Vectorization with SIMD instructions

SIMD (vector instructions)

Recall SIMD: Single Instruction Multiple Data

we perform the same operation on many values at once.

This was pioneered by the vector
supercomputers (e.g. Cray X/MP at ETH)

Since 1999 part of all Intel CPUs
SSE (Streaming SIMD Extensions)
AVX (Advanced Vector Extensions)

The easiest way of getting parallel speedup

- . > ‘. -
_ 3 |, 20 SEA N
B R e |
s -—i § .
" i e N ™
TR — 3 S

® now in basement of CAB

SIMD registers and operations 12

SIMD units contain vector registers

128-bit registers XMMo - XMMs for SSE
256-bit registers YMMo-YMMais for AVX,

overlapping the XMM registers
The SSE XMM registers can store

XMM register

2 doubles

4 floats

2 64-bit integer

4 32-bit integers
8 16-bit integer

16 bytes

8
YMMO | XMMO
YMM1 | XMM1
YMM?2 XMM2
YMM3 XMM3
YMM4 XMM4
YMM5 XMM5
YMM6 XMM6
YMM7 XMM7
YMMS8 XMM8
YMM9 XMM9
YMMI10 XMM10
YMMI11 XMM11
YMM12 XMM12
YMM13 XMM13
YMM14 XMM14
YMM15 XMM15
X m
X1 X2
y1 y2 Y3 y4
i1 12
J1 J2 J3 J4
ki k2 k3 ka kg ké k7 k8

AVX register can store 8 float or 4 double, integers since AVX2

SIMD vector operations

SIMD vector operations act on all values in the vector at once
Example: adding four floats with one “packed floating point” instruction

X0 X1 X2 X3
a yo Y ye Y3
= XO+YO X1+Y1 X2+Yy2 X3+Yy3

Advantages:
One instruction instead of 4

Memory access can be optimized

An easy way to gain speed for almost any code

SSE/AVX versions

Intel and AMD have introduced more and more SIMD instructions with

every new processor generation. The history is complex, and only roughly
summarized below

Generation| Year First Intel CPUs main features
SSE 1999 Pentium Il
SSE> 5001 Pentium 4 SSE registers can be used together with scalar
floating point registers
SSE3 2004 Pentium 4 - Prescott more instructions, and conversions between
floating point and integer
SSE4 2006 Core 2 more instructions
AVX 2011 Sandy Bridge floating point 256 bit registers
AV X2 2013 Haswell integer 256 bit registers
AVX-512 ? ? 512 bit registers

Homework: determine which SIMD instructions your machine supports

SSE/AVX documentation

The best documentation tool is by Intel, at

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

An excellent documentation tool

lists all functions with clear
explanation and documentation

8 O O Intrinsics Guide for Intel® Advanced Vector Extensions 2 - v2.6.4
H Expand All Collapse All . —_mb4 _mm_abs_pi8 (__mb4 a) pabsb
allows to search for functions T A,
= B _m64 _mm_abs_pil6 (_m64 a) pabsw
: J g _ x> B _m128i _mm_abs_epil6 (_m128i a) pabsw
can filter functions depending on B ot ma.pisz (st o
o ._m128i _mm_abs_epi32 (__ml28i a) pabsd
SSE t ™ supported __m64 _mm_add_pi8 (__m64 a, _m64 b) paddb
Su p por ™ Mmx __mb4 _mm_add_pil6 (__m64 a, _mb4 b) paddw
™ ssE __mb4 _mm_add_pi32 (__mb4 a, _mb4 b) paddd
™ sse2 __m128 _mm_add_ss (__ml28 a, __m128 b) addss
I sse3 —m128 _mm_add_ps (_m128 a, _ml28 b) addps
Adds the four single-precision floating-point values of a and b.
I lg S Operation
IMSSE“I ro := ad + bo
I@I SSE4.2 rl := al + bl
r2 := a2 + b2
IMAES r3 :=a3 + b3
I@AVX ADDPS L &Th hput Inf i
atency roughput Information
IM FP16C CPUID(s) Parameters Latency Throughput
O Fscsease oF03 P —— 2
0F_02 xmm, xmm 4 2
 RORAND 06_2A xmm, xmm 3 1
AVX2 06_25/2C/1A/1E/1F/2E xmm, xmm 3 1
06_17/1D xmm, xmm 3 1
FMA 06_0F xmm, xmm 3 1
Categories 06_0E xmm, xmm 4 2
[QI All 06_0D xmm, xmm 4 2

