1 Fast Multipole Method

Note. This section is copied from Chapter 3 of the PhD thesis of Prof. Koumoutsakos
[Koumoutsakos, 1993]

Vortex methods , have attracted the interest of many researchers for the study of unsteady incom-
pressible flows at relatively high Reynolds numbers. In such flows the vortical structures, which
are the key to describing the whole flow field, tend to be confined in limited regions of the domain
and vortex methods inherently adapt to resolve those regions. In this method the vorticity field
is described by a set of N particles. The velocity field is computed then at each of the particles,
resulting in a set of ODE’s that needs to be integrated in time to determine their trajectories. This
may alternatively be considered as an N-body problem for the particles . The simplest method for
computing the velocities on the particles requires work that is proportional to N? as all pairwise
interactions need to be computed. This renders the method prohibitive if one wants to use large
numbers of particles to resolve all spatial scales in the flow.

The N-body problem appears in a diverse number of scientific fields (astrophysics, plasma physics,
etc.) and techniques for the reduction of the computational cost have been addressed in many
different perspectives. Solution methods to this problem may be classified in two broad categories:
The hybrid methods (particle-mesh) and direct (particle only) methods. An extensive survey on hy-
brid methods may be found in the book of Hockney and Eastwood [Hockney and Eastwood, 1981].
The cost of the hybrid methods is of O(N + Mlog M) (where M is the number of mesh points),
but their performance degrades when the clustering of the particles is highly non-uniform and they
tend to introduce numerical diffusion. The direct methods compute the approximate velocity field
as induced by clusters of particles using a certain number of expansions for each cluster. This
number is determined by the accuracy required in the solution of the problem and the type of
the field that is approximated. A hierarchical (tree) data structure is associated with the parti-
cles and is implemented in order to determine when those expansions may be used instead of the
exact pairwise interactions to preserve the accuracy of the solution. The tree is used to establish
interaction lists for the particles.

Originally the direct technique was developed for the simulation of gravitational problems by
[Barnes and Hut, 1986] and [Appel, 1985] developed a data structure to facilitate such compu-
tations. The application of direct schemes in vortex methods has been primarily exploited by
[Greengard and Rokhlin, 1987] and [van Dommelen and Rudensteiner, 1989]).They may be referred
to as the box-box (BB) and particle-box (PB) algorithms respectively. Their computational cost
theoretically scales as N or NlogN, respectively, but their applicability and efficient use of available
supercomputer architectures (vector/parallel) is what really determines the cost of these methods.
The issue that arises then in the development of these codes is the question of parallel or vector
implementation? Although this question is usually answered by the availability of resources it
seems worth exploring the possibilities. The nature of the algorithm was originally thought to be
such that it would lend itself easier to a parallel implementation [Barnes and Hut, 1986] the main
constraint being the recursive descent of the data structure. A naive implementation of this algo-
rithm on a vector computer would require that this recursive scheme is unrolled into a sequence
of iterative procedures. Such an implementation however would result in inefficient vectorization
and no advantage would be taken of the pipelining capabilities.

The parallel implementation of the methods has been addressed at various degrees of sophistication
and for a diverse number of problems (see for example [Pépin and Leonard, 1990], [Katzenelson, 1989)
and [Salmon, 1991]). Vectorization of the method has also been successfully addressed in works
by [van Dommelen and Rudensteiner, 1989] for vortex methods using the PB algorithm. Recently
(1990) Hernquist, Makino, and Barnes published a series of papers demonstrating that the tree
descent can indeed be vectorized. They applied their strategy to the Barnes - Hut algorithm ob-
taining orders of magnitude increase in the computational speed of the algorithm. Usually the most

2 1 Fast Multipole Method

time consuming part of these schemes has been the building and descending of the tree in order to
establish interaction lists. Once these have been established the velocity field of the particles may
easily be determined. The vectorization of the BB algorithm for vortex methods is addressed in
this work and its efficiency is compared to that of a PB scheme.

A data structure is implemented which lends itself to vectorization, in the construction and
descent level, combining some of the ideas presented in the works of Barnes, Hernquist and
Makino. It is applied to both (PB and BB) algorithms and comparisons are made as to what
efficiencies may be obtained. The timings compare favorably with those reported in the past
[van Dommelen and Rudensteiner, 1989] and it is demonstrated that an efficient implementation
of the BB scheme can outperform the PB one for numbers of particles more than a few thousand.

1.1 Multipole Methods for the Velocity Evaluation

In the context of vortex methods the vorticity field is discretized by a set of elementary vortices
whose individual field is expressed by a cut-off function ¢(x). The superposition of these fields
determines the vorticity w, at any location x, as:

N
X) =Y Tno(x —xp) (1.1)
n=1

If ¢(x) is a d-function or we are interested in the velocity field (u, v) in a location (z,y) away from
the particles, the velocity field is expressed in complex form as:

(1.2)

i N
e

where Z = x + iy and V = u — iv. In order to compute the velocity at each one of the particles
the above sum implies O(N?) operations. To reduce this computational cost the geometrical
distribution of the vortices is exploited. The key observation is that the velocity induced by a
cluster of particles need not be computed directly from its individual members. Instead the velocity
field induced by a group of M particles clustered around a centre Z,; may be approximated by a
finite number (P) of multipole expansions. At distances greater than the radius Ry of this cluster
this approximation converges geometrically. This is the basis for the PB scheme. The BB scheme
introduces one more step. The expansions of a certain cluster may be translated and computed
with the desired accuracy at the center of another cluster. Subsequently those expansions are used
to determine the velocity of the particles in the second cluster.

