
HPCSE II

Sparse linear algebra

1-d diffusion equation

Recall the one dimensional diffusion equation
Discretize space on a regular mesh

Replace the spatial derivative by a finite difference stencil

Discretize time and replace the temporal derivative by a finite difference

We get a forward-Euler integrator

∂ f
∂t

= c ∂
2 f
∂x2

xi = iΔx x1 x2 x3 ...

∂ f (xi)
∂t

= c ∂
2 f (xi)
∂x2

≈ c f (xi+1)+ f (xi−1)− 2 f (xi)
(Δx)2

∂ f (xi ,t)
∂t

≈ f (xi ,t + Δt)− f (xi ,t)
Δt

≈ c f (xi+1,t)+ f (xi−1,t)− 2 f (xi ,t)
(Δx)2

f (xi ,t + Δt) ≈ f (xi ,t)+
cΔt
(Δx)2

f (xi+1,t)+ f (xi−1,t)− 2 f (xi ,t)[]

Rewriting as a matrix problem

Interpret the function at time t as a vector f(t) with elements

Then the integrator can be written as

Boundary conditions: let us fix them to keep it simple

This is just a matrix equation  
with a tridiagonal matrix M

fi (t) = f (xi ,t)

fi (t + Δt) = fi (t)+
cΔt
(Δx)2

fi+1(t)+ fi−1(t)− 2 fi (t)[]

fi (t + Δt) = Mij
j=1

N

∑ f j (t)
!
f (t + Δt) = M

!
f (t)

M =

1 0 0
cΔt
(Δx)2

1− 2cΔt
(Δx)2

cΔt
(Δx)2

! ! !
cΔt
(Δx)2

1− 2cΔt
(Δx)2

cΔt
(Δx)2

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

f1(t + Δt) = f1(t) fL (t + Δt) = fL (t)

2-d diffusion equation

Let’s go to two dimensions
Discretize space on a regular 2D mesh

And we get a two-dimensional version of the finite difference equation

This uses the second order “stencil” for the two-dimensional Laplacian

∂ f
∂t

= cΔf = c ∂
2 f
∂x2

+ c ∂
2 f
∂y2

!ri, j = (iΔx, jΔx)

f (!ri, j ,t + Δt) ≈ f (!ri, j ,t)+

cΔt
(Δx)2

f (!ri+1, j ,t)+ f (!ri−1, j ,t)+ f (!ri, j+1,t)+ f (!ri, j−1,t)− 4 f (
!ri, j ,t)⎡⎣ ⎤⎦

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

-4
+1

+1

+1

+1

2d diffusion equation as matrix equation

We can again rewrite this as a matrix equation.  
On an L x L mesh use the indexing

We again get a matrix equation, but now with a banded matrix

nonzero entries only for 
 i-j=0,±1,±L

 fi+Lj (t) = f (!ri, j ,t)

fi (t + Δt) = Mij
j=1

N

∑ f j (t)
!
f (t + Δt) = M

!
f (t)

M =

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Differential equations as sparse matrix problems

The mapping is much more general. We can map any iteration
procedure for differential equations to a matrix problem

finite differences, finite elements or other finite basis sets
regular or unstructured grids
arbitrary graphs

Images from Wikipedia

The Poisson equation

A widely used partial differential equation
It relates the potential of gravity to the mass distribution

It relates the electric potential to the charge distribution

We can put it on a mesh like the diffusion equation and write it as a matrix equation

Δφ = f

Δφ = 4πGρ
G = 6.673×10−11m3kg−1s−2 is the gravitational constant
ρ is the mass density

ΔV = − ρ
ε

ε = permitivity of the medium (8.85 ×10−12F /m in vacuum)
ρ is the charge density

Mij
j
∑ φ j = 4πGρ j

Mφ
!
= 4πGρ

"!

Iteratively solving the Poisson equation

The Poisson equation can be solved easily by iteration, after realizing that
the central value of the solution is the average of the surrounding values
minus the local density:

Start with a random guess
Iterate the fixed point equation

Speed up convergence with successive overrelaxation (SOR) 
apply the proposed change multiplied by a factor

 φ
! (0)

 φ
! (n+1)

= Mφ
! (n)

−πG(Δx)2ρ
"!

