

We need both arrays aligned 
in the same way.

Two solutions:
either always require alignment
or code a slow version to use if not aligned

!y =α !x + !y

saxpy

a vectorized saxpy implementation assuming alignment

void saxpy(int n, float a, float* x, float* y)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_set1_ps(a);

 // we assume alignment
 assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0);

 int ndiv4 = n/4;

 // loop over chunks of 4 values
 for (int i=0; i<ndiv4; ++i) {
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x3 = _mm_mul_ps(x0,x1); // multiply
 __m128 x4 = _mm_add_ps(x2,x3); // add
 _mm_store_ps(y+4*i,x4); // store back aligned
 }

 // do the remaining entries
 for (int i=ndiv4*4 ; i< n ; ++i)
 y[i] += a*x[i];
}

sdot

a vectorized dot product assuming alignment
we have to manually do the reduction

float sdot(int n, float* x, float* y)
{
 // set the total sum to 0, one sum per vector element
 __m128 x0 = _mm_set1_ps(0.);

 // we assume alignment
 assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0);

 // loop over chunks of 4 values
 int ndiv4 = n/4;
 for (int i=0; i<ndiv4; ++i) {
 __m128 x1 = _mm_load_ps(x+4*i); // aligned (fast) load
 __m128 x2 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x3 = _mm_mul_ps(x1,x2); // multiply
 x0 = _mm_add_ps(x0,x3); // add
 }

 // store the 4 partial sums back to aligned memory
 float alignas(16) tmp[4];
 _mm_store_ps(tmp,x0);

 // do the reduction over the vector elements by hand
 float sum = tmp[0]+tmp[1]+tmp[2]+tmp[3];

 // do the remaining entries
 for (int i=ndiv4*4 ; i< n ; ++i)
 sum += x[i]*y[i];

 return sum;
}

Mixing SSE and AVX

Be careful when mixing SSE and AVX instructions:
Manual claims that SSE instructions do not touch the higher bits of the AVX registers
What actually happens is that if the higher bits are nonzero they get stored to
memory if you call an SSE instruction and get reloaded when you cal an AVX
instruction. SLOW!!!!

Solution: call _mm256_zeroupper to clear the upper bits before switching
from AVX to SSE
Be extra careful:

all instructions starting with _mm256_... are AVX
all SSE instructions start with _mm_...
some instructions starting with _mm_ are also AVX, e.g. broadcast. You
need to look at the documentation tool to check!

Warning about mixing AVX and SSE

Original sscal:

Naively optimize sccal using broadcast:

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_load1_ps(&a);

 // loop over chunks of 4 values
 for (int i=0; i<n/4; ++i) {
 __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(y+4*i,x2); // store back aligned
 }
}

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_broadcast_ss(&a);

 // loop over chunks of 4 values
 for (int i=0; i<n/4; ++i) {
 __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(y+4*i,x2); // store back aligned
 }
}

SLOW!
we mix AVX and SSE

Warning about mixing AVX and SSE

Original sscal:

Naively optimize sccal using broadcast:

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_load1_ps(&a);

 // loop over chunks of 4 values
 for (int i=0; i<n/4; ++i) {
 __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(y+4*i,x2); // store back aligned
 }
}

void sscal(int n, float a, float* x)
{
 // load the scale factor four times into a register
 __m128 x0 = _mm_broadcast_ss(&a); // an AVX instruction!
 _mm256_zeroupper();

 // loop over chunks of 4 values
 for (int i=0; i<n/4; ++i) {
 __m128 x1 = _mm_load_ps(y+4*i); // aligned (fast) load
 __m128 x2 = _mm_mul_ps(x0,x1); // multiply
 _mm_store_ps(y+4*i,x2); // store back aligned
 }
}

Now it’s fast
we clear the higher

bits and they will not
be stored

Automatic vectorization with g++

Modern compilers try to automatically vectorize loops. This can save you
time but will sometimes not be as good as vectorization by hand.
Compiler options for g++

Turn vectorization on: -ftree-vectorize
Generate vectorization reports: -Om -ftree-vectorizer-verbose=n

Further reading
GNU documentation: http://gcc.gnu.org/projects/tree-ssa/vectorization.html
Critical analysis of what autovectorization in gcc can and cannot do:  
 http://locklessinc.com/articles/vectorize/

n description
0 No output at all.
1 Report vectorized loops.
2 Also report unvectorized "well-formed" loops and respective reason.
3 Also report alignment information (for "well-formed" loops).
4 Like level 3 + report for non-well-formed inner-loops.
5 Like level 3 + report for all loops.
6 Print all vectorizer dump information