The derivation of those expansions is based on the following two identities of complex numbers:

Zz”, for|z| <1 (%)

kZ: (2 - 2o)* EE:(Z (k>(—Zo)’“‘l>Zl. ()

=0

S
o

Adding and subtracting Zj; on the denominator of (1.2) the velocity field induced by the cluster
may be expressed as :

1.1 Multipole Methods for the Velocity Evaluation 3

By expanding now the denominator inside the sum using (%) and keeping (P) terms in the expan-
sions the velocity is determined by (see also proof in section 1.6.1):

) 1 -t oy
(Z)=— > (1.3)
— T e (Z =
v 2w Z — Zng = (2 — Zu)F

The complex coefficients «ay express the moments of the discrete vorticity distribution in the cell
and are computed by:

M
Qg = Z | P (Zm _ZM)k
= (1.4)
k=0,.. . P

To make the computations more efficient the coefficients of boxes that belong to coarser levels
of the hierarchy are not constructed directly from the particles. Instead they are obtained by a
shifting of the expansions of their descendants. To obtain then the expansions of a parent box
from those of its children we use identity (#x*) to get (see also proof in section 1.6.2):

l
l ; ; I—k
parent __ children children parent
“ => (k X (25 —Z ™) (1.5)
k=0

We may observe now from (1.3), that at a distance R from the center of the cluster the rate of
convergence of the expansions would be proportional to (Ry;/R)F+! and, for example, if R > 2Ry,
this rate is proportional to (1/2)F*!, implying the geometric convergence of the series.

The above expansions are the main tools for the PB algorithm. However one may proceed one
step further and recast the Laurent series into Taylor series and consider the interactions between
groups of particles. These interactions take place in the form of shifting the center of expansions
of one cluster (M) to the center of another (G). Those expansions are then used to compute the
velocity of the particles in each box. This results in eliminating the log N factor from the work
count of the scheme.

To obtain these expansions we add and subtract Zg in the denominator of the expression 1.2 so
we have that the velocity induced by the group M at a point Z in the neighborhood of Z is equal

to:
P

V(Z) = — ok
A= o I;J (Z — Za)* 1 (14 R+
where £ = (Z — Zg)/(Za — Zn). Expanding this expression for £ using equation (x), the velocity
field induced by particles in the cluster M, at a point Z in the neighborhood of Zg is (see also
proof in section 1.6.3):

. P
- i N 62—~ Zg) ! (1.6)
=1

where the coefficients §; are determined by :

5 l+1 ZP: (l +k— 1) g
LT ZG — ZM Ze — Zm)*) (1.7)

k=0
l=1,...,P

Interactions are computed at the coarsest possible level while satisfying the accuracy criterion.
However the velocities of the individual particles are computed from the expansions of the finest

4 1 Fast Multipole Method

boxes in the hierarchy. Hence the expansions of the coarser level boxes have to be transferred down
to their descendants as follows :

P

children k—1 ren children arent\ kK —{

5lhld — Z (k B Z)(s}za ent (ZMh 1d _ Zjli{ e t) (18)
k=l

This shifting uses (x+) and, as in equation (1.4), does not introduce any additional errors. One
may observe here the different use of the coefficients oy and d; when computing velocities on the
particles. The coefficients ; of a certain box are used to compute the velocity on the particles of
the same (childless) box whereas the ay’s are used to compute the velocities due to particles that
belong to well separated boxes.

Proofs for the above results may be found in a more rigorous and complete form in Greengard
and Rohklin (1987). They show that the series converges if the distance between interacting boxes
and/or particles is at least twice as large as the radius of the cluster involved. By using the expan-
sions when clusters are separated by larger distances one may reduce the number of expansions
that are necessary to obtain the same level of accuracy. This trade-off may be optimized by link-
ing the number of expansions employed to the distance between the interacting pairs dynamically
(Salmon, 1991). However this may result in increased cost for the construction of the interaction
lists and it would complicate the algorithm and reduce its vectorizability.

1.2 The Data Structure

The two-dimensional space is considered to be a square enclosing all computational elements. We
apply the operation of continuously subdividing a square into four identical squares until each
square has only a certain maximum number of particles in it (see Fig. 1 for an example) or the
maximum allowable level of subdivisions has been reached (the latter requirement seems obligatory
when one programs in FORTRAN and has to predefine array dimensions). This procedure for a
roughly uniform particle distribution results in O(log,N) levels of squares.

The two fast algorithms under discussion, PB and BB, exploit the topology of the computational
domain each with a different degree of complexity and efficiency. The hierarchy of boxes defines a
tree data structure which is common for both algorithms. However its key ingredients and address
arrays are implemented in a different way as explained below for the two algorithms. The tree
construction proceeds level by level starting at the finest level of the particles and proceeding
upwards to coarser box levels.