φ
! (n+1)

= (1−α)φ
! (n)

+α Mφ
! (n)

−πG(Δx)2ρ
"!⎡

⎣
⎤
⎦

1≤α < 2

1
(Δx)2

φ(!ri+1, j)+φ(
!ri−1, j)+φ(

!ri, j+1)+φ(
!ri, j−1)− 4φ(

!ri, j)⎡⎣ ⎤⎦ = 4πGρ(!ri, j)

⇒φ(!ri, j) =
1
4

φ(!ri+1, j)+φ(
!ri−1, j)+φ(

!ri, j+1)+φ(
!ri, j−1)⎡⎣ ⎤⎦ −πG(Δx)

2ρ(!ri, j)

Sparse and dense matrices

A sparse vector of length N has m << N non-zero entries
vector operations can be performed with O(m) instead of O(N) effort
storage requirements are O(m) instead of O(N) 
store the indices and values of non-zero entries in two vectors of size m

A sparse matrix of size NxN has m= O(N) or m= O(N log N) 
often

storage requirements are O(m) instead of O(N2)
many operations are faster

Sparse matrix examples:
tridiagonal matrix for 1d diffusion equation: 3N-4 nonzero entries
band matrix for 2d diffusion equation: less than 5N non-zero entries

Complexity of matrix operations

The first two only need to iterate over non-zero elements
Linear equations and eigenvalue problems can be solved by iterative
methods using only matrix-vector multiplications, such as in

Operation Dense matrix Sparse matrix with  
O(N) non-zero entries

Matrix additions O(N2) O(N)

Matrix-vector
multiplications O(N2) O(N)

Linear equation solvers O(N3) O(N)

Calculate some eigenvalues O(N2) O(N)

φ
! (n+1)

= (1−α)φ
! (n)

+α Mφ
! (n)

−πGρ
"!⎡

⎣
⎤
⎦

Iterative linear solvers

Sparse linear equations can be solved by iterative methods that only need
the matrix in the form of matrix-vector products, and hence have linear
scaling for sparse matrices!

SOR for the Poisson equation was a very simple example. but there are
more and better ones

Conjugate Gradient (CG)
BiCG
GMRES
...

All methods nicely explained including  
pseudo-code in the templates book

http://www.netlib.org/linalg/html_templates/Templates.html
PDF version http://www.netlib.org/templates/templates.pdf

Unstructured grids: PageRank

The page rank matrix, used to rank web pages is a prime example of an
unstructured sparse matrix problem.
It is a diffusion matrix on the graph of all web pages, mimicking a random
surfer. The simplest version is

pick one of the links on a page at random. Jump to a random page from all pages if
there is no link on a page
the matrix row for a given page s contains an entry 1/L(s) in every column
corresponding to one of the L(s) pages that it links to.
since all entries are positive and the row sums are 1, this is a Markov transition
matrix.
The equilibrium distribution gives the page rank. Recall that this is the largest left
eigenvector of the matrix:

py = Wx,y

x
∑ px ⇔

!pT = !pTW ⇔ !p =WT !p

The power method

The power method is the simplest iterative eigensolver. Just multiply the
vector many times with the matrix.
Algorithm from the template book  
http://web.eecs.utk.edu/~dongarra/etemplates/

Why the power method works

Proof of the power method for Hermitian matrices
decompose the starting vector into a sum of eigenvectors

after n iterations the vector is

now normalize and take the limit

!y = ci
i
∑ !ui

where A!ui = λi
!ui and |λ1 |> |λ2 |> ...