Application-Targeted

I Remarks: On AVX enabled processors, addps will not modify the upper bits (255:128) of the
I Cacheability corresponding YMM register. This intrinsic may generate: vaddps, in which case, the upper bits
I P Arithmetic (255:128) of the corresponding YMM register are zeroed.

FP Compare __m128i _mm_add_epi8 (__m128i a, _ml28i b) paddb
FP Conversion __m128i _mm_add_epil6 (__m128i a, _m128i b) paddw

Review: caches

Memory access speed did not keep up with Moore’s law

Are added to speed up memory access
Many GByte of slow but cheap DRAM
2-20 MByte of fast L3-Cache
256-512 kByte of faster L2-Cache per core

2X32 - 2x64 kByte of fastest L1-Cache per core
(instruction and data cache)

CPU CPU
core core

L1-cache L1-cache

.2-cache L2-cache

L3-cache

o

memory

Data that is read is stored in the caches and kept there until it needs to be

evicted because new data is loaded

Data written to memory is written to the cache and only further to
memory if it needs to be evicted (or if we need to synchronize memory

access between cores)
Problems reusing memory will run faster!

Comparison of memory/cache speeds

Data for Intel Sandy Bridge CPU

Size Access time in cycles
L1 cache 2x32 kB 4-5
L2 cache 256 kB 12-19
L3 cache 3-20 MB 30-50
Memory many GB =~ 300

How does a cache work?

CPU requests a word (e.g. 4 bytes) from memory

A full “cache line” (nowadays typically: 64 bytes) is read from memory
and stored in the cache

The first word is sent to the CPU

CPU requests another word from memory

Cache checks whether it has already read that part as part of the
previous cache line

If yes, the word is sent quickly from cache to CPU
If not, a new cache line is read

Once the cache is full, the oldest data is overwritten
Locality of memory references are important for speed

Data alighment

To achieve optimal speed data should be aligned on cache line boundaries.

Consider what happens if we load one value that is not at the start of a cache line
(on an old machine with 16 byte cache lines):

r 4 word T I bndry. T

AO| A1|A2 |A3 | A4| A5| AB| A7

A—-array In memory

AD| A1| A2 A3 A4 A5 A6 | A7

cachellne 1 cachellne 2
I |
load VI X +
AO| A1| A2 A3 A3| A4| A5| A6

what we get what we wanted

Alignment

SSE registers are 16 bytes and need 16-byte alighment
AVX registers are 32 bytes and need 32-byte alignment

It is even better to align on cache line boundaries: 64 bytes on
modern Intel CPUs

Allocating alighed data

Aligned memory can be allocated
on POSIX (Linux, Unix) systems by calling posix_memalign
On Windows systems by calling by calling _aligned _malloc
Easiest using an alignment specifier in the declaration

C++03 with gcc, clang,icc float __attribute_ ((aligned(32))) ssel8];
C++03 with MSVC float
C++11

__declspec(align(32)) ssel8];

float alignas(32) ssel8];

In C++11 we can declare alignment for a data type:

// every object of these types will be aligned to 32-byte boundary
struct alignas(32) avx_double

{
double datal4];

b

template <class T>
struct alignas(32) avx_t

{
T datal32/sizeof(T)];
b

g++ 4.7 and MSVC11 do not support alignas. We provide a workaround in alignas.hpp

Allocating alignhed data with allocators

For C++ containers we need an aligned allocator.
Recall the usually ignored second template parameter of standard containers:

Allocators are used to allocate and free the memory for a container.

template<class T, class Alloc = std::allocator<T> > class vector;

Potential use of allocators:

allocate memory for small objects in a fast pool (boost::pool allocator)

allocate specially aligned memory (used here!)

