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Diffusion

The movement of molecules from an area of high 
concentration to an area of low concentration 
until the concentration on both sides is equal.

‣ describes spread of the quantity 
driven by its concentration gradient 
towards regions with lower density

Examples:
•  distribution of heat in given region

•  drop of ink in the glass of water

•  teabag diffusion
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ρ(r,t)  - measure for the amount of heat at position r=(x,y) and time t
D       - diffusion coefficient (constant here)

‣ Discretizing eq. (1) using forward Euler in time and      
central differences in space yields:

‣Diffusion of quantity ρ (e.g. heat flow) can be described by diffusion equation of    
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Question 1: Di⇧usion in 2D
Heat flow in a medium can be described by the di�usion equation of the form

@⇢(r, t)

@t

= Dr2
⇢(r, t) (1)

where ⇢(r, t) is a measure for the amount of heat at position r and time t and the di�usion
coe⌫cient D is constant. Lets define the domain ⌦ in two dimensions as x, y 2 [�1, 1]. We
will use Dirichlet boundary conditions

⇢(�1, y, t) = ⇢(x,�1, t) = ⇢(1, y, t) = ⇢(x, 1, t) = 0 8 t > 0 (2)

and an initial density distribution

⇢(x, y, 0) =

(
1 |x, y| < 1/2

0 otherwise

(3)

a) Discretize equation (1) using forward Euler in time and central di�erences in space and write
a serial code to model the time evolution of ⇢(x, y, t). Comment on the stability of the
method. hint: careful about the time-step

b) Parallelize your code using OpenMP and make both strong and weak scaling plots up to 48
cores. Define the problem size as the number of grid points in the discretization of ⌦.

The total amount of heat in the system N(t) and the second moment of the cloud µ

2(t) at a
time t can be computed as

N(t) =

Z

⌦

dx dy ⇢(x, y, t) µ

2(t) =

Z

⌦

dx dy ⇢(x, y, t)(x2 + y

2) (4)

c) Make a plot of the time evolution of N(t) and µ

2(t) for D = 1, 2, 5 and t 2 [0, 10]. What
is the e�ect of the boundary? Comment on your observations.

d) Make a 2D contour plot of the density ⇢(x, y, t) at t = 0, 2, 10
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the form:

• where n is the index of time step:  
• i, j are indices of spatial discretization: 
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• and

tn = n ·�t

yj = j ·�y
⇢

n
i,j = ⇢(xi, yj , tn)
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describe evolution of concentration of one or more substances whose

• state is modified by reactions

• movement is governed by diffusion 

• reaction = “cell proliferation”
e.g. brain cancer
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describe evolution of concentration of one or more substances whose

• state is modified by reactions

• movement is governed by diffusion 

• reaction = “cell proliferation”
e.g. brain cancer

Examples

e.g pattern formation
• reaction = “chemical reaction”

Figure: Watanabe M, Kondo S. 
Pigment Cell Melanoma Res. 2012 Feb 7. doi: 10.1111/j. 
1755-148X.2012.00984.x.



Reaction-Diffusion Processes
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describe evolution of concentration of one or more substances whose

• state is modified by reactions

• movement is governed by diffusion 

• reaction = “interaction”
e.g. predator-prey model

• reaction = “cell proliferation”
e.g. brain cancer

Examples

e.g pattern formation
• reaction = “chemical reaction”

Figure: Watanabe M, Kondo S. 
Pigment Cell Melanoma Res. 2012 Feb 7. doi: 10.1111/j. 
1755-148X.2012.00984.x.
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Reaction-diffusion equation for M different species with respective 

• concentrations ui and 

• diffusion terms Di 
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Reaction Di⌃usion

Reaction-Di⌫usion processes describe an evolution of concentration of one or more substances
distributed in a space, whose states are modified by chemical reactions and whose movement
are governed by di⌫usion. The corresponding reaction-di⌫usion equation for M di⌫erent species
with respective concentration fields ui and di⌫usion terms Di has following form:

⇤ui

⇤t
= Di�ui + fi(u), ⌅i = 1 · · ·M. (1)

The terms fi describe creation or consumption of species i caused by reactions. Note that since
each concentration field ui depends on the reaction term fi(u) (with possible di⌫erent form for
the term fi), we are dealing with a system of coupled PDEs.

