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ADI

Alternating Direction Implicit (ADI) is a finite difference scheme based on the idea of operator
splitting. The ADI method applied to the diffusion equation

∂ρ(r, t)
∂t

= D∇2ρ(r, t) (1)

is summarized in the following two steps:

Step 1 Implicit Euler in x direction; Explicit Euler in y direction:
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Step 2 Explicit Euler in x direction; Implicit Euler in y direction:
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The algorithm takes advantage of both implicit and explicit schemes and results in an integration
scheme which is unconditionally stable and second order in space and time.

Moreover, the implicit integration step, which usually requires iterative methods in order to
invert a matrix, consists in a tridiagonal system of equations which can be efficiently solved by
the Thomas algorithm.

In order to use the latter method for the implicit step in x direction, we need to rewrite for each
row j the implicit step

ρ∗i,j = ρni,j +
δt

2

D

δx2
(
ρ∗i−1,j − 2ρ∗i,j + ρ∗i+1,j

)
(4)

in the form Aρ∗ = ρn, where A is a tridiagonal matrix of coefficients ai (lower diagonal,
i = 1..n), bi (main diagonal, i = 0..n) and ci (upper diagonal, i = 0..n− 1), ρ∗ is the unknown
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vector of ρ∗i,j with i = 0..n and ρn is the corresponding solution vector of ρni,j with i = 0..n at
time n for row j.

An implicit step of ADI in x direction therefore consists in solving m tridiagonal systems of
equations, where m is the size of the grid in y direction.

For the implicit Euler step in y direction we proceed analogously by writing a m systems of
equations, where m is the size of the grid in x direction.

Thomas Algorithm

The Thomas algorithm1, named after Llewellyn Thomas, is an O(n) algorithm used to solve a
tridiagonal system of equations and can therefore be used to solve the implicit component of
ADI.

In the following, a C code is given for the Thomas algorithm as a reference (from Wikipedia):

1 void solveMatrix(int n, double ∗a, double ∗b, double ∗c,
double ∗v, double ∗x)

2 {
3 /∗∗
4 ∗ n − number of equations
5 ∗ a − sub−diagonal (means it is the diagonal below the

main diagonal) −− indexed from 1..n−1
6 ∗ b − the main diagonal
7 ∗ c − sup−diagonal (means it is the diagonal above the

main diagonal) −− indexed from 0..n−2
8 ∗ v − right part
9 ∗ x − the answer

10 ∗/
11 for (int i = 1; i < n; i++)
12 {
13 double m = a[i]/b[i−1];
14 b[i] = b[i] − m∗c[i−1];
15 v[i] = v[i] − m∗v[i−1];
16 }
17

18 x[n−1] = v[n−1]/b[n−1];
19

20 for (int i = n − 2; i >= 0; i−−)
21 x[i] = (v[i] − c[i] ∗ x[i+1]) / b[i];
22 }

Note that the algorithm is not parallel due to dependencies between iterations.
1from Wikipedia
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about the center of the grid was then 
perturbed to (U = ln,V = 114). These 
conditions were then perturbed with f 1% 
random noise in order to break the square 
symmetry. The system was then integrated 
for 200,000 time steps and an image was 
saved. In all cases, the initial disturbance 
propagated outward from the central 
square, leaving patterns in its wake, until 
the entire grid was affected by the initial 
square perturbation. The propagation was 
wave-like, with the leading edge of the 
perturbation moving with an approximately 
constant velocity. Depending on the param- 
eter values, it took on the order of 10,000 to 
20,000 time steps for the initial perturbation 
to spread over the entire grid. The propaga- 
tion velocity of the initial perturbation is 
thus on the order of 1 x space units per 
time unit. After the initial period during 
which the perturbation spread, the system 
went into an asymptotic state that was either 
time-independent or time-dependent, de- 
pending on the parameter values. 

Figures 2 and 3 are phase diagrams; one 
can view Fig. 3 as a map and Fig. 2 as the key 
to the map. The 12 patterns illustrated in 
Fig. 2 are designated by Greek letters. The 
color indicates the concentration of U with 
red representing U = 1 and blue represent- 
ing U = 0.2; yellow is intermediate to red 
and blue. In Fig. 3, the Greek characters 
indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 

Pattern a is time-dependent and consists 
of fledgling spirals that are constantly col- 
liding and annihilating each other: full 
spirals never form. Pattern is time-depen- 
dent and consists of what is generally called 

phase turbulence (8), which occurs in the 
vicinity of a Hopf bifurcation to a stable 
periodic orbit. The medium is unable to 
synchronize so the phase of the oscillators 
varies as a function of position. In the 
present case, the small-amplitude periodic 
orbit that bifurcates is unstable. Pattern y is 
time-dependent. It consists primarily of 
stripes but there are small localized regions 
that oscillate with a relatively high frequen- 
cy (- The active regions disappear, 
but new ones always appear elsewhere. In 
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Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 and red states, respectively. 

SCIENCE VOL. 261 9 JULY 1993 

about the center of the grid was then 
perturbed to (U = ln,V = 114). These 
conditions were then perturbed with f 1% 
random noise in order to break the square 
symmetry. The system was then integrated 
for 200,000 time steps and an image was 
saved. In all cases, the initial disturbance 
propagated outward from the central 
square, leaving patterns in its wake, until 
the entire grid was affected by the initial 
square perturbation. The propagation was 
wave-like, with the leading edge of the 
perturbation moving with an approximately 
constant velocity. Depending on the param- 
eter values, it took on the order of 10,000 to 
20,000 time steps for the initial perturbation 
to spread over the entire grid. The propaga- 
tion velocity of the initial perturbation is 
thus on the order of 1 x space units per 
time unit. After the initial period during 
which the perturbation spread, the system 
went into an asymptotic state that was either 
time-independent or time-dependent, de- 
pending on the parameter values. 