We provide an aligned allocator in the git repository, and will discuss it now.

When can a loop be vectorized?

A loop can only be vectorized (or parallelized by threads) if there are no
dependencies between the iterations:

A linear congruential generator cannot be vectorized since one iteration depends on
the previous one. We have to wait for it to finish.

for (int i=1 ; i<N; ++i)
rnd[i] = ax rnd[i-1] + c;

adding vectors by saxpy can be vectorized (no dependencies)

for (int 1=0 ; i<N; ++i)
x[i] = axx[i] + yl[il;

a lagged Fibonacci generator can be vectorized for vector lengths up to min(p,q).
Dependencies only beyond a distance min(p,q)

for (int i=std::max(p,q) ; i<N; ++i)
rnd[i] = rnd[i-p] + rnd[i-q];

Vector supercomputers had vector lengths up to 1024 elements.

SSE has at most 16 bytes and AVX at most 32 bytes => the lagged Fibonacci is easier to
vectorize

Detecting dependencies

Look at every variable in the loop and check whether it might be written or
read by another loop iteration. If so there is a dependency.

Some dependencies can be removed by introducing additional variables:

for (int i=0; i<N-1; i++)

for (int i=0; i<N-1; i++) { a2[i] = ali+1];
x = (b[i] + cl[il)/2;
alil = ali+1] + x; for (int i=0; i<N-1; i++) {
1 X = (b[i] + c[i])/2;
alil = a2[il + x;
}

now both loops can be safely vectorized or parallelized

Another special case are reductions:

double s=0;
for (int i=0; i<N; i++)
s += x[i]lxy[il];

reductions can be vectorized, but it needs special care
in OpenMP parallelization there is the reduction clause

Using SIMD instructions

SIMD instructions can be used through assembly language. Complicated!

Compilers offer support through intrinsics. Special types and functions that will be

mapped directly to registers and SIMD instructions.

Include the appropriate header

or use the header <x86intrin.h>

that is available with some compilers

to load all headers available depending
on the target platform

MMX <mmintrin.h>

SSE <xmmintrin.h>
SSE2 <emmintrin.h>
SSE3 <pmmintrin.h>
SSSE3 <tmmintrin.h>
SSE4.1 <smmintrin.h>
SSE4.2 <nmmintrin.h>
SSE4A <ammintrin.h>
AES <wmmintrin.h>
AVX and AVX2 <immintrin.h>

Enable code generation for SSE or AVX with the right compiler switches

Homework: study your favorite’s compilers manual to find the switches

With g++ or clang++ one option is to use the -msse3, -msse4 or -maxv to enable

SSE3, SSE4 or AVX support

Intrinsics: register data types

The intrinsics headers define a few datatypes that map directly to SSE or
AVX registers. The compiler will place such variables in the registers.

Note: these start with two underscores!

~_m128 |4 floats

~_m128d |2 doubles

__m128i |integers of any size

~_m256 |8 floats

__m256d |4 doubles

__m256i [integers of any size, AVX2

Intrinsics: naming of operations

SSE and AVX instructions have a certain naming scheme
SSE operations: mm_name type

AVX operations: mm256_name_type

type length in bits description

SS 32 a single float

ps 128 or 256 4 or 8 floats

sd 64 a single double

pd 128 or 256 2 or 4 doubles
Si64 64 any integers
Si128 128 any integers
Si256 256 any integers

pi8 64 8 8-bit integer
pi16 64 416-bit integers
pi32 64 2 32-bit integer
epi8 128 or 256 16 or 32 8-bit integers
epinb 128 or 256 8 or 16 16-bit integers
epi32 128 or 256 4 or 8 32-bit integers
epi64 128 or 256 2 0r 4 64-bit integers

operations on types shorter than a full register will not modify the higher bits

256 bit integer operations are available from AVX2

A first example: sscal

Multiply a vector by a scalar,assuming aligned data and a vector length
that is a multiple of 4

void sscal(int n, float a, floatx x)