In this exercise we will consider Gray-Scott system, what is a reaction-di⌫usion system consisting
of two chemical species U and V , with corresponding di⌫usion terms Du, Dv, and which are
subjects to the following chemical reactions:

U + 2V ⇤ 3V (2)
V ⇤ P

Where P is an inner product, which is out of the simulation interest. Both U and V are removed
by the feed process. If we denote by u and v the concentration of species U and V , then the
resulting reaction-di⌫usion equations in dimensionless units are:

⇤u

⇤t
= Du�u� uv2 + F (1� u) (3)

⇤v

⇤t
= Dv�v + uv2 � (F + k)v (4)

Where k is the dimensionless rate constant of the second reaction and F is the dimensionless feed
rate. The Gray-Scott system results in a formation of patterns, see Figure 1 for few examples,
where various pattern modes are obtain by di⌫erent combination of values for parameters F and
k.

1
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1

fi - production/consumption of species i
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1

fi - production/consumption of species i
system of coupled PDEs !
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1

two species U & V reacting according:

system of coupled PDEs !
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where various pattern modes are obtain by di⌫erent combination of values for parameters F and
k.

1

two species U & V reacting according:

system of coupled PDEs !

High Performance Computing for
Science and Engineering I

Autumn semester 2013
Prof. Dr. P. Koumoutsakos
ETH Zentrum, CLT F12
CH-8092 Zürich

Project 3
Issued: November 26, 2013

Hand in: December 10, 2013

Reaction Di⌃usion

Reaction-Di⌫usion processes describe an evolution of concentration of one or more substances
distributed in a space, whose states are modified by chemical reactions and whose movement
are governed by di⌫usion. The corresponding reaction-di⌫usion equation for M di⌫erent species
with respective concentration fields ui and di⌫usion terms Di has following form:

⇤ui

⇤t
= Di�ui + fi(u), ⌅i = 1 · · ·M. (1)

The terms fi describe creation or consumption of species i caused by reactions. Note that since
each concentration field ui depends on the reaction term fi(u) (with possible di⌫erent form for
the term fi), we are dealing with a system of coupled PDEs.

In this exercise we will consider Gray-Scott system, what is a reaction-di⌫usion system consisting
of two chemical species U and V , with corresponding di⌫usion terms Du, Dv, and which are
subjects to the following chemical reactions:

U + 2V ⇤ 3V (2)
V ⇤ P

Where P is an inner product, which is out of the simulation interest. Both U and V are removed
by the feed process. If we denote by u and v the concentration of species U and V , then the
resulting reaction-di⌫usion equations in dimensionless units are:
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corresponding dimensionless RD equations:
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Gray-Scott

F=0.04, k = 0.06



Gray-Scott Pattern Formation

8



Gray-Scott Pattern Formation

8



Gray-Scott Pattern Formation 

9k

F

about the center of the grid was then 
perturbed to (U = ln,V = 114). These 
conditions were then perturbed with f 1% 
random noise in order to break the square 
symmetry. The system was then integrated 
for 200,000 time steps and an image was 
saved. In all cases, the initial disturbance 
propagated outward from the central 
square, leaving patterns in its wake, until 
the entire grid was affected by the initial 
square perturbation. The propagation was 
wave-like, with the leading edge of the 
perturbation moving with an approximately 
constant velocity. Depending on the param- 
eter values, it took on the order of 10,000 to 
20,000 time steps for the initial perturbation 
to spread over the entire grid. The propaga- 
tion velocity of the initial perturbation is 
thus on the order of 1 x space units per 
time unit. After the initial period during 
which the perturbation spread, the system 
went into an asymptotic state that was either 
time-independent or time-dependent, de- 
pending on the parameter values. 

