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Markov chain Monte Carlo



Review: 
The Metropolis Algorithm



Statistical mechanics and the Boltzmann weight

At a fixed temperature T the average of a physical observable A 
can be calculated as a sum over all configurations c 
 
 
 
where 

This is ideal for importance sampling with the Boltzmann weight

A = 1
Z

Ac
c
∑ exp(−βEc )

c configuration
Ec energy of a configuration
Ac value of the observable for a configuration
T temperature

β = 1
kBT

inverse temperature

Z= exp
c
∑ (−βEc ) partition function (normalization)

pc =
1
Z
exp(−βEc )



The Metropolis Algorithm (1953)



Instead of drawing independent samples ci we build a Markov chain 

Transition probabilities Wx,y for transition x → y need to satisfy: 

Normalization:  

Ergodicity: any configuration reachable from any other 

Balance: the distribution should be stationary 

change in distribution in one step: 

stationarity condition: 
Detailed balance is sufficient but not necessary for balance

Markov chain Monte Carlo
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Teller’s proposal was to use rejection sampling: 

Propose a change with an a-priori proposal rate Ax,y

Accept the proposal with a probability Px,y

The total transition rate is Wx,y =Ax,y Px,y 

The choice 
 
 
 
 
 
satisfies detailed balance and was first proposed by Metropolis et al

The Metropolis algorithm
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Sampling N-body states

Simple sampling 
draw random configurations and calculate their energy and weight 
measure: 
problem: we will never hit low-energy configurations (e.g. a crystal)! 

Importance sampling by Markov chains 
Start from a suitable initial condition, e.g. a perfect crystal 
Then do the following updates: 

choose a random particle 
choose a random direction and distance, e.g. by Gaussian distribution 
with sensible parameters 
Accept/reject with Boltzmann weight and Metropolis sampling 
Measure  
Exercise: proof detailed balance and implement this multi-threaded

A ≈ Ai
i
∑ exp(−βEi ) exp(−βEi )

i
∑

A ≈ 1
N i=1

N

∑Ai



Monte Carlo Error Analysis



The dogs & fleas model

Two dogs play: 
Anick has 50 fleas 
Burnside has no fleas 

During play fleas jump from one dog to the other 
What is the distribution of fleas after they played? 

Vinay Ambegaokar and Matthias Troyer 
American Journal of Physics 78, 150 (2010)



Dogs and fleas: direct sampling
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We pick a dog for each flea: direct sampling as done last week



MCMC: pick a flea and let it jump to the other dog 
estimate errors using the standard equation

Dogs and fleas: MCMC with naïve errors
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Dogs and fleas: uncorrelated samples
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One flea hop does not change much: the results are correlated,  
Measure not after every flea hop but only after a few hundred hops



Recall: estimating the error

The sampling error is the rms (root mean square) deviation 

We used that samples are uncorrelated:
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Recall: estimating the error

Now include correlations: 

where we defined the integrated autocorrelation time as
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Binning analysis

Take averages of consecutive measurements: averages become less 
correlated and naive error estimates converge to real error
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Dogs and fleas: binning analysis
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Correlated quantities

How do we calculate the errors of functions of correlated 
measurements? 

specific heat 

Expectation values of weighted samples 
in direct sampling 

The naïve way of assuming uncorrelated errors is wrong! 
It is not even enough to calculate all crosscorrelations due to 
nonlinearities except if the errors are tiny!

cV = 〈E2 〉 − 〈E〉2

kBT
2

〈A〉 =
Ac exp(−βEc )

c
∑ 〉

exp(−βEc )
c
∑



Splitting the time series

Simplest idea: split the time series and evaluate for each segment

X

Y
X1 X2 X3 ... XM

Y1 Y2 Y3 ... YM

U=f(X,Y)
U1 U2 U3 ... UM

Problem: can be unstable and noisy for nonlinear functions such as X/Y
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Jackknife-analysis

Evaluate the function on all and all but one segment
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Analyzing parallel MC simulations

The error analysis depends on the parallelization strategy 

Parallelization of a single Markov chain, e.g. by multi-threading the energy 
evaluation 

Use the binning analysis to calculate errors of the measurements 
Use jackknife to calculate means and errors of functions of the measurements 

Parallelization by launching multiple independent Markov chains 
Run a single Markov chain to calculate the autocorrelation time using the binning 
analysis and then choose a good distance (number of updates) between 
measurements. A distance comparable to the autocorrelation time is ideal. 
Then run a parallel simulation and store only the mean for each Markov chain 
Calculate the overall mean and its error from the mean values of each Markov chain 
using the simple error formula for independent measurements 
Use jackknife to calculate means and errors of functions of the measurements