Due to the simplicity of the geometry of the computational domain the addressing of the elements
of the data structure is facilitated significantly. As the construction proceeds pointers are assigned
to the boxes so that there is direct addressing of the first and last particle index in them as well
as there is direct access to their children and parents. This facilitates the computation of the
expansion coefficients of the children from the expansions of the parents for the BB algorithm and
the expansions of the parents from those of the children for the PB algorithm.

1.2.1 Parameters of the Data Structure

The data structure is used to determine when the expansions are to be used and when pairwise
interactions have to be calculated. Usually this data structure is referred to as the ‘(family) tree ’ of
the particles. It helps in communicating to the computer the geometric distribution of the particles
in the computational domain. The particles reside at the finest level of the structure. Clusters
of particles form the interior nodes of the tree and hierarchical relations are established. The
data structure adds to the otherwise minimal memory requirements of the vortex method. This
extra memory however is the tradeoff for the speed of the fast algorithms. One may add several
features to this data structure trying to relate to the computer architecture as much information

1.2 The Data Structure 5

. [
.
.o .. - @
. b "
o - L]
. . . . ° .
. . hd w
-
. ¢ - . .
- -
LX) !.\ .o
- - -
hd e - - -
» - o
'y - V L] L]
. -
. s o8 L] L]
.. . ° o s @ (] L
. » . J
. . . ° ° . L] .
L 3 L] -
L] L - .
- - @ - - =
- » . ° L] » - -
. s » .] L]
.e - - .o L] L
. T] L e . | e .
. . . -
ol)
P "e |
.- e * {
-
Ve . . - L] -
M . L] L]
- . . o
. .
- [] ° -
. -
ol -
» L] k [L4
*—> - .-
. . Vv N b
L] - .
- []
- LR A S S e
o o @ . . ol 8| e - -
L .
" @ - . - L]] .
- - . b] »
. L] o - . -
. I] L . | o .
.o L] . . L] -
.s - L L] - L]
. » o -

Figure 1: An example showing four stages of subdividing the computational domain. In the final
stage each box contains less than three particles.

as possible for the particle configuration. However these memory requirements have to maintain
a certain degree of uniformity for all the levels of the tree. So if one wants to use large numbers
of particles (hence several levels of subdivisions) these memory requirements should be kept to a
reasonable level.

The formation and descent of the tree add to the cost of the algorithms and a non-refined im-
plementation may result in the degradation of the whole algorithm. A data structure may be
Lagrangian or Eulerian. The former adapts automatically to the locations of the particles and can
be the same for several steps. The latter has to be reconstructed at every step as the particles
change positions in the domain. There are several ways that nearby particles could be clustered
together and some of the decisions to be made are :

The center of expansions. This can be either the geometric center of a certain region in space or
the center of mass of the distribution of particles or some other location chosen so that the data
structure is conveniently addressed and the expansions converge rapidly. Choosing the center of
‘mass’ implies that for a uniform particle distribution and a certain number of particles per cluster
the minimum radius for convergence is expected. On the other hand the geometric center (as in
the present work) facilitates tremendously the addressing of the boxes in the data structure.

The cluster size. Accuracy requirements impose that the cluster size should be as small as possible

6 1 Fast Multipole Method

while efficiency considerations dictate that clusters should contain enough particles so that the
use of the expansions is beneficial. There are different approaches to that as others require the
finest clusters to contain fewer than L, (e.g. for the Barnes-Hut algorithm L,,;,, = 2) particles
where others impose the finest level of subdivision beyond which no further subdivisions take place.
The former procedure seems to offer more accurate expansions whereas the latter economizes in
memory and compactness of the data structure especially when more than one particle resides
at the finer boxes and large numbers of terms are to be kept in the expansions. In the present
algorithms we follow a hybrid strategy as we keep at least L, particles per box until we reach
a predetermined finest level of boxes. The number L,,;, may be chosen by the user depending on
the particle population and configuration so as to achieve an optimal computational cost.

A related issue is how one subdivides a cluster or box with more than L,,;, particles. Practical
implementations of the method resort basically to two techniques. One may split the parent cluster
into two children resulting in a so called binary tree. The direction of this dissection depends on
the distribution of the particles, attempting to optimally adapt the data structure to the locations
of the particles in the computational domain. In practice this has the benefit of requiring fewer
terms in the expansions to obtain a certain accuracy (for a relatively uniform particle distribution).
Alternatively, as in the present scheme, one may simply divide the box into four boxes. This would
require a larger number of expansions to be calculated and stored to obtain the required accuracy,
as the radius for convergence is not minimized. However these ‘extra’ terms have a minimal effect
to the overall cost of the scheme as they appear in fully vectorized parts of the algorithm. Moreover
the regularity of such a procedure facilitates the logic of the algorithm and the construction and
addressing of the data structure.