Figures 2 and 3 are phase diagrams; one 
can view Fig. 3 as a map and Fig. 2 as the key 
to the map. The 12 patterns illustrated in 
Fig. 2 are designated by Greek letters. The 
color indicates the concentration of U with 
red representing U = 1 and blue represent- 
ing U = 0.2; yellow is intermediate to red 
and blue. In Fig. 3, the Greek characters 
indicate the pattern found at that point in 

parameter space. There are two additional 
symbols in Fig. 3, R and B, indicating 
spatially uniform red and blue states, respec- 
tively. The red state corresponds to (U = 
l,V = 0) and the blue state depends on the 
exact parameter values but corresponds 
roughly to (U = 0.3,V = 0.25). 

Pattern a is time-dependent and consists 
of fledgling spirals that are constantly col- 
liding and annihilating each other: full 
spirals never form. Pattern is time-depen- 
dent and consists of what is generally called 

phase turbulence (8), which occurs in the 
vicinity of a Hopf bifurcation to a stable 
periodic orbit. The medium is unable to 
synchronize so the phase of the oscillators 
varies as a function of position. In the 
present case, the small-amplitude periodic 
orbit that bifurcates is unstable. Pattern y is 
time-dependent. It consists primarily of 
stripes but there are small localized regions 
that oscillate with a relatively high frequen- 
cy (- The active regions disappear, 
but new ones always appear elsewhere. In 
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Fig. 1. Phase diagram of the reaction kinetics. 
Outside the region bounded by the solid line, 
there is a single spatially uniform state (called 
the trivial state) (U = 1, V = 0) that is stable for 
all (F, k). Inside the region bounded by the solid 
line, there are three spatially uniform steady 
states. Above the dotted line and below the 
solid line, the system is bistable: There are two 
linearly stable steady states in this region. As F 
is decreased through the dotted line, the non- 
trivial stable steady state loses stability through 
Hopf bifurcation. The bifurcating periodic orbit 
is stable for k < 0.035 and unstable for k > 
0.035. No periodic orbits exist for parameter 
values outside the region bounded by the solid 
line. 

. Ig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which 
are used in Fig. 3 to indicate the pattern found at a given point in parameter space. 

Flg. 3. The map. The Greek letters 
indicate the location in parameter 
space where the patterns in Fig. 2 
were found; B and R indicate that 
the system evolved to uniform blue 

0.06 and red states, respectively. 
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Figure 1: On the left, different patterns obtained with Gray-Scott system. The Greek
letters on the right figure indicate the locations in the parameter space which correspond to
the patterns on the images on the left figure denoted by the corresponding Greek letter. Both
figures taken from paper "Complex Patterns in a Simple Systems" by J.E. Pearson.

Particle Strength Exchange

Particle strength exchange (PSE) is a deterministic pure particle method to simulate di⇣usion
in the continuum description as of eq. ??. The basic idea of the method is to approximate
the di⇣erential operator � = ⇥2

⇥x2 + ⇥2

⇥y2 + . . . with an integral operator, that can be easily
computed. Let us consider a one-dimensional example and let us write a Taylor expansion for
the concentration field u(y, t) defined in the domain ⇥:

u(y) = u(x) + (y � x)
⌃

⌃x
u(x) +

1

2
(y � x)2

⌃2

⌃x2
u(x) +

1

6
(y � x)3

⌃3

⌃x3
u(x) + . . . . (5)

We then transfer u(x) to the left side and convolve the expression with an arbitrary function
�� ⇤ L1

R:
�

�

(u(y)� u(x)) ��(y � x) dy =

�

�

(y � x)
⌃

⌃x
u(x)��(y � x) dy+ (6)

+
1

2

�

�

(y � x)2
⌃2

⌃x2
u(x)��(y � x) dy+ (7)

+
1

6

�

�

(y � x)3
⌃3

⌃x3
u(x)��(y � x) dy + . . . . (8)

