Markov chain Monte Carlo






Statistical mechanics and the Boltzmann weight

At a fixed temperature T the average of a physical observable A
can be calculated as a sum over all configurations ¢
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inverse temperature

Z=Z exp(—BE,) partition function (normalization)

This is ideal for importance sampling with the Boltzmann weight
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The Metropolis Algorithm (1953)
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

HE purpose of this paper is to describe a general
method, suitable for fast electronic Con]puting In order to reduce the pl’OblCl’ll to a feasible size for
]'nachincs, of calcu]ating the properties of any substance numerical WOI’k, we can, of cou rse, consider only a finite
which may be considered as composed of interacting number of particles. This number N may be as high as
individual molecules. Classical statistics is assumed, Several hundred. Our system consists of a squaref con-




Markov chain Monte Carlo

Instead of drawing independent samples ¢; we build a Markov chain

Cl %Cz > o > Cl >Cl+1 % o

Transition probabilities W, for transition x — y need to satisfy:

Normalization: ZWW =

Ergodicity: any conﬂgdration reachable from any other

NV an (W") #0
X,y
Balance: the distribution should be stationary

(n+1) (n)
change in distribution in one step: Z xyPx

stationarity condition: P;n+1)—l?;n)=>l?y Z xy Px

Detailed balance is sufficient but not necessary for balance
W _ PO
W, pXx)




The Metropolis algorithm

Teller’s proposal was to use rejection sampling:

Propose a change with an a-priori proposal rate A, ,
Accept the proposal with a probability P, ,
The total transition rate is W, , =A, , P

Xy & XY
The choice
S 2 A
P, =min|1,——
o Axaypx 4

satisfies detailed balance and was first proposed by Metropolis et al



Sampling N-body states

Simple sampling
draw random conﬂgurations and calculate their energy and weight
measure: ZA exp(-BE, )/Zexp( BE)

problem: we will never hit low-energy configurations (e.g. a crystal)!

Importance sampling by Markov chains
Start from a suitable initial condition, e.g. a perfect crystal
Then do the following updates:

choose a random particle

choose a random direction and distance, e.g. by Gaussian distribution
with sensible parameters

Accept/reject Wlth Boltzmann weight and Metropolis sampling
Measure ZA

Exercise: proof detalled balance and implement this multi-threaded






The dogs & fleas model

Two dogs play:
Anick has 5o fleas
Burnside has no fleas

During play fleas jump from one dog to the other
What is the distribution of fleas after they played?

Vinay Ambegaokar and Matthias Troyer
American Journal of Physics 78,150 (2010)



Dogs and fleas: direct sampling

We pick a dog for each flea: direct sampling as done last week
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Dogs and fleas: MCMC with naive errors

MCMC: pick a flea and let it jump to the other dog
estimate errors using the standard equation
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Dogs and fleas: uncorrelated samples

One flea hop does not change much: the results are correlated,
Measure not after every flea hop but only after a few hundred hops
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Recall: estimating the error

The sampling error is the rms (root mean square) deviation

N

(AX) = E _()_( . E[X])Z} - EK;]Z(XZ. - E[X])ﬂ
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We used that samples are uncorrelated:

E| XX, |=E[XE|X,] fori= j



Recall: estimating the error

Now include correlations:
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where we defined the integrated autocorrelation time as
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Binning analysis

Take averages of consecutive measurements: averages become less
correlated and naive error estimates converge to real error
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Dogs and fleas: binning analysis
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Correlated quantities

How do we calculate the errors of functions of correlated
measurements?

(B
specific heat c

Expectation values of weighted samples <§A66Xp(_ﬂEc»>

in direct sampling <ZeXp(—BEC>>

The naive way of assuming uncorrelated errors is wrong!

It is not even enough to calculate all crosscorrelations due to
nonlinearities except if the errors are tiny!



Splitting the time series

Simplest idea: split the time series and evaluate for each segment
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Problem: can be unstable and noisy for nonlinear functions such as X/Y



Jackknife-analysis

Evaluate the function on all and all but one segment
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Analyzing parallel MC simulations

The error analysis depends on the parallelization strategy

Parallelization of a single Markov chain, e.g. by multi-threading the energy
evaluation

Use the binning analysis to calculate errors of the measurements

Use jackknife to calculate means and errors of functions of the measurements

Parallelization by launching multiple independent Markov chains

Run a single Markov chain to calculate the autocorrelation time using the binning
analysis and then choose a good distance (number of updates) between
measurements. A distance comparable to the autocorrelation time is ideal.

Then run a parallel simulation and store only the mean for each Markov chain

Calculate the overall mean and its error from the mean values of each Markov chain
using the simple error formula for independent measurements

Use jackknife to calculate means and errors of functions of the measurements