Automatic vectorization with iCC

Compiler options with iCC
Get optimization suggestions: -guide
Turn vectorization on and generate vectorization reports:  
 -qopt-report=n -qopt-report-phase=vec

Further reading
Intel documentation and sample codes: 
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

n description

0 No output at all.

1 Report vectorized loops.

2 Also report unvectorized loops and respective reason.

3 Adds dependency Information

4 Reports only non-vectorized loops

5 Reports only non-vectorized loops and adds dependency info

Automatic vectorization with clang

Compiler options with clang
Automatic vectorization is on by default!
Turn vectorization off: -fno-vectorize
Turn vectorization on and set vector width: -mllvm -force-vector-width=n
Enable vectorization reports:

-Rpass=loop-vectorize identifies loops that were successfully vectorized.
-Rpass-missed=loop-vectorize identifies loops that failed vectorization
-Rpass-analysis=loop-vectorize identifies the statements that caused
vectorization to fail.

Pragmas available to help the compiler vectorize loops

More information on http://llvm.org/docs/Vectorizers.html

Aliasing prevents optimization

Consider the saxpy operation:

Naïvely it seems this can be vectorized since there are no
dependencies:each iteration accesses different elements
Now consider the following call: 
 
 
 
Problem: now y=x+1 and we have an “aliasing” problem. The loop becomes

We have potential dependencies! No optimization or vectorization is
actually possible unless we prevent aliasing.

void saxpy(int n, float a, float* x, float* y)
{
 for (int i=0; i<n; ++i)
 y[i] += a*x[i];
}

float x[1000];
saxpy(999, 1., x, x+1)

for (int i=0; i<n; ++i)
 x[i+1] += a*x[i];

restrict

Fortran-77 can optimize aggressively since aliasing is forbidden
Fortran-90 and later, C, C++, ... have pointers and with pointers aliasing
becomes a potential problem and prevents many optimizations.

Solution in C: restrict keyword to declare that pointers are not aliased.

The compiler now assumes no aliasing.
Note that the compiler does not check for aliasing. The caller has to be careful!

No C++ standard support for restrict, but
g++ supports a __restrict__ keyword
iCC allows the restrict keyword when using the compiler switch -restrict.

void saxpy(int n, float a, float* restrict x, float* restrict y)
{
 for (int i=0; i<n; ++i)
 y[i] += a*x[i];
}

Declaring alignment

In our manually vectorized code we assumed the absence or presence of
alignment. We can also tell this to the compiler:

On g++ there is a __builtin_assume_aligned(variable,alignment); extension

iCC has a pragma to declare alignment for a loop

void saxpy(int n, float a, float* __restrict__ x, float* __restrict__ y)
{
 __builtin_assume_aligned(x,32);
 __builtin_assume_aligned(y,32);
 for (int i=0; i<n; ++i)
 y[i] += a*x[i];
}

void saxpy(int n, float a, float* restrict x, float* restrict y)
{
 #pragma vector aligned
 for (int i=0; i<n; ++i)
 y[i] += a*x[i];
}

`

g++ matches your code against common patterns and vectorizes the loops
if there is a match. The vectorization reports can help you find out what
was done and how it can be improved.

Documented with many examples at  
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
However, only quite simple loops can be vectorized, as shown here  
http://locklessinc.com/articles/vectorize/

Let us time an auto-vectorized loop against our manual SSE and AVX codes

SSE manual AVX manual g++ clang iCC

vectorized ––– ––– 35 26 26

not vectorized 27 26 55 26 55

Automatic vectorization on clang

The clang compiler provides pragmas to further help vectorize loops
Documented at http://llvm.org/docs/Vectorizers.html and  
http://clang.llvm.org/docs/LanguageExtensions.html#id20  

pragma explanation
 clang loop vectorize(enable) the compiler can ignore potential dependencies and vectorize

clang loop interleave(enable) the compiler can ignore potential dependencies and interleave
iterations, i.e. perform them out of order

 clang loop vectorize(disable) don’t vectorize

clang loop interleave(disable) don’t interleave

 clang loop vectorize_width(n) vectorize up to n iterations

 clang loop interleave_count(n) interleave up to n iterations

clang loop unroll(full) can be fully unrolled

clang loop unroll_count(n) unroll up to n iterations

clang loop unroll(disable) don’t unroll

Automatic vectorization on iCC

The Intel compiler provides
the -guide option to give hints how code can be vectorized
a set of pragmas to help the compiler  

