
HPCSE II

GPU programming and CUDA

What is a GPU?

Specialized for compute-intensive, highly-parallel computation,
i.e. graphic output
Evolution pushed by gaming industry
CPU: large die area for control and caches
GPU: large die area for data processing

DRAM

Control ALU ALU

ALU ALU

Cache

DRAM

GPUCPU

picture source: Nvidia

GPGPUs

Graphics Processing Unit (GPU): Hardware designed for
output to display

General Purpose computing on GPUs (GPGPU) used for
non-graphics tasks

physics simulation
signal processing
computational geometry
computer vision
computational biology
computational finance
meteorology

Why GPUs?

GPU evolved into a very flexible and powerful processor
It’s programmable using high-level languages
It offers more GFLOP/s and more GB/s than CPUs

picture source: http://hemprasad.wordpress.com/category/computing-technology/parallel/gpu-cuda/

Low Latency or High Throughput?

CPU
Optimized for low-latency access to
cached data sets
Control logic for out-of-order and
speculative execution

GPU
Optimized for data-parallel,
throughput computation
Tolerant of memory latency

Low Latency or High Throughput?

CPU minimized latency within each thread
GPU hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switchW1
W2

W3
W4

T1 T2 T3 T4

Kepler GK110 Block Diagram

7.1B Transistors
> 1 TFLOP FP64
1.5 MB L2 Cache
15 SMX units

contains 15 streaming multiprocessors (SMX units)

GK110 Streaming Multiprocessor (SMX)

Contains many specialized cores

Up to 2048 threads concurrently  

192 fp32 ops/clock
64 fp64 ops/clock
160 int32 ops/clock

48KB shared mem
64K 32-bit registers

GPU Parallelism

Software Hardware

many

many

1

1

Threads

Blocks

Grid

GPU Cores

Streaming
Multiprocessor

GPU

many

many

many

1

1

1

many 1

1 1

Simple Processing Flow

1. Copy input data from CPU
memory/NIC to GPU memory

PCI Bus

Simple Processing Flow

1. Copy input data from CPU
memory/NIC to GPU memory

2. Load GPU program and execute

PCI Bus

Simple Processing Flow

1. Copy input data from CPU
memory/NIC to GPU memory

2. Load GPU program and execute
3. Copy results from GPU memory

to CPU memory/NIC

PCI Bus

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC  
Directives

Maximum 
Flexibility

Easily Accelerate
Applications

Similar to OpenMP

GPU accelerated libraries

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal 
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra

Building-block
Algorithms for CUDA

IMSL Library

CUDA Math Libraries

cuFFT – Fast Fourier Transforms Library
cuBLAS – Complete BLAS Library
cuSPARSE – Sparse Matrix Library
cuRAND – Random Number Generation (RNG) Library
NPP – Performance Primitives for Image & Video Processing
Thrust – Templated C++ Parallel Algorithms & Data Structures
math.h - C99 floating-point Library

Included in the free CUDA Toolkit

Programming for GPUs

Early days:
OpenGL (graphics API)

Now
CUDA: Nvidia proprietary API, works only on Nvidia GPUs
OpenCL: open standard for heterogeneous computing
OpenACC: open standard based on compiler directives

CUDA Example: Code

code
compilation
run on GPU node

main.cu device code (runs on CPU)

host code (runs on CPU)

Nvidia CUDA

C extension to write GPU code
Only supported by Nvidia GPUs
Code compilation (nvcc) and linking:

device.cu

host.cpp

program

device.o

host.o

nvcc

gcc

gcc host.cpp

device.cu
__global__ void kernel() 
{

// do something
}

int main()
{ 
}

Hello World

Hello World!

int main(void) {
 printf("Hello World!\n");
 return 0;
}

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used to compile programs with no
device code

Hello World! with Device Code

__global__ void mykernel(void) { }

int main(void) {
 mykernel<<<1,1>>>();
 printf("Hello World!\n");
 return 0;
}

Two new syntactic elements…

Hello World! with Device Code

mykernel<<<gridDim, blockDim>>>(…);

Triple angle brackets mark a call from host code to device code,
also called a “kernel launch”

gridDim is the number of instances of the kernel

blockDim is the number of threads within each instance

gridDim and blockDim may be 2D or 3D vectors (type vec3) to
simplify application programs

Hello World! with Device Code

__global__ void mykernel(void) { }

CUDA C/C++ keyword __global__ indicates a function that
Runs on the device
Is called from host code

nvcc separates source code into host and device components
Device functions (e.g. mykernel()) processed by NVIDIA compiler
Host functions (e.g. main()) processed by standard host compiler

GPU Kernel qualifiers

Function qualifiers:
__global__: called from CPU, runs on GPU
__device__: called from GPU, runs on GPU
__host__: called from CPU, runs on CPU
__host__ and __device__ can be combined