Addressing the clusters. A key factor in the computer implementation of the method, addressing
should be such that it does not inhibit the vectorization or the parallel implementation of the
method. Traversing and building the hierarchical tree is highly dependent on this procedure.
A simpler technique would be to store information (such as geometric location, size, family ties
etc.) for the tree nodes in the memory. Such a procedure may severely limit the number of
particles that can be computed [Pépin and Leonard, 1990] if excess information is stored. Besides
it would degrade the performance for machines (such as the CRAY-2) where memory access is
computationally intensive. However both restrictions do not seem to consist major drawbacks in
the present implementation on the CRAY YMP, provided a reasonable number of subdivisions
(less than 10) is allowed.

Another key issue is the addressing of the particles. As particles are usually associated with a
certain box it is efficient to sort the particle locations in the memory so that particles that belong
to the same box occupy adjacent locations in the memory devoted to the particle arrays. Such
memory allocation enhances the vectorization tremendously as very often we loop over particles
of the same box (e.g., to construct the expansions at the finest level, or to compute interactions)
and the loops have an optimum stride of one.

As one can deduce, the possible combinations of the above features may result in a number of
different implementations. Depending on the implementation a different degree of vectorization
may then be achieved.

1.3 Description of the Algorithms

In both algorithms, described herein, we may distinguish three stages:
e Building the data structure (tree)
e Establishing the interaction lists (by non-recursively descending the tree)

e Velocity evaluations for all particles in the domain.

1.8 Description of the Algorithms 7

Figure 2: Flow Chart for the tree traversal of the PB algorithm for all particles of a childless box

The building of the data structure is common for both algorithms but they differ in the tree descent
and the velocity evaluation. Basic requirements for an efficiently vectorized code are the simplicity
of the algorithm, the existence of long vectorizable loops (i.e., simple loops, odd stride e.t.c) and
the reduction of memory referencing. Care has been exercised at all stages so that the maximum
degree of vectorization is achieved and efficient calculations result. In the present implementation
the building of the data structure consumes about 5—7% of the time whereas the descent consumes
another 5 — 10% so that the largest amount is spent in computing the velocities.

1.3.1 The Particle-Box Algorithm

The hierarchical structure of the algorithm has a logical complexity that implies a recursive pro-
cedure. The algorithm may be easily described by the following code:

subroutine interact (n,C)
IF (particle n is well separated from cell C) THEN
velocity = sum of expansions of cell C on n
ELSE
CALL interact (n,children of C)
END IF

Note the recursiveness of this subroutine in the ELSE block. A straightforward approach to the
non-recursive programming of this subroutine, in an attempt to vectorize it, would be to unroll
it. Such a procedure would introduce a depth-first search of the tree. However this is not very
efficient because for most applications the depth of the tree is not long enough to enable optimized

8 1 Fast Multipole Method

vector operations. As reported by Makino (1990), Barnes introduced interaction lists associated
with each particle and then vectorized by looping over the particles. Every particle had its own
interaction list but increased memory referencing and the additional complexity of the algorithm
resulted in degradation of the performance. In our algorithm we employ the following alternate
procedure:

Step 1 : Building the data structure (tree)

Step 1a : For each of the squares at each level that are not further subdivided we compute the
p-terms of the multipole expansions. These expansions are used to describe the influence of the
particles at locations that are well separated from their cluster. The cost of this step is O(Np).
Step 1b : The expansions of all parent boxes are constructed by shifting the expansion coefficients
of their children. The tree is traversed upwards in this stage. Rather than constructing the
expansions of all the members of a family (that is traverse each branch until the root is reached)
we construct the expansions of all parent boxes at each level simultaneously. This enables long
loops over the parent boxes at each level. Care is taken so that the procedure is fully vectorized
by taking advantage of the regularity of the data structure and the addressing of the boxes in the
memory. Moreover the regularity of the data structure allows us to precompute many coefficients
that are necessary for the expansions. The cost of this step is O(Np?), as each shifting requires p?
operations and there are at most (4N — 1)/3 boxes in the computational domain.

Step 2 : Establishing of interaction lists In the present algorithm a breadth-first search
is performed at each level to establish the interaction lists of each particle (cell). This search is
facilitated by the regularity of the data structure and the identification arrays of the cells in the
tree. At each level interaction lists are established for the particles (cells) by looping across the
cells of a certain level.

Algorithmically this operation is represented as follows:

subroutine setlist (n)

DO 1=1,levelmax
CALL FARCLOSE(Z(n), ds(1), IZ(1), kxm, Lstxm, kfr, Lstfr, kcls, Lstcls)
CALL CLOSECHECK (kels, Lstcls, kpp, Lstpp, kxm, Lstxm)
CALL GATHER(kfr, Lstfr, kpp, Lstpp, ZP, GP, ZB, EB)

END DO

return

For each particle n the hierarchy of cells is traversed breadth first. The check for faraway or
close boxes is performed within the subroutine FARCLOSE that is fully vectorized. Initially the
addresses of kxm cells that belong to the coarsest level are stored in array Lstxm. By checking the
locations of the boxes at the grid of level 1 and the respective location of the particle on that grid
the cells are identified as either faraway (stored in Lstfr) or nearby (stored in Lstcls). Boxes
that are far interact with the particle and are placed in a P-B interaction list Lstpp along with
their expansions EB and locations ZB in subroutine GATHER. Boxes that are close however are
further examined in the fully vectorized subroutine CLOSECHECK. Those that are childless have
their particles stored in an array Lstpp so that they interact directly. Those that are parents have
their children stored in array Lstxm so that they are fed back in FARCLOSE at the finer level.
Note that at the finest level all boxes are considered childless and subroutine CLOSECHECK need
not be called. This way the interaction lists for the particles are formed successively and a fully
vectorized force calculation calculates the velocities of the particles at the following stage.