Documented with many examples at  
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

pragma explanation
ivdep the compiler can ignore potential dependencies
loop count (n)
loop count min (n)

specify the typical or minimum loop count to help decide whether
vectorization is worthwhile

vector always always attempt to vectorize the loop
novector don’t vectorize the loop
vector aligned tell the compiler to assume aligned data

vector nontemporal the data will not be reused , use streaming instructions for data
access

simd always attempt SIMD vectorization
simd vectorlength(n) declare absence of dependencies for n iterations
simd reduction (op:variable) a reduction loop (similar to OpenMP)

iCC example 1: potential aliasing

Consider the copying loop in example1[abc].cpp

The Intel compiler produces two versions and tests at runtime for aliasing
You can help either using restrict 
 
 
 
 
 
or using the ivdep pragma

void copy(char *cp_a, char *cp_b, int n)
{
 for (int i = 0; i < n; i++)
 cp_a[i] = cp_b[i];
}

void copy(char * restrict cp_a, char * restrict cp_b, int n)
{
 for (int i = 0; i < n; i++)
 cp_a[i] = cp_b[i];
}

void copy(char *cp_a, char *cp_b, int n)
{
#pragma ivdep
 for (int i = 0; i < n; i++)
 cp_a[i] = cp_b[i];
}

iCC example 2: dependencies

Loop at the gap.cpp example:

It will not vectorize since there is a dependence on b: the next loop might
use the modified value of b. Use guide to learn what can be done:  
remark #30515: (VECT) Assign a value to the variable(s) "b" at the beginning of the body of
the loop in line 28. This will allow the loop to be vectorized. [VERIFY] Make sure that, in the
original program, the variable(s) "b" read in any iteration of the loop has been defined
earlier in the same iteration.

void test_scalar_dep(double *A, int n)
{
 double b;
 for (int i=0; i<n; i++) {
 if (A[i] > 0) {b=A[i]; A[i] = 1 / A[i]; }
 if (A[i] > 1) {A[i] += b;}
 }
}

void test_scalar_dep(double *A, int n)
{
 for (int i=0; i<n; i++) {
 double b = A[i];
 if (A[i] > 0) {A[i] = 1 / A[i];}
 if (A[i] > 1) {A[i] += b;}
 }
}

iCC example 3: reductions

Look at the simd3.cpp for a reduction example

In the meantime iCC manages to detect this reduction automatically. The
pragma is not needed.
In the following more complicated reduction in simd4.cpp it is needed:

char foo(char *A, int n){
 char x = 0;
#pragma simd reduction(+:x)
 for (int i=0; i<n; i++)
 x = x + A[i];
 return x;
}

// saturate integers to maximum or minimum of short in reduction

short sat2short(unsigned char *p, char *q, int n) {
 short x = 0;
#pragma simd reduction(+:x)
 for (int i=0; i<n; i++)
 x = std::max(std::min(x + p[i]*q[i],32767),-32768);
 return x;
}

iCC example 4: dependencies

Some dependencies still allow vectorization, as in simd4.cpp:

There are dependencies after 16 iterations. We can still vectorize up to 16
elements, but need to tell the compiler:

Homework: vectorize if possible:
a linear congruential random number generator?
a lagged Fibonacci random number generator?

for (int i=0; i<32767; i++) {
 if (i >= 16 && i < 32767) {
 b[i] = b[i-16] - 1;
 }

#pragma simd vectorlength(16)
 for (int i=0; i<32767; i++) {
 if (i >= 16 && i < 32767) {
 b[i] = b[i-16] - 1;
 }

iCC example 5: loop private variables

Some dependencies can be removed by making the variable private to each
iteration, as in simd5.cpp

void foo(int *A, int *B, int *restrict C, int n)
{
 int t = 0;

#pragma simd private(t)
 for (int i=0; i<n; i++){
 if (A[i] > 0) {
 t = A[i];
 }
 if (B[i] < 0) {
 t = B[i];
 }
 C[i] = t;
 }
}

i_amax

How would you implement isamax and similar functions that
should give the index of the largest element?
Interested students should look at the isamax_sse.cpp example
to see some really neat tricks of what you can do with vector
instructions.