Parallel Programming in CUDA C/C++

We need a more interesting example…
GPU computing is about massive parallelism!
We’ll start by adding two integers and build up to vector addition

a b c

Addition on the Device

A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c)  
{
 *c = *a + *b;
}

As before __global__ is a CUDA C/C++ keyword meaning
add() will execute on the device
add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {
 *c = *a + *b;
 }

add() runs on the device, so a, b and c must point to device
memory

We need to allocate memory on the GPU

Memory Management

Host and device memory are separate entities

Device pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code

Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

Simple CUDA API for handling device memory
cudaMalloc(), cudaFree(), cudaMemcpy()
Similar to the C equivalents malloc(), free(), memcpy()

Data Transfer

 cudaMemcpy(void* dst, void* src, size_t num_bytes,  
 enum cudaMemcpyKind direction)

direction can be either of
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

Addition on the Device: main()

int main(void) {
 // host copies of a, b, c
 int a, b, c;

 // device copies of a, b, c

 int *d_a, *d_b, *d_c;

 int size = sizeof(int);

 // Allocate space for device copies
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Setup input values
 a = 2;
 b = 7;

 // Copy inputs to device
 cudaMemcpy(d_a, &a, size,
 cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, &b, size,
 cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(&c, d_c, size,
 cudaMemcpyDeviceToHost);

 // Cleanup
 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);

 return 0;
}

Going parallel

Moving to Parallel

GPU computing is about massive parallelism
How do we run code in parallel on the device?

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

With add() running in parallel we can do vector addition

Each parallel invocation of add() is referred to as a block
The set of blocks is referred to as a grid
Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
 }

By using blockIdx.x to index into the array, each block handles
a different element of the array

Vector Addition on the Device

 __global__ void add(int *a, int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
 }

On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1];

c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1

Block 2 Block 3

Block Scheduling

 Chapter(1.(Introduction!
!

CUDA(C(Programming(Guide(Version(4.2! ! 5
!

This decomposition preserves language expressivity by allowing threads to
cooperate when solving each sub-problem, and at the same time enables automatic
scalability. Indeed, each block of threads can be scheduled on any of the available
multiprocessors within a GPU, in any order, concurrently or sequentially, so that a
compiled CUDA program can execute on any number of multiprocessors as
illustrated by Figure 1-4, and only the runtime system needs to know the physical
multiprocessor count.

This scalable programming model allows the CUDA architecture to span a wide
market range by simply scaling the number of multiprocessors and memory
partitions: from the high-performance enthusiast GeForce GPUs and professional
Quadro and Tesla computing products to a variety of inexpensive, mainstream
GeForce GPUs (see Appendix A for a list of all CUDA-enabled GPUs).

(

A(GPU(is(built(around(an(array(of(Streaming(Multiprocessors((SMs)((see(Chapter(4(for(more(details).(
A(multithreaded(program(is(partitioned(into(blocks(of(threads(that(execute(independently(from(each(
other,(so(that(a(GPU(with(more(multiprocessors(will(automatically(execute(the(program(in(less(time(
than(a(GPU(with(fewer(multiprocessors.(

Figure(1K4.(Automatic(Scalability(

 (

GPU!with!2!SMs!

 SM!1!SM!0!

GPU!with!4!SMs!

 SM!1!SM!0! SM!3!SM!2!

Block!5! Block!6!

Multithreaded!CUDA!Program!

Block!0! Block!1! Block!2! Block!3!

Block!4! Block!5! Block!6! Block!7!

 !Block!1!!Block!0!

 !Block!3!!Block!2!

 !Block!5!!Block!4!

 !Block!7!!Block!6!

 !Block!0! !Block!1! !Block!2! !Block!3!

 !Block!4! !Block!5! !Block!6! !Block!7!

Special variables

•Some variables are predefined

•gridDim size (or dimensions) of grid of blocks
•blockIdx index (or 2D/3D indices) of block
•blockDim size (or dimensions) of each block
•threadIdx index (or 2D/3D indices) of thread

Vector Addition on the Device: main()

#define N 512
int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

// Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

Vector Addition on the Device: main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

CUDA Threads

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel
blocks

 __global__ void add(int *a, int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
 }

We use threadIdx.x instead of blockIdx.x

Need to make one change in main()…

One change in main

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks
 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

One change in main

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads
 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

Vector addition

add <<< B,T>>> ()

add <<<N,1>>> ()

B=N=16
T=1

add <<<1,N>>> ()

T=N=16
B=1

B: Number of Blocks
T: Number of threads/ Block

Combining Blocks and Threads

We’ve seen parallel vector addition using:
Several blocks with one thread each
One block with several threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…

Indexing with Blocks and Threads

No longer as simple as using blockIdx.x and threadIdx.x
Consider indexing an array with one element per thread (8 threads/block) 

With M threads per block, a unique index for each thread is given by:
 
 int index = blockIdx.x * M + threadIdx.x;

0 1

7

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Using Blocks and Threads

Use the built-in variable blockDim.x for threads per block
 int index = blockIdx.x * blockDim.x + threadIdx.x;

Combined version of add() to use parallel threads and parallel
blocks

What changes need to be made in main()?

