
HPCSE II

Markov chain Monte Carlo

Review:
The Metropolis Algorithm

Statistical mechanics and the Boltzmann weight

At a fixed temperature T the average of a physical observable A
can be calculated as a sum over all configurations c 
 
 
 
where

This is ideal for importance sampling with the Boltzmann weight

A = 1
Z

Ac
c
∑ exp(−βEc)

c configuration
Ec energy of a configuration
Ac value of the observable for a configuration
T temperature

β = 1
kBT

inverse temperature

Z= exp
c
∑ (−βEc) partition function (normalization)

pc =
1
Z
exp(−βEc)

The Metropolis Algorithm (1953)

Instead of drawing independent samples ci we build a Markov chain

Transition probabilities Wx,y for transition x → y need to satisfy:

Normalization:

Ergodicity: any configuration reachable from any other

Balance: the distribution should be stationary

change in distribution in one step:

stationarity condition:
Detailed balance is sufficient but not necessary for balance

Markov chain Monte Carlo

�

c1 → c2 → ...→ ci → ci+1 → ...

�

∀x,y ∃n : W n()x,y
≠ 0

�

Wx,y
y
∑ = 1

�

Wx,y

Wy,x

=
p(y)
p(x)

p(n+1)
y = Wx,y

x
∑ px

(n)

py
(n+1) = py

(n) ⇒ py = Wx,y
x
∑ px

Teller’s proposal was to use rejection sampling:

Propose a change with an a-priori proposal rate Ax,y

Accept the proposal with a probability Px,y

The total transition rate is Wx,y =Ax,y Px,y

The choice 
 
 
 
 
 
satisfies detailed balance and was first proposed by Metropolis et al

The Metropolis algorithm

Px,y = min 1,
Ay,x py
Ax,y px

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Sampling N-body states

Simple sampling
draw random configurations and calculate their energy and weight
measure:
problem: we will never hit low-energy configurations (e.g. a crystal)!

Importance sampling by Markov chains
Start from a suitable initial condition, e.g. a perfect crystal
Then do the following updates:

choose a random particle
choose a random direction and distance, e.g. by Gaussian distribution
with sensible parameters
Accept/reject with Boltzmann weight and Metropolis sampling
Measure
Exercise: proof detailed balance and implement this multi-threaded

A ≈ Ai
i
∑ exp(−βEi) exp(−βEi)

i
∑

A ≈ 1
N i=1

N

∑Ai

Monte Carlo Error Analysis

The dogs & fleas model

Two dogs play:
Anick has 50 fleas
Burnside has no fleas

During play fleas jump from one dog to the other
What is the distribution of fleas after they played?

Vinay Ambegaokar and Matthias Troyer 
American Journal of Physics 78, 150 (2010)

Dogs and fleas: direct sampling

0

0.02

0.04

0.06

0.08

0.1

0.12

10 15 20 25 30 35 40

exact

Monte Carlo

P
[n
]

n

We pick a dog for each flea: direct sampling as done last week

MCMC: pick a flea and let it jump to the other dog
estimate errors using the standard equation

Dogs and fleas: MCMC with naïve errors

0

0.02

0.04

0.06

0.08

0.1

0.12

10 15 20 25 30 35 40

exact

Monte Carlo

Monte Carlo

P
[n
]

n

Dogs and fleas: uncorrelated samples

0

0.02

0.04

0.06

0.08

0.1

0.12

10 15 20 25 30 35 40

exact

Monte Carlo

P
[n
]

n

One flea hop does not change much: the results are correlated,
Measure not after every flea hop but only after a few hundred hops

Recall: estimating the error

The sampling error is the rms (root mean square) deviation

We used that samples are uncorrelated:

ΔX()2 = E X − E[X]()2⎡
⎣

⎤
⎦ = E

1
N

Xi − E[X]()
i=1

N

∑⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= E 1
N 2 Xi − E[X]() Xj − E[X]()

i, j=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥

=
1
N 2 E XiX j⎡⎣ ⎤⎦ − E[X]