In one-dimensional case our target is the term ⇥2

⇥x2u(x). Therefore we design the kernel �� =
1
��(

x
� ) such that this term is the only remaining on the right-hand side, up to the certain order

r. This immediately implies the following conditions on the kernel (recall Ex. 2b):
�

z2�(z) dz = 2 =⇥ 1

2

�

�

(y � x)2
⌃2

⌃x2
u(x)��(y � x) dy = ⇥2

⌃2

⌃x2
u(x), (9)

�
zs�(z) dz = 0 for ⌅s : s = 1 ⇧ 2 < s 6 r + 1, (10)

2

Gray-Scott model result in pattern formation
including:

• spots 
• stripes
• mixed spot-stripes

• traveling waves
• labyrinth stripes
• chaos

http://n-e-r-v-o-u-s.com/education/simulation/ethworkshop.php

J.E. Pearson  “Complex patterns in a simple system” arXiv preprint patt-sol/9304003 
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CSElab 
Computational Science & Engineering Laboratory 
http://www.cse-lab.ethz.ch

Alternate Direction 
Implicit

http://www.icos.ethz.ch/cse


Explicit Euler
• Forward Euler is very easy to implement, requires few 

computations and often has acceptable accuracy. 

• The main drawback of FE is instability – thought the local 
errors are small, the divergence of the numerical solution 
from the exact one will exponentially grow over time. 

• The condition on time-step size for stability is very 
strong: 

• This means that for                           we get  
11

�t <

�x

2�y

2

D (�x

2 +�y

2)

�t = ⇥(h2)�x ' h,�y ' h



Implicit Euler
• To overcome the issue of instability implicit Euler can be 

used: 

• It is always stable 

• The difficulty now is to evaluate one iteration. 

• You have to solve a system of linear equations with sparse 
but not regular matrix (note that in 1D case the matrix is 
just tridiagonal)

12

Note the difference 
compared to Explicit Euler

�(n+1)
i,j � �(n)i,j

�t
= D

 
�(n+1)
i�1,j � 2�(n+1)

i,j + �(n+1)
i+1,j

�x2
+

�(n+1)
i,j�1 � 2�(n+1)

i,j + �(n+1)
i,j+1

�y2

!



Alternating Direction Implicit
• The idea of ADI is to split one iteration into two steps in order 

to separate the “implicitness” of X and Y dimensions 

• Smart splitting gives you not only a stable and easy to evaluate 
method, but also the second order of accuracy in time 

• The method is read like this:
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Note the different time indices
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Tridiagonal systems



Step 1

Alternating Direction Implicit
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n�t
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y
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j
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(n+ 1/2)�t

(n+ 1)�t

Tridiagonal system
s

Tridiagonal systems
Step 2

⇢(n)

⇢(n+
1/2)

⇢(n+1)



Tridiagonal system and Thomas algorithm
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A =

0

BBBBBB@

b0 c0 0 0 · · · 0 0 0
a1 b1 c1 0 · · · 0 0 0
0 a2 b2 c2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · an�2 bn�2 cn�2

0 0 0 0 · · · 0 an�1 bn�1

1

CCCCCCA

Ax = v

We look now into solving a linear system                with a tridiagonal matrix:

We first eliminate the sub-diagonal elements     and obtain a systemai A0
x = v

0

Now we can easily solve the new system:

A0 =

0

BBBBBB@

b00 c0 0 0 · · · 0 0 0
0 b01 c1 0 · · · 0 0 0
0 0 b02 c2 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 b0n�2 cn�2

0 0 0 0 · · · 0 0 b0n�1

1

CCCCCCA
, v0 =

0

BBBBBBB@

v00
v01
v02
...

v0n�2

v0n�1

1

CCCCCCCA

,

xn�1 =
v

0
n�1

b

0
n�1

xi =
1

b

0
i

(v0i � cixi+1) , i = (n� 2) .. 0

b0i = bi � ci�1
ai
b0i�1

v0i = vi � vi�1
ai
b0i�1

, i = 1..n� 1

, i = 1..n� 1