{

// load the scale factor four times into a register
__m128 x0 = _mm_setl _ps(a);

// loop over chunks of 4 values
for (int i=0; i<n/4; ++i) {
_ m128 x1 = _mm_load_ps(x+4%i); // aligned (fast) load
_ml128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps (x+4x%i,x2); // store back aligned
¥
I

We are using four instructions: two loads, a multiplication and a store

A first example: sscal

Multiply a vector by a scalar,assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, floatx x)

{

// load the scale factor four times into a register
_m128 x0 = _mm_setl_ps(a);

int ndiv4 = n/4;

// loop over chunks of 4 values

for (int i=0; i<ndiv4; ++1i) {
__m128 x1 = _mm_load_ps(x+4x*i); // aligned (fast) load
_m128 x2 = _mm_mul_ps(x@,x1); // multiply
_mm_store_ps(x+4x*i,x2); // store back aligned

by

// do the remaining entries
for (int i=ndiv4x4 ; 1< n ; ++1)
x[i] *= a;

A first example: sscal

Multiply a vector by a scalar,assuming aligned data, but now arbitrary
vector length. We need to do the remaining values by hand.

void sscal(int n, float a, floatx x)

{
// load the scale factor four times into a register
_m128 x0 = _mm_setl_ps(a);

int ndiv4 = n/4;

// loop over chunks of 4 values

for (int i=0; i<ndiv4; ++1i) {
__m128 x1 = _mm_load_ps(x+4x*i); // aligned (fast) load
_m128 x2 = _mm_mul_ps(x@,x1); // multiply
_mm_store_ps(x+4x*i,x2); // store back aligned

by

// do the remaining entries
int 1 = ndiv4x4;
switch (n-1) {
case 3: x[i+2] *= a;
case 2: x[i+1l] *= a;
case 1: x[1i] *= a;
}
}

the switch statement may be faster than the for loop

load / store

An incomplete summary of load/store instruction

Instruction [Types explanation

setn all sets all elements to a given value

set all set each element to a different value

setr all set in reverse order

setzero pd, ps, sib4, si128, si256 set to zero

load1 pd, ps load a single value into each element of the register
broadcast pd, ps same as load1 but much faster (AVX only)

load pd, ps, ss, sd, si128,si256 |load values from memory into a register

loadr pd, ps load values in reverse order

loadu pd, ps, ss, sd, si128, 51256 |load unaligned values from memory (slow!)
streamload Si128 load integer values bypassing the cache

store pd, ps, ss, sd, si128,si256 [store values from register into memory

storeu pd, ps, ss,5d, si128, 51256 [store values from register into unaligned memory (slow!)
stream pd, ps, pi, si128, si256 store values into memory bypassing the cache

The streaming loads and stores bypass the cache. This reduces cache eviction but it is
hard to see a difference in many codes.

Prefetch

Prefetch instruction can be used to hint that some data will be used later
and should already be fetched into the cache since they will soon be used

void _mm_prefetch (char const xp, int hint)

hint meaning

MM HINT To prefetch into L1 (and L2 and L3) cache. Use for integer data.

MM _HINT T1 prefetch into L2 (an L3) cache. Use for floating point data.

MM _HINT T2 prefetch into L3 cache. Use if the cache line is not reused much.

_MM HINT _NTA [prefetch into L2 but not L3 cache. Use if the data is needed only once

Example use:

// loop over chunks of 4 values
for (int i=0; i<ndiv4; ++1i) {
_mm_prefetch((charx) y+4%i+8,_MM_HINT_NTA); // prefetch data for two iterations later
_m128 x1 = _mm_load_ps(x+4xi); // aligned (fast) load
. m128 x2 = _mm_mul_ps(x@,x1); // multiply
_mm_store_ps(x+4xi,x2); // store back aligned