An !y = An ci

i
∑ !ui = ciA

n

i
∑ !ui = ciλi

n

i
∑ !ui

An !y
|| An !y ||

=
ciλi

n

i
∑ !ui

| ci |
2 λi

2n

i
∑

=
ci
λi
n

λ1
n

i
∑ !ui

| ci |
2 λi

2n

λ1
2n

i
∑

n→∞⎯ →⎯⎯
c1
λ1
n

λ1
n
!u1

| c1 |
2 λ1

2n

λ1
2n

= c1
| c1 |
!u1

Iterative eigensolvers solvers

Sparse eigenproblems can be solved by iterative methods that only need
the matrix in the form of matrix-vector products, and hence have linear
scaling for sparse matrices if only a few eigenvectors are needed!

Power method was a very simple example but there are more and better
ones

Lanczos
Arnoldi
Jacobi-Davidson
...

All methods nicely explained including  
pseudo-code in the eigenvalues templates book

http://www.cs.ucdavis.edu/~bai/ET/contents.html

Variants of PageRank

The PageRank matrices actually used are a bit more complicated
The “surfer” gets bored after a while:

with probability d the surfer follows a link
with probability (1-d) the surfer randomly jumps to a new page.

This will raise the weight of not so popular pages
it means that all the zeros get replaces by a small finite probability (1-d)/N

Making all zero entries finite makes the matrix dense:

A better way is to incorporate it explicitly in the multiplication function:
multiplying a vector by a constant matrix gives a constant vector

we perform a sparse matrix-vector product and add a constant vector

M = ConstantMatrix((1− d) / N)+ dW T

!′p = M!p = ConstantMatrix((1− d) / N) !p + dW T !p
= ConstantVector((1− d) / N)+ dW T !p

Sparse matrix problems

Many problems in CSE can be mapped to sparse matrix problems
Explicit integrators for time integration of PDEs, such as the diffusion equation

Implicit time integrators require solving a sparse linear systen of equations

Solving PDEs by mapping to sparse linear systems of equations

Sparse eigenproblems, such as the equilibrium state of diffusion or page rank

All of these problems boil down to
sparse matrix-vector multiplication, either directly or through iterative solvers
dense vector operations

!
f (t + Δt) = M

!
f (t)

 M
!
f (t + Δt) =

!
f (t)

 Mφ
!
= 4πGρ

"!

 W
T !p = λ !p

Sparse matrix storage

Discussion: how would you store a sparse matrix?

Matrix-free:
just code the matrix-vector multiplication instead of storing the matrix

Packed band matrices with u upper and l lower subdiagonals
store the diagonals only.

Sparse storage formats:
store indices and values of non-zero elements
many options exist. What do you prefer?  

Sparse matrix storage

Dense storage of matrix a Packed storage as a matrix p

aij stored in packed format in pu+1+i- j , j

Compressed storage formats

Dictionary of keys (DOK)
an associative array mapping an index pair (i,j) to a value
stored as a tree or hash map of non-zero values
fast for iteratively building a matrix, slow access later

List of lists (LIL)
stores one list per row, containing column index and value of the non-
zero entries
the “list” can be a linked list, array, or vector, sorted by column index
fast for iteratively building a matrix

Coordinate list (COO)
a list of triples (column, row, value), sorted by column and row
fast for iteratively building a matrix, slow access later

Compressed storage formats (cont.)

Compressed sparse row (CSR)
stores the matrix in three arrays: column indices, values, and row starts

Compressed sparse column (CSC) is similar but with row indices and
column starts
These are space-saving and efficient once the matrix is constructed. It
make sense to change matrix storage format to CSR or CSC after building
the matrix if another format is used for efficient construction.

0 d 0 0 0
b 0 0 c 0
0 0 a 0 0
0 h 0 e 0
0 f 0 0 g

0 1 2 3 4

0

1

2

3

4

0 1 3 4 6 8

d b c a h e f g

1 0 3 2 1 3 1 4
0 1 2 3 4 5 6 7

0 1 2 3 4

col_indices

data

row_starts

Parallelizing sparse matrix operations

Discussion: how would you parallelize a sparse matrix-vector
multiplication?