Note now that this depth first search for interaction lists is further facilitated by the following
observation. Every particle belongs to a childless box. It is easy then to observe that all particles
in the same box share the same interaction list comprised of members of the tree that belong to
coarser levels. This way the tree is traversed upwards for all particles in a childless box together
and downwards separately for each particle. It is evident that this procedure is more efficient for

1.8 Description of the Algorithms 9

uniformly clustered configurations of particles as there would be more particles that belong to
childless boxes at the finest level.

The cost of this step scales as O((N/Lmin)logN) as there are logN levels of boxes and the tree is
traversed (N/Lmpin) times.

Step 3 : Computation of the interactions.

Once the interaction lists have been established the velocities of the particles are computed by
looping over the elements of the lists. For particles that have the same boxes in their interaction
list this is performed simultaneously so that memory referencing is minimized. Moreover by sys-
tematically traversing the tree the particle-particle interactions are made symmetric so that the
cost of this computation is halved. Care has been exercised to compute the velocities with the
minimum possible number of operations (Section 1.4).

The cost of this step is O(Np).

1.3.2 The Box-Box Algorithm.

This scheme is similar to the PB scheme except that here every node of the tree assumes the role
of a particle. In other words interactions are not limited to particle-particle and particle-box but
interactions between boxes are considered as well. Those interactions are in the form of shifting
the expansion coefficients of one box into another and the interaction lists are established with
respect to the locations of every node of the tree.

The scheme distinguishes five categories of interacting elements of the tree with respect to a cell
denoted by c.

e List 1 : All childless boxes neighboring c.

e List 2 : Children of colleagues of b’s parents that are well separated from c¢. All such boxes
belong to the same level with c.

e List 3 : Descendants (not only children) of c’s colleagues (boxes of the same size as c),
whose parents are adjacent to ¢ but are not adjacent to ¢ themselves. All such boxes belong
to finer levels.

e List 4 : All boxes such that box ¢ belongs to their List 3. All such boxes are childless and
belong to coarser levels.

e List 5 : All boxes well separated from c’s parents. Boxes in this category do not interact
directly with the cell c.

If the cell c is childless it may have interacting pairs that belong to all four lists. However if it
is a parent it is associated with boxes that belong to lists 2 and 4 as described above. These
observations are directly applied in our algorithm and we may distinguish again the following 4
steps.

Step 1 : Building the data structure.

This procedure is the same as for the PB scheme. This fact enables us actually to compare directly
the two algorithms and asses their efficiency.

Step 2 : Construction of Interaction Lists.

To establish the interaction lists we proceed again level by level starting at the coarsest level. For
each level we distinguish childless and parent boxes. In establishing lists 1 and 3 we need only
loop over childless boxes whereas to establish lists 2 and 4 we loop over all cells that are active in
a certain level.

Step 2a : Here we establish lists 1 and 3. We start at the level of the parents of box ¢ and we
proceed level by level examining again breadth first, until we reach the finest level of the structure
(the particles). The elements of lists 1 are basically the particles and account for the particle-
particle interactions. Care is exercised so that this computation is symmetric and we need to

10 1 Fast Multipole Method

Figure 3: Flow Chart for the Tree Traversal of the BB scheme for a cell ¢

traverse the tree downwards only. The elements of List 3 are the boxes and are accountable for
the particle-box interactions in this scheme.
More specifically an algorithmic description of our algorithm is given by :

subroutine Lists1&3 (lpr kchlds)
DO k=1,kchlds
Find the colleagues of k’s parents (Lclg)
Place the children of (Lclg) bozes in (Lstzm)
DO I=lpr,lmax
CALL FARCLOSE(ZC, ds(1), Kxm, Lstxm, k3, Lst3, kcls, Lstcls)
CALL CLOSECHECK (kels, Lstcls, k1, Lst1, kxm, Lstxm)
END DO
END DO
return

The outer loop here is over all childless boxes. The colleagues of their parents are identified (either
by being retrieved directly from an array or by using FARCLOSE) and subsequently their children
are placed in Lstxm. Subsequently a call to FARCLOSE distinguishes between faraway and nearby
boxes at different levels. Boxes placed in Lst1 are to interact directly whereas those placed in Lst3
are to interact as particle-box.