}
You'll need to play with it and see if it helps

Arithmetic floating point instructions

An incomplete summary of arithmetic instructions

Instruction explanation

add, sub +, -

addsub - on even + on odd elements
mul, div %

ceil ceil, round up

floor floor, round down

round round, allows specification of rounding policy
min min

max max

rcp reciprocal (inverse)

sqrt sqrt

rsqrt reciprocal (inverse) square root
and, andnot bitwise &, &!

or, Xor bitwise |, »

Arithmetic integer instructions

An incomplete summary of arithmetic instructions

Instruction |explanation

add, adds +.adds is saturated add: assigns maximum/minimum if overflow or underflow
sub, subs -, subs is saturated sub: assigns maximum/minimum if overflow or underflow
avg rounded average of x and y: (x+y+1)/2

mul *, multiplies low words into result of twice the size - ignores every second input value
mullo *, low word of product (result has twice the number of bits)

mulhi * high word of product (result has twice the number of bits)

sign transfers sign of one integer to another and sets it to zero if “sign” is o

min, max min, max

and, andnot &, &

or, xor 72

sll, slli <<, the version ending in i needs an integer constant shift

srl, srli >> for unsigned integers, shifting in o bits

sra, srai >> for signed integer, shifting in the sign bit

Comparisons

An incomplete summary of important comparison instructions

Instruction Types explanation
cmpeq, cmpneq all X==y xl=y
cmpgt, cmpge all X>Y, X>=X
cmplt, cmple all X<Y, X<=Y

cmpngt, cmpnge

floating point

L(x>y), [(x>=x)

cmpnlt,cmpnle

floating point

I(x<y), ! (x<=y)

cmpord, cmpunord

floating point

tests whether the number are ordererd or unordered (e.g. if NaN)

test all ones 1128 test if all bits are 1
test all zeros 1128 test if all bits are o
test mix_ones_zeros [i128 test if either all are o or all are 1

_axpy operations

Alignment is trickier with operations involving two vectors

Example axpy
y=0x+y

We need both arrays aligned
in the same way.

Two solutions:

either always require alignment

or code a slow version to use if not aligned

x[0]
x[1] S y[o]
x[2] N yl1]
x[3] - yI2]
IS yl3]
X[n-1]
™ yIn-1]
X-array

Y-array

saxpy

a vectorized saxpy implementation assuming alignment

void saxpy(int n, float a, floatkx x, floatx y)

{
// load the scale factor four times into a register
__ml128 x0 = _mm_setl_ps(a);

// we assume alignment
assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0);

int ndiv4 = n/4;

// loop over chunks of 4 values
for (int 1=0; i<ndiv4; ++i) {

_m128 x1 = _mm_load_ps(x+4xi); // aligned (fast) load
__m128 x2 = _mm_load_ps(y+4xi); // aligned (fast) load
. m128 x3 = _mm_mul_ps(x@,x1); // multiply

_ml128 x4 = _mm_add_ps(x2,x3); // add
_mm_store_ps(y+4*i,x4); // store back aligned

}

// do the remaining entries
for (int i=ndiv4*4 ; i< n ; ++i)
y[il += axx[i];

sdot

a vectorized dot product assuming alignment

we have to manually do the reduction

float sdot(int n, floatx x, floatx y)

{
// set the total sum to @, one sum per vector element
_m128 x0 = _mm_setl_ps(0.);

// we assume alignment
assert(((std::size_t)x) % 16 == 0 && ((std::size_t)y) % 16 == 0);

// loop over chunks of 4 values
int ndiv4 = n/4;
for (int i=0; i<ndiv4; ++i) {

_m128 x1 = _mm_load_ps(x+4xi); // aligned (fast) load
__m128 x2 = _mm_load_ps(y+4%i); // aligned (fast) load
_m128 x3 = _mm_mul_ps(x1,x2); // multiply

X0 = _mm_add_ps(x0,x3); // add

}

// store the 4 partial sums back to aligned memory
float alignas(16) tmpl[4];
_mm_store_ps(tmp,x0);

// do the reduction over the vector elements by hand
float sum = tmp[@]+tmp[1]+tmp[2]+tmp[3];

// do the remaining entries
for (int i=ndiv4%4 ; i< n ; ++i)
sum += x[ilxy[il;

return sum;

Mixing SSE and AVX

Be careful when mixing SSE and AVX instructions:
Manual claims that SSE instructions do not touch the higher bits of the AVX registers

What actually happens is that if the higher bits are nonzero they get stored to
memory if you call an SSE instruction and get reloaded when you cal an AVX
instruction. SLOW!!!!