 __global__ void add(int *a, int *b, int *c) {
 int index = blockIdx.x * blockDim.x + threadIdx.x

 c[index] = a[index] + b[index];
 }

Addition with Blocks and Threads: main()

 #define N (2048*2048)
 #define THREADS_PER_BLOCK 512
 int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c
 cudaMalloc((void **)&d_a, size);
 cudaMalloc((void **)&d_b, size);
 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values
 a = (int *)malloc(size); random_ints(a, N);
 b = (int *)malloc(size); random_ints(b, N);
 c = (int *)malloc(size);

Addition with Blocks and Threads: main()

 // Copy inputs to device
 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU
 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host
 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(a); free(b); free(c);
 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
 return 0;
 }

Handling Arbitrary Vector Sizes

Typical problems are not even multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n)  
{
 int index = blockIdx.x * blockDim.x + threadIdx.x
 if (index < n)

 c[index] = a[index] + b[index];
}

}

Why Bother with Threads?

Threads seem unnecessary
They add a level of complexity
What do we gain?

Unlike parallel blocks, threads have mechanisms to efficiently:
Communicate
Synchronize

To look closer, we need a new example…

Using stencils

in

out

1D Stencil

Consider applying a 1D stencil to a 1D array of elements
Each output element is the sum of input elements within a radius
If radius is 3, then each output element is the sum of 7 input elements:

Shared memory within a block

Each thread processes one output element
blockDim.x elements per block

Input elements are read several times
With radius 3, each input element is read seven times

Within a block, threads can share data via shared memory
Extremely fast on-chip memory, but very small
Like a user-managed cache
Declare using __shared__, allocated per block
Data is not visible to threads in other blocks

radius radius

Implementing With Shared Memory

Cache data in shared memory
Read (blockDim.x + 2 * radius) input elements from global memory
to shared memory
Compute blockDim.x output elements
Write blockDim.x output elements to global memory 

 Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

in

out

Stencil Kernel (1 of 2)

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] =  
 in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =  
 in[gindex + BLOCK_SIZE];
 }

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

Race condition!

__syncthreads()

void __syncthreads();

Synchronizes all threads within a block
All threads must reach the barrier

In conditional code (if statements),  
 the condition must be uniform across the block

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] =  
 in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =  
 in[gindex + BLOCK_SIZE];
 }

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

Race condition!

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] =  
 in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] =  
 in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

Review

Launching parallel threads
Launch N blocks with M threads per block with kernel<<<N,M>>>(…);
Use blockIdx.x to access block index within grid
Use threadIdx.x to access thread index within block

Assign elements to threads:
 int index = blockIdx.x * blockDim.x + threadIdx.x;

Use __shared__ to declare a variable/array in shared memory
Data is shared between threads in a block
Not visible to threads in other blocks

Use __syncthreads() as a barrier to avoid race conditions

Managing the Device

Coordinating Host & Device

Kernel launches are asynchronous
CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete. copy
begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have
completed

Reporting Errors

All CUDA API calls return an error code (cudaError_t)

Get the error code for the last error:

 cudaError_t cudaGetLastError()

Get a string to describe the error:

char *cudaGetErrorString(cudaError_t)
if(cudaGetLastError() != cudaSuccess)
 std::cerr << cudaGetErrorString(cudaGetLastError());

Device Management

Application can query and select GPUs
 cudaGetDeviceCount(int *count)

 cudaSetDevice(int device)
 cudaGetDevice(int *device)
 cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple host threads can share a device

A single host thread can manage multiple devices
 cudaSetDevice(i) to select current device

 cudaMemcpy(…) for peer-to-peer copies

Multiplying matrices

Parallelize

Kernel

GPU GEMM

for (int i=0; i<N; i++) 
 for (int j=0; j<N; j++)  
 for (int k=0; k<N; k++)  
 c[i*N+j] += a[i*N+k] * b[k*N+j];

Matrix-Matrix Multiplication

x =A B C

A matrix multiplication kernel

Let us use a 2D grid of blocks and threads 

__global__ void matrix(float * a, float * b, float * c, int N)
{
 int ix = threadIdx.x + blockIdx.x*blockDim.x;
 int iy = threadIdx.y + blockIdx.y*blockDim.y;

 if (ix<N && iy<N)
 {
 c[ix*N + iy] = 0;

 for (int k=0; k<N; k++)
 c[ix*N + iy] += a[ix*N + k] * b[k*N + iy];
 }
}

can you optimize it using shared memory?

A matrix multiplication kernel

And call it by creating a 2D grid

 dim3 blocks(N/4,N/4);
 dim3 threads(4,4);
 matrix<<< blocks, threads >>>(dev_a, dev_b, dev_c,N);

what number of threads is ideal on your GPU?