Figures 2 and 3 are phase diagrams; one 
can view Fig. 3 as a map and Fig. 2 as the key 
to the map. The 12 patterns illustrated in 
Fig. 2 are designated by Greek letters. The 
color indicates the concentration of U with 
red representing U = 1 and blue represent- 
ing U = 0.2; yellow is intermediate to red 
and blue. In Fig. 3, the Greek characters 
indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 

Pattern a is time-dependent and consists 
of fledgling spirals that are constantly col- 
liding and annihilating each other: full 
spirals never form. Pattern is time-depen- 
dent and consists of what is generally called 

phase turbulence (8), which occurs in the 
vicinity of a Hopf bifurcation to a stable 
periodic orbit. The medium is unable to 
synchronize so the phase of the oscillators 
varies as a function of position. In the 
present case, the small-amplitude periodic 
orbit that bifurcates is unstable. Pattern y is 
time-dependent. It consists primarily of 
stripes but there are small localized regions 
that oscillate with a relatively high frequen- 
cy (- The active regions disappear, 
but new ones always appear elsewhere. In 

o . I ~ , _..-. .... , ,I 
___...-- ._..-- 

0.0 
0.00 0.02 0.04 0.06 0.08 

k 
Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 and red states, respectively. 

SCIENCE VOL. 261 9 JULY 1993 

Figure 1: On the left, different patterns obtained with Gray-Scott system. The Greek
letters on the right figure indicate the locations in the parameter space which correspond to
the patterns on the images on the left. Both figures are taken from "Complex Patterns in a
Simple Systems" by J.E. Pearson.

Reaction Diffusion

Reaction-Diffusion processes describe the evolution of concentrations of one or more substances
distributed in a space. The substance concentrations are modified by chemical reactions and
their distribution is governed by diffusion. The corresponding reaction-diffusion equation for
M different species with respective concentration fields ui and diffusion coefficients Di has
following form:

∂ui
∂t

= Di∆ui + fi(u), ∀i = 1 · · ·M, (5)

where u = (u1, u2, · · ·uM). The terms fi describe creation or consumption of species i caused
by reactions. Note that since each concentration field ui depends on the reaction term fi(u)
(with possible different form for the term fi), we are dealing with a system of coupled PDEs.

We will consider Gray-Scott system, a reaction-diffusion system consisting of two chemical
species with respective concentrations u and v and corresponding diffusion terms Du, Dv,
which are subjects to the following reaction-diffusion equation:

∂u

∂t
= Du∆u− uv2 + F (1− u), (6)

∂v

∂t
= Dv∆v + uv2 − (F + k)v. (7)

The terms F and k are model parameters. The Gray-Scott system results in a formation of
various patterns, see Figure 1 for few examples, where different pattern modes are obtain by
different combination of values for model parameters F and k.
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ADI for Reaction-Diffusion Equation

We can use ADI to simulate the reaction-diffusion equation. Since now we are solving a system of
coupled PDEs (Equation 5), each grid point will carry a vector of concentrations, with one entry
for each chemical species. Assuming the Gray-Scott system with two species with respective
concentrations u, and v, given in Equations 6-7, we will define for each grid point a vector of
corresponding concentrations as:

unk = (unk , v
n
k ) = (u(xk, n · δt), v(xk, n · δt)) . (8)

Each grid point carries the concentration values of all species in vector unk .

The diffusion can be simulated as described above. We also observe that the reaction terms
fi(u

n
k , v

n
k ), where i = 1, 2 in the Gray-Scott system, only depend on (unk , v

n
k ) at the location

of the corresponding grid points. Reactions are thus purely local operations and require no
neighborhood interactions at all.

Question 1: Diffusion
We define the domain Ω in two dimensions as x, y,∈ [0, 1]. We will use periodic boundary
conditions and an initial density distribution

ρ(x, y, 0) = sin(x · 2π) · sin(y · 2π), (9)

for which the analytical solution is given by

ρ(x, y, t) = sin(x · 2π) · sin(y · 2π) · e−8Dπ2t. (10)

Question 2: Reaction-Diffusion
Extend your implementation of ADI to handle the Gray-Scott system. Consider the simulation
domain [−1, 1]2, with periodic boundary conditions and initial conditions (u, v) = (1, 0) every-
where except within the square A = [−0.2, 0.2]2, which should be set to

(
1
2
, 1
4

)
and perturbed

with ±1% random noise in order to break the square symmetry, i.e:

u(x, y, 0) = (1− χA(x, y) ) + χA(x, y)

(
1

2
+

r1
100

)
, (11)

v(x, y, 0) = χA(x, y)

(
1

4
+

r2
100

)
, (12)

where r1, r2 are random numbers from a normal distribution N (0, 1) and χA is the characteristic
function:

χA(x, y) =

{
1 for (x, y) ∈ [−0.2, 0.2]2,

0 otherwise.

The diffusion coefficients are Du = 2× 10−5, Dv = 10−5 and time step dt is chosen according
the stability condition

dt ≤ dh2

2 max{Du, Dv}
(13)

where dh is a spacing between particles.

Chose any combination of parameters F and k based on the parameter space in Figure 1.
Visualize the results and report the used parameters. Can you get the expected pattern?

Run your simulation sufficiently long so that you reach a steady state, meaning that you will
have a pattern that is not changing with time.
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Summary

Summarize your answers, results and plots into a PDF document. Furthermore, elucidate the
main structure of the code and report possible code details that are relevant in terms of accuracy
or performance. Send the PDF document, source code and related movies to your assigned
teaching assistant.
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