Solution: call _mm256_zeroupper to clear the upper bits before switching
from AVX to SSE

Be extra careful:
all instructions starting with _mm256_...are AVX
all SSE instructions start with _mm_...

some instructions starting with _mm_ are also AVX, e.g. broadcast. You
need to look at the documentation tool to check!

Warning about mixing AVX and SSE

Original sscal:

void sscal(int n, float a, floatx x)

{
// load the scale factor four times into a register
__m128 x0 = _mm_loadl_ps(&a);

// loop over chunks of 4 values

for (int i=0; i<n/4; ++1i) {
_m128 x1 = _mm_load_ps(y+4x%i); // aligned (fast) load
. m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(y+4%i,x2); // store back aligned

}
¥

Naively optimize sccal using broadcast:

void sscal(int n, float a, floatx x)

{
// load the scale factor four times into a register
__ml28 x0 = _mm_broadcast_ss(&a);

// loop over chunks of 4 values
for (int 1=0; i<n/4; ++i) {
_m128 x1 = _mm_load_ps(y+4%i); // aligned (fast) load
_m128 x2 = _mm_mul_ps(x0@,x1); // multiply
_mm_store_ps(y+4xi,x2); // store back aligned
}
¥

SLOW!
we mix AVX and SSE

Warning about mixing AVX and SSE

Original sscal:

void sscal(int n, float a, floatx x)

{

// load the scale factor four times into a register
__m128 x0 = _mm_loadl_ps(&a);

// loop over chunks of 4 values
for (int 1=0; i<n/4; ++i) {
_m128 x1 = _mm_load_ps(y+4x%i); // aligned (fast) load

. m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(y+4*i, x2); // store back aligned

}
¥

Naively optimize sccal using broadcast:

void sscal(int n, float a, floatx x)

{
// load the scale factor four times into a register

__ml28 x0 = _mm_broadcast_ss(&a); // an AVX instruction!
_mm256_zeroupper();

// loop over chunks of 4 values
for (int i=0; i<n/4; ++i) {
__m128 x1 = _mm_load_ps(y+4xi); // aligned (fast) load

_m128 x2 = _mm_mul_ps(x0,x1); // multiply
_mm_store_ps(y+4*i,x2); // store back aligned

e
+

Now it’s fast
we clear the higher
bits and they will not
be stored

Automatic vectorization with g++

Modern compilers try to automatically vectorize loops. This can save you
time but will sometimes not be as good as vectorization by hand.

Compiler options for g++
Turn vectorization on: -ftree-vectorize

Generate vectorization reports: -Om -ftree-vectorizer-verbose=n

n description

o No output at all.

—

Report vectorized loops.

2 Also report unvectorized "well-formed” loops and respective reason.
3 Also report alignment information (for "well-formed" loops).

4 Like level 3 + report for non-well-formed inner-loops.

5 Like level 3 + report for all loops.

6 Print all vectorizer dump information

Further reading

GNU documentation: http://gcc.gnu.org/projects/tree-ssa/vectorization.html

Critical analysis of what autovectorization in gcc can and cannot do:
http://locklessinc.com/articles/vectorize/

Automatic vectorization with iCC

Compiler options with iCC
Cet optimization suggestions: -guide

Turn vectorization on and generate vectorization reports:
-qopt-report=n -qopt-report-phase=vec

n description

0 No output at all.

1 Report vectorized loops.

2 Also report unvectorized loops and respective reason.

3 Adds dependency Information

4 Reports only non-vectorized loops

5 Reports only non-vectorized loops and adds dependency info

Further reading

Intel documentation and sample codes:
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Automatic vectorization with clang

Compiler options with clang
Automatic vectorization is on by default!
Turn vectorization off: -fno-vectorize
Turn vectorization on and set vector width: -mllvm -force-vector-width=n
Enable vectorization reports:
-Rpass=Iloop-vectorize identifies loops that were successfully vectorized.
-Rpass-missed=loop-vectorize identifies loops that failed vectorization

-Rpass-analysis=loop-vectorize identifies the statements that caused
vectorization to fail.