Step 2b : Here we establish interaction lists 2 and 4 for all boxes in the hierarchy. We start at
the coarsest possible level and proceed downward until reaching the level of box ¢ to establish the
interaction lists. To do so for a certain box we start by examining boxes that are not well separated
from its parents (otherwise they would have been dealt with at the coarser level). Subsequently the

1.4 Practical Formulas for Velocity Calculations 11

children of those boxes are examined to establish interaction lists. Algorithmically this operation
is represented by:

subroutine Lists2&4 (Ipr.kbox)
DO k=1,kbox
DO 1=10,lpr
Bozes close to parents (?)(use FARCLOSE)
Close to parents - Childless(?)(use CLOSECHECK)
Close to parents and Childless - Close to box (?)(Use FARCLOSE)
END DO
END DO
return

Step 3 : Computations of the interactions

In this scheme we consider three kinds of interactions: the box-box, particle-box and particle-
particle interactions. The latter two categories were discussed in the previous section. For the
box-box interactions once the respective interaction lists have been established (with members of
lists 2 and 4) we need to transfer those expansions down to the ones of the children and add them
to the existing ones. This procedure is vectorized by looping over the number of boxes at each
level. The use of pointers to access the children of each box enhances this vectorization. Note that
an arbitrarily high number of expansions can be calculated efficiently by unrolling the loop over
the number of expansions into the previously mentioned loop.

1.4 Practical Formulas for Velocity Calculations

Once the interaction lists have been established the velocities on the particle locations need to
be calculated using formulas (1.2)—(1.8). Because this is the most time consuming part of the
algorithm an effort is made to reduce as much as possible the computational cost. A possible
increase in the computational speed may be obtained by some ASSEMBLY programming for the
velocity evaluations. Following are some of the formulas employed to reduce this computational
cost.

e Particle-Particle Interactions : In order to achieve higher convergence rates in the vortex
methods more complicated functions than the delta functions are usually necessary for the
description of the vorticity field. This will reduce the efficiency of the algorithm but to
minimize the extra cost one could make use of look up tables. In these look up tables in
order to get the accuracy required we should not only store the values of the function but its
derivatives as well. Using the MATHT77 scientific libraries of the CRAY would help reduce
this computational cost.

e Particle-Box Interactions : Formula (1.3) may be calculated using recursive relations. By
computing separately real and imaginary parts for the velocities we have that for a particle
located at z = x 4+ 4y the contribution from a box located at X); = Xj; + ¢Yas having
expansions a = A + iur may be computed with the following algorithm.

I*X}W

= (x — Xnm)? + (y— Yar)? (1.9)
_ y— Yy

fo= (@ — Xnm)?+ (y — Yn)? (1.10)

Ty ="Tkp—1"To — fr—1- fo (1.11)

Je=rk—1-fo+ fe—1-70 (1.12)

12

1 Fast Multipole Method

and the velocities (u,v) would be given as :
k=P
U:_ZAk‘Tk_lffk'fk (113)
k=0
k=P
U:Z)\k'fk“f‘ﬂk'?”k (1.14)
k=0

Parent Cell Expansions : The expansions of parent cells are computed from the expansions
of their children. This procedure does not introduce any errors and it helps in economizing
computer time compared to a direct calculation using the particle locations. The amount of
necessary calculations is reduced by exploring the regularity of the location of the children
boxes with respect to the parents. Thus in formula (1.5) we have

—1+14 for Box 1;
d | —-1—-14 for Box 2;
21— for Box 3;
144 for Box 4.

7 — Z}:\}[lildren _ Z]p\);rent _ (115)

where d is the size of the child cell. Hence we may calculate explicitly the powers (]i) Al
for all values of Lk thus speeding up the computations inside the loop for the boxes.

Cell-Cell Interactions: A procedure similar to the one for the particle-cell interactions is
followed here. If §; = n; + i60; are the coeflicients of a box located at Zg = X + iYe which
are contributed by a box located at Zp; = Xas + Yy, then these coefficients are computed
with the following scheme :

Xe—Xu

= 1.16
o (Xa — Xum)?+ (Yo — Yu)? (1.16)
Yo —Yu
= 1.17
fo= e = Xm)? T Vo = Yar)? (1.17)
Tk =Tk—1-7T0 — fk—1" fo (1.18)
fe=7k-1"fo+ fe—1-T0 (1.19)
and finally:
k=P
k=0
k=P
Fr=>" Me- fio+ 7 (1.21)
k=0
m=r-Ri—fi-F (1.22)
fe=mr-Fi+ fi- R (1.23)

e Children FExpansions : Cell-Cell interactions are performed at the coarsest possible level.

Then the expansions of the parent boxes are transferred down to the expansions of their
children and are added to the existing ones until the finest level at any branch of the tree is
reached. Those expansion coefficients are computed using formula (1.8) in a similar way as
for the expansions of parent cells discussed above.

1.5 Performance of the Algorithms 13

e (ell - Particle Interactions : Once the expansions of all childless boxes have been obtained
they are used to compute the velocities on the particles. Formula (1.6) is used and a procedure
similar to the one discussed above is followed. Vectorization is achieved by looping over all
particles in a certain childless box. This may be inefficient if only a small number of particles
is contained in this box.

1.5 Performance of the Algorithms

Comparisons were made for the two fast algorithms and the O(N?) in terms of efficiency and
computational speed. We require that the fast algorithms produce the same results as the N2
scheme with minimum accuracy of six significant figures in the velocity field of a random uniform
distribution of particles in a square. We allow up to eight levels in the hierarchy of theboxes and
use ten terms in the multipole expansions at all levels.