Parallelizing sparse matrix operations

A CSR matrix class
// an (incomplete) CSR class

template <class ValueType, class SizeType=std::size_t>
class csr_matrix
{
 typedef ValueType value_type;
 typedef SizeType size_type;

 csr_matrix(size_type s = 0)
 : n_(s)
 , row_starts(s+1)
 {}

 // we are missing functions to actually fill the matrix

 size_type dimension() const { return n_;}

 std::vector<value_type> multiply(std::vector<value_type> const& x) const;

private:
 size_type n_;
 std::vector<size_type> col_indices;
 std::vector<size_type> row_starts;
 std::vector<value_type> data;
};

Parallelizing sparse matrix operations

Matrix-vector multiplication in CSR representation

The loop over all rows can easily be parallelized
There are no race conditions since each iteration writes into a different
variable y[row]

template <class ValueType, class SizeType>
std::vector<ValueType>
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all rows
 for (size_type row = 0 ; row < dimension() ; ++ row)
 // loop over all non-zero elements of the row
 for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i)
 y[row] += data[i] * x[col_indices[i]];

 return y;
}

template <class ValueType, class SizeType>
std::vector<ValueType>
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all rows
 #pragma omp parallel for
 for (size_type row = 0 ; row < dimension() ; ++ row)
 // loop over all non-zero elements of the row
 for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i)
 y[row] += data[i] * x[col_indices[i]];

 return y;
}

Parallelizing sparse matrix operations

Matrix-vector multiplication in CSC representation

The loop over all columns can also be parallelized
But there are potential race conditions since different iteration may write
into the same variable y[row_indices[i]]
An atomic update is needed and makes the code inefficient!

template <class ValueType, class SizeType>
std::vector<ValueType>
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all columns
 for (size_type col = 0 ; col < dimension() ; ++ col) {
 // loop over all non-zero elements of the row
 for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i)
 y[row_indices[i]] += data[i] * x[col];
 }
 return y;
}

template <class ValueType, class SizeType>
std::vector<ValueType>
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all columns
 #pragma omp parallel for
 for (size_type col = 0 ; col < dimension() ; ++ col) {
 // loop over all non-zero elements of the row
 for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i)
 y[row_indices[i]] += data[i] * x[col];
 }
 return y;
}

template <class ValueType, class SizeType>
std::vector<ValueType>
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all columns
 #pragma omp parallel for
 for (size_type col = 0 ; col < dimension() ; ++ col) {
 // loop over all non-zero elements of the column
 for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i)
 #pragma omp atomic
 y[row_indices[i]] += data[i] * x[col];
 }
 return y;
}

Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSR

Potential race conditions!

template <class ValueType, class SizeType>
std::vector<ValueType>
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all rows
 for (size_type row = 0 ; row < dimension() ; ++ row)
 // loop over all non-zero elements of the row
 for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i)
 y[col_indices[i]] += data[i] * x[row];

 return y;
}

template <class ValueType, class SizeType>
std::vector<ValueType>
csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all rows
 #pragma omp parallel for
 for (size_type row = 0 ; row < dimension() ; ++ row)
 // loop over all non-zero elements of the row
 for (size_type i = row_starts[row] ; i != row_starts[row+1] ; ++i)
 #pragma omp atomic
 y[col_indices[i]] += data[i] * x[row];

 return y;
}

Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSC

All is safe!

template <class ValueType, class SizeType>
std::vector<ValueType>
csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{
 assert(x.size()== dimension());
 std::vector<value_type> y(dimension());

 // loop over all columns
 #pragma omp parallel for
 for (size_type col = 0 ; col < dimension() ; ++ col)
 // loop over all non-zero elements of the column
 for (size_type i = col_starts[col] ; i != col_starts[col+1] ; ++i)
 y[col] += data[i] * x[row_indices[i]];

 return y;
}

Summary of sparse matrix operations

If possible use a matrix-free method and hard-code the matrix-vector
multiplication. This uses less memory and is faster.

To iteratively build a matrix use DOK, LIL, COO or similar formats unless the
data comes in the right order for CSR or CSC

To use the matrix
prefer CSR format or similar for matrix-vector multiplication
prefer CSC format or similar for matrix-vector multiplication with the transposed
matrix

We might have to copy the matrix into a new format

What do we do if we need to multiply vectors with both the original and
the transposed matrix?