Pragmas available to help the compiler vectorize loops

More information on http://llvm.org/docs/Vectorizers.html

Aliasing prevents optimization

Consider the saxpy operation:

void saxpy(int n, float a, floatx x, floatx y)

{
for (int i=0; i<n; ++i)
y[i]l += axx[il;
}

Naively it seems this can be vectorized since there are no
dependencies:each iteration accesses different elements

Now consider the following call:

float x[1000];
saxpy(999, 1., x, x+1)

Problem: now y=x+1 and we have an “aliasing” problem. The loop becomes

for (int i=0; i<n; ++1i)
x[1i+1] += axx[i];

We have potential dependencies! No optimization or vectorization is
actually possible unless we prevent aliasing.

restrict

Fortran-77 can optimize aggressively since aliasing is forbidden

Fortran-9o and later, C, C++, ... have pointers and with pointers aliasing
becomes a potential problem and prevents many optimizations.

Solution in C: restrict keyword to declare that pointers are not aliased.

void saxpy(int n, float a, floatx restrict x, floatx restrict y)

{
for (int i=0; i<n; ++1i)
y[i]l += axx[il;
}

The compiler now assumes no aliasing.

Note that the compiler does not check for aliasing. The caller has to be careful!

No C++ standard support for restrict, but
g++ supportsa __ restrict_ keyword

ICC allows the restrict keyword when using the compiler switch -restrict.

Declaring alignment

In our manually vectorized code we assumed the absence or presence of
alignment. We can also tell this to the compiler:

On g++ thereisa _ builtin_assume_aligned(variable,alignment); extension

void saxpy(int n, float a, floatx __restrict__ x, floatx __restrict__ y)

__builtin_assume_aligned(x,32);
__builtin_assume_aligned(y,32);
for (int i=0; i<n; ++i)
y[il += axx[il];
}

iICC has a pragma to declare alignment for a loop

void saxpy(int n, float a, float* restrict x, floatx restrict y)
{
#pragma vector aligned
for (int i=0; i<n; ++1i)
yl[i] += axx[il;
b

g++ matches your code against common patterns and vectorizes the loops
if there is a match. The vectorization reports can help you find out what
was done and how it can be improved.

Documented with many examples at
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

However, only quite simple loops can be vectorized, as shown here
http://locklessinc.com/articles/vectorize/

Let us time an auto-vectorized loop against our manual SSE and AVX codes

SSE manual | AVX manual g++ clang iCC

vectorized 35 26

not vectorized 27 26 55 26 55

Automatic vectorization on clang

The clang compiler provides pragmas to further help vectorize loops

Documented at http://llvm.org/docs/Vectorizers.html and
http://clang.llvm.org/docs/LanguageExtensions.html#id20

pragma explanation

clang loop vectorize(enable) the compiler can ignore potential dependencies and vectorize

the compiler can ignore potential dependencies and interleave

clangileopintericave(enable) iterations, i.e. perform them out of order

clang loop vectorize(disable) don’t vectorize

clang loop interleave(disable) don’t interleave

clang loop vectorize width(n) |vectorize up to n iterations

clang loop interleave _count(n) |interleave up to n iterations

clang loop unroll(full) can be fully unrolled

clang loop unroll_count(n) unroll up to n iterations

clang loop unroll(disable) don’t unroll

Automatic vectorization on iCC

The Intel compiler provides

the -guide option to give hints how code can be vectorized

a set of pragmas to help the compiler

pragma

explanation

ivdep

the compiler can ignore potential dependencies

loop count (n)
loop count min (n)

specify the typical or minimum loop count to help decide whether
vectorization is worthwhile

vector always

always attempt to vectorize the loop

novector

don't vectorize the loop

vector aligned

tell the compiler to assume aligned data

vector nontemporal

the data will not be reused , use streaming instructions for data
access

simd

always attempt SIMD vectorization

simd vectorlength(n)

declare absence of dependencies for n iterations

simd reduction (op:variable)

a reduction loop (similar to OpenMP)