Figure 4: Performance in Mflops of the PB and BB algorithms on the CRAY /XMP-18

In figure 4 we show the efficiency in the vectorization achieved for the fast algorithms on the
CRAY/XMP-18. The PB algorithm is much more efficient than its BB competitor in regards with
vectorization. This is a result that was expected because of the simplicity of the PP scheme versus
the algorithmic complexity of the BB scheme.

This is not the whole story, however, since in applications we are mainly interested in the overall
speed of the algorithm and not necessarily in its Mflps efficiency. Figure 5 shows the CPU time
required on a single processor of an XMP-18 in each of the three methods for an evaluation of all
N velocities for N elements with a minimum accuracy of 1076. Note that fast methods become
advantageous for computations involving only N = 500 particles with the BB method breaking
even with the PB method for N = 4400. Note that the CPU time required on a YMP processor
is about 2/3 of the time required on an XMP. A timestep requiring one evaluation of all velocities
for a million particles requires about one minute on single processor of a CRAY YMP while the
N? algorithm would require roughly 24 hours.

14 1 Fast Multipole Method

Figure 5: Computational Cost of the PB, BB and direct summation algorithms

1.6 Derivation of some relevant equations
1.6.1 Particle to Multipole

We know

i LT

We want to show that we can write this also as

oo

) 1 oy
V(Z)=— :
() QWZ—ZAij:O(Z—ZM)k,

where

max|Z, — Z |
aslongas | 2——— | < 1.
& 1Z — Zu]

Proof We can rewrite the first equation

. N . N

=Y e Y

27Tn:1Z—Zn 27Tn:12—Z]\,1+Z]V[—Zn
N

n=1

e
T Z—Zy (1_ZnZ]M)-

Z—Zu

(1.24)

(1.25)

1.6 Derivation of some relevant equations 15

Now we use the expansion, valid for |z| < 1,

k=0
to get
. N . N oo k
i 1 I, i 1 Zn —Znm
K2 - r, Ln T 2M 1.2
QWZ—ZA[; 1_Zn—ZM QTFZ_ZM; k—O<Z_ZM) (6)
AAY:
. 00 N k
1 I'n(Z,— 7%
21 Z — Zn (Z = Zum)
S ar
= 1.28
QﬂZ—ZA{];)(Z—ZM)k’ ()
where
N
ap = ZFn(Zn ZM)k
n=1

max|Z, — Z|
<1

Due to the constraints on using the expansion, the above holds only for <n|ZZ
—ZM

1.6.2 Multipole translations - Child to Parent
We have

oo

-) 1 AL

where
N
ar = Tn(Zn— Zy)"
n=1
We want to show that we can translate this expression to a different center of expansion Z%;, and
get

i1 i w i1 i o (1.29)
2 (Z — Zyr) = (Z—-Zu)F 27 (Z-2F) — (Z —ZE)W '
where l
l K
of = Zak (k) (Zy — ZE)k (1.30)
k=0
Proof We leave away the prefactor ﬁ for the proof. First we write
1 > Qe > Qe
= —r 1.31
(Z —Zn) prs (Z — Znp)*];)(Z—ZM)’“rl (1.31)
> @
= K (1.32)

- iL (1.33)

16 1 Fast Multipole Method

where Z = (Z — ZL) and Zy = (Zp — Z1L)).
Now we use the identity (see ‘shortcourse FMM’, page 21, bottom - the binomial theorem)

o (1—1\ Z*
-k _ 0
(ZiZO) - E <k/’—1> gl

=k

and find

= &S (-1 Z
B A DLIDD (K) 7 (1.34)

k=0 k=0 U=k+1

oo 0 l Zl—k,

=YX () 2 1.3)
k=0 =k
1l (1) zZh*

==>)y ; (1.36)
Z k=0 =k k Zl

(1.37)

where we replaced the dummy index I’ with [=" — 1.
Replacing the original definitions of Z and Zj gives then

éiaki@)%zk_ Z—27%) iia<>% (1.38)

k=0 =k k:O =k

Using the fact that the binomial coefficient (Z) is zero whenever k > n, we can first extend the
bottom limit of the second summation to start from [= 0 instead of [= k. Then we can swap the
summations of k and [(since we are working under conditions such that the series is convergent),
and use again the property of the binomial coefficient to truncate the (inner) sum of k at I:

1 = o 1 = <l)(ZM ZE)ik
Qg —_— (1.39)
77 27z~ 775 22 \k) Zzpy
1 oo 00 Z]\/[—)l k
- 1.40
~Z-z) I;”;a’“<) = ZP)l (1.40)
1 o — () (Zyr — Z5)*
g = (1.41)
Sz) -2y
S
1 (Zn — Z5) 7k
= 1.42
“manael) g e
Now we can identify the parent coefficients by comparing terms, to find that
1 > o 1 > alp
= , (1.43)
(Z = Zu) kz:% (Z—2Zu)* (Z-Zy) ; (Z -2y
where
1
l
of = Zak (k) (Zy — ZE)k (1.44)

1.6 Derivation of some relevant equations 17

1.6.3 Muiltipole shifting
We have

i 1 > ag
V(Z)=—
() 27TZ—ZMkZ=()(Z—Z]V[)k,
where

N
ar = Tn(Zn—Zu)"
n=1

We want to show that, once we have computed the influence of sources with center Z); at a target
location Z¢, we can compute the velocities at a point Z close to Zg as follows:

i 1 = i

V(Z — 5(Z - Zg) 1.45
(2) =5 (Z = Zu) 1; 7 - ZM) ~or l; d @) (1.45)

where P

)i I+k—1 o
5 = S S— 1.46
' ZG—ZMlkZ_O<)(ZG—ZM)k (1.46)
Z—7Z
as long as ﬁ < 1.