2()
i, j=1

N

∑

=
1
N 2 E Xi

2⎡⎣ ⎤⎦ − E[X]
2()

i=1

N

∑ =
1
N

E X 2⎡⎣ ⎤⎦ − E[X]
2() = Var XN

E XiX j⎡⎣ ⎤⎦ = E Xi[]E Xj⎡⎣ ⎤⎦ for i ≠ j

Recall: estimating the error

Now include correlations:

where we defined the integrated autocorrelation time as

ΔX()2 = 1
N 2 E XiX j⎡⎣ ⎤⎦ − E[X]

2()
i, j=1

N

∑
=

= Var X
N

+ 1
N 2 E XiX j⎡⎣ ⎤⎦ − E[X]

2()
i≠ j
∑

= Var X
N

+ 2
N 2 E XiXi+t[]− E[X]2()

t
∑

i=1

N

∑

≡ Var X
N

1+ 2τ X()

τ X =
E XiXi+ t[]− E[X]2()

t
∑

Var X

Binning analysis

Take averages of consecutive measurements: averages become less
correlated and naive error estimates converge to real error

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A1
(1) A2

(1) A3
(1) A4

(1) A5
(1) A6

(1) A7
(1) A8

(1)

A1
(2) A2

(2) A3
(2) A4

(2)

A1
(3) A2

(3)

�

Δ(l) = Var A(l) M (l) l→∞⎯ → ⎯ ⎯ Δ = (1+ 2τA)Var A M

τA = lim
l→∞

1
2
2lVar A(l)

Var A(0)
−1

⎛

⎝
⎜

⎞

⎠
⎟

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 2 4 6 8 10

L = 4
L = 48

Δ(l)

binning level l

a smart implementation needs only
O(log(N)) memory for N measurements

converged

not converged

Ai
(l) = 1

2
A2i−1
(l−1) + A2i

(l−1)()

Dogs and fleas: binning analysis

0

0.02

0.04

0.06

0.08

0.1

0.12

10 15 20 25 30 35 40

exact

Monte Carlo

P
[n
]

n

Correlated quantities

How do we calculate the errors of functions of correlated
measurements?

specific heat

Expectation values of weighted samples 
in direct sampling

The naïve way of assuming uncorrelated errors is wrong!
It is not even enough to calculate all crosscorrelations due to
nonlinearities except if the errors are tiny!

cV = 〈E2 〉 − 〈E〉2

kBT
2

〈A〉 =
Ac exp(−βEc)

c
∑ 〉

exp(−βEc)
c
∑

Splitting the time series

Simplest idea: split the time series and evaluate for each segment

X

Y
X1 X2 X3 ... XM

Y1 Y2 Y3 ... YM

U=f(X,Y)
U1 U2 U3 ... UM

Problem: can be unstable and noisy for nonlinear functions such as X/Y
�

U ≈U =
1
M

Ui
i=1

M

∑

�

ΔU ≈
1

M(M −1)
Ui −U ()2

i−1

M

∑

Jackknife-analysis

Evaluate the function on all and all but one segment

.

....

�

ΔU ≈
M −1

M
Ui −U ()2

i−1

M

∑
�

U ≈U0 − (M −1)(U −U0)

�

U =
1
M

Ui
i=1

M

∑

U0 = f 1
M

Xi
i=1

M

∑ , 1
M

Yi
i=1

M

∑⎛
⎝⎜

⎞
⎠⎟

U1 = f 1
M −1

Xi
i=2

M

∑ , 1
M −1

Yi
i=2

M

∑⎛
⎝⎜

⎞
⎠⎟

Uj = f 1
M −1

Xi
i=1
i≠ j

M

∑ , 1
M −1

Yi
i=1
i≠ j

M

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.

....

Analyzing parallel MC simulations

The error analysis depends on the parallelization strategy

Parallelization of a single Markov chain, e.g. by multi-threading the energy
evaluation

Use the binning analysis to calculate errors of the measurements
Use jackknife to calculate means and errors of functions of the measurements

Parallelization by launching multiple independent Markov chains
Run a single Markov chain to calculate the autocorrelation time using the binning
analysis and then choose a good distance (number of updates) between
measurements. A distance comparable to the autocorrelation time is ideal.
Then run a parallel simulation and store only the mean for each Markov chain
Calculate the overall mean and its error from the mean values of each Markov chain
using the simple error formula for independent measurements
Use jackknife to calculate means and errors of functions of the measurements