Documented with many examples at
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

ICC example 1: potential aliasing

Consider the copying loop in examplei[abc].cpp

void copy(char xcp_a, char *cp_b, int n)

{
for (int 1 = 0; i < n; i++)
cp_alil = cp_blil;
}

The Intel compiler produces two versions and tests at runtime for aliasing
You can help either using restrict

void copy(char x restrict cp_a, char *x restrict cp_b, int n)
{
for (int i = 0; 1 < n; i++)
cp_alil = cp_blil;
¥

or using the ivdep pragma

void copy(char xcp_a, char *cp_b, int n)
{
#pragma ivdep
for (int 1 = 0; i < n; i++)
cp_alil = cp_blil;
s

ICC example 2: dependencies

Loop at the gap.cpp example:

void test_scalar_dep(double %A, int n)
{
double b;
for (int i=@; i<n; i++) {
if (A[i] > @) {b=A[il; A[i] =1 / Al[il; }
if (A[i] > 1) {A[i] += b;}
}
1

It will not vectorize since there is a dependence on b: the next loop might

use the modified value of b. Use guide to learn what can be done:

remark #30515: (VECT) Assign a value to the variable(s) "b" at the beginning of the body of
the loop in line 28. This will allow the loop to be vectorized. [VERIFY] Make sure that, in the
original program, the variable(s) "b" read in any iteration of the loop has been defined
earlier in the same iteration.

void test_scalar_dep(double *A, int n)
{
for (int i=0; i<n; i++) {
double b = A[1i];
if (A[i] > o) {A[li] = 1 / A[il;}
if (A[i] > 1) {A[i] += b;}
}
}

ICC example 3: reductions

Look at the simd3.cpp for a reduction example

char foo(char *A, int n){
char x = 0;
#pragma simd reduction(+:x)
for (int i=0; i<n; i++)
x = x + Al[il;
return Xx;

}

In the meantime iCC manages to detect this reduction automatically. The
pragma is not needed.

In the following more complicated reduction in simd4.cpp it is heeded:

// saturate integers to maximum or minimum of short in reduction

short sat2short(unsigned char *p, char xq, int n) {
short x = 0;
#pragma simd reduction(+:x)
for (int i=0; i<n; i++)
X = std::max(std::min(x + pl[il*qlil,32767),-32768);
return Xx;

¥

ICC example 4: dependencies

Some dependencies still allow vectorization, as in simd4.cpp:

for (int i=0; i<32767; i++) {
if (i >= 16 && 1 < 32767) {
b[i] = b[i-16] - 1;
}

There are dependencies after 16 iterations. We can still vectorize up to 16
elements, but need to tell the compiler:

#pragma simd vectorlength(16)
for (int 1=0; 1<32767; i++) {
if (i >= 16 && 1 < 32767) {
b[i] = b[i-16] - 1;
+

Homework: vectorize if possible:

a linear congruential random number generator?
a lagged Fibonacci random number generator?

ICC example 5: loop private variables

Some dependencies can be removed by making the variable private to each
iteration, as in simds.cpp

void foo(int *A, int *B, int x*restrict C, int n)

{
int t = 0;

#pragma simd private(t)
for (int i=0; i<n; i++){
if (Alil > 0) {
t = Alil;
b
if (B[i] < @) {
t = B[il;
}
Cli] = t;
b
b

I_amax

How would you implement isamax and similar functions that
should give the index of the largest element?

Interested students should look at the isamax_sse.cpp example
to see some really neat tricks of what you can do with vector
instructions.