Proof We leave away the prefactor ﬁ for the proof. First we write

Ak

= 1.47
kZ:O Z — ZM k+1 ’;J(Z—ZG—FZG—ZM)]C'H ()
0o o
= Z 77) (1.48)
k=0 (7, _ 7 \k+1 — 1
(Za M) T — Zu +
0o o
= 1.4
kZ:O (Za — Zy)FH1 (14 R (149)
Z —Z
where £ = —— 2% We assume that €] < 1.
Za— 2y
Now we use the expansion
1 = l+k—1
— =) (=1 ! 1.50
T2 (e (1.50)
valid for |z| < 1. We substitute this expansion on the term with &, and get
) o o (o) l+k‘ .
_ _ — 1.51
l;) ZG —Zm k+1<1+§)k+1 Z (ZG —ZM k+1 g(<)§ (5)
[ee] oo
AW
—_—(~1 1.52
S gty (e s

k=0 1=0

We use the facts that for a convergent sum we can switch the order of the summations, and

(9= ()

18 1 Fast Multipole Method

ZZ Zg—ZM k+1(1)1(41_)fl:ZZ(zG_kaHl(_l)l(—Z)51. (1.53)

Substituting back the definition of ¢ we obtain

2 = o I+E\,, v 1+ k\ (Z-2Zg)
ZZ(ZG—ZkM)’““(i1 <) 722 ZG—ZM k“(1)1(k >(ZG_ZC;I)Z

=0

(1.54)
= S (l+k ok
:l;(Z—ZG)z (~ _ZM l kz_()()ZG—ZM)’““) .
(1.55)

Truncating the sums at order P and introducing the definition of §; then gives
= (—1)! (l + k:)
(Z—-2Z2g) | ————=— —_ 0(Z - Zg)
- 20 (g 2 (1)) - e - 2o
where
5 = (—1)! (l + k) Qg .
(Ze — Zyu) = k) (Zg— Zp)kt!

7 — Zg
Za—Zym
Finally, to bring the answer to the form of the lecture notes, we replace the summation index [
with a new index ' =1 — 1:

P
> 0z - zea) Z(Sl/ (Z = Zg)'~ Za,z Ze)' Y,
=0

Due to the used expansion, this is valid under the condition |¢| < 1, or <1

I'=1 '=1
where

55 _ii I+k—1\ o (1.56)

TN T G- 2y =\ k) (Za— Za) '

P
(-1 l+1 l-i—k‘— 1 Qg

B — 1.

(Za — ZM (Za — Zu)! z:: (Za — Zm)* (157)

k=0

(1.58)

References 19

References

[Appel, 1985] Appel, A. (1985). An efficient program for many-body simulation. SIAM Journal
on Scientific and Statistical Computing, 6(85).

[Barnes and Hut, 1986] Barnes, J. and Hut, P. (1986). A hierarchical O N log N force-calculation
algorithm. Nature, 324:446-449.

[Greengard and Rokhlin, 1987] Greengard, L. and Rokhlin, V. (1987). A fast algorithm for particle
simulations. Journal of Computational Physics, 73(325-348).

[Hockney and Eastwood, 1981] Hockney, R. and Eastwood, J. (1981). Computer simulation using
particles. McGraw-Hill Inc.

[Katzenelson, 1989] Katzenelson, J. (1989). Computation structure of the n-body problem. SIAM
Journal on Scientific and Statistical Computing, 11:787-815.

[Koumoutsakos, 1993] Koumoutsakos, P. (1993). Direct numerical simulations of unsteady sepa-
rated flows using vortex methods. PhD thesis, Caltech.

[Pépin and Leonard, 1990] Pépin, F. and Leonard, A. (1990). Concurrent implementation of a fast
vortex method. 5th Distributed Memory Computing Conference, 1:453-462.

[Salmon, 1991] Salmon, J. (1991). Parallel Hierarchical N-Body Methods. PhD thesis, Caltech.

[van Dommelen and Rudensteiner, 1989] van Dommelen, L. and Rudensteiner, E. (1989). Fast,
adaptive summation of point forces in the two-dimensional Poisson equation. Journal of Com-
putational Physics, 83:126—-148.

	Fast Multipole Method
	Multipole Methods for the Velocity Evaluation
	 The Data Structure
	Parameters of the Data Structure

	Description of the Algorithms
	 The Particle-Box Algorithm
	 The Box-Box Algorithm.

	Practical Formulas for Velocity Calculations
	Performance of the Algorithms
	Derivation of some relevant equations
	Particle to Multipole
	Multipole translations - Child to Parent
	Multipole shifting

