ETH High Performance Computing for

Eidgenossische Technische Hochschule Ziirich SC I e n Ce a n d E n gl n ee rl n g I I
Swiss Federal Institute of Technology Zurich Sprl ng semester 2015

M. Troyer
ETH Ziirich, HIT G 31.8
CH-8093 Ziirich

Hybrid MPI on Euler

Load the MPI module

For hybrid MPI jobs we cannot use the default Open MPI installation, but we have to
switch to the MPICH implementation. To load the corresponding model you need to:

module load new
module load mvapich2/2.0

Compile
Once the modules are loaded, compilation works as usual with the mpicxx compiler wrapper
(remember that for OpenMP support the -fopenmp flag is required).

mpicxx —fopenmp main.cpp —O0 Prog

Environment variables

You already know the OpenMP environment variable for the total number of threads
OMP_NUM_THREADS. For threading support to be enabled, the MPICH library requires CPU
affinity to be turned off (see section 6.16 in the MPICH user manual), which is done by
setting the variable MV2_ENABLE_AFFINITY.

Altogether your environment should look something like:

export MV2_ENABLE_AFFINITY=0
export OMP_NUM_THREADS=<number of threads>

where <number of threads> is the number of threads that you want for each process.

Job launching

Assume you want to launch the program ./prog using 4 MPI processes having 2 OpenMP
threads each, then you have to submit a request for 2 x 4 = 8 cores:

export OMP_NUM_ THREADS=2
bsub —n 8 mpirun —np 4 ./prog



When you want to operate on two or more nodes, you have to specify additional options to
both the scheduling system and the MPI launcher mpirun.

Suppose you want to run 2 MPI processes on each node, then you need to specify

1. Scheduling system: -n 8 -R ’span[ptile=4]’, meaning that you want a total of 8
cores split on multiples nodes having 2 X 2 = 4 cores each.

2. MPI launcher: -ppn=2, meaning 2 MPI processes per node.

Altogether the launch command will look like:

export OMP_NUM_ THREADS=2
bsub —n 8 —R ’'span(ptile=4]’ mpirun —np 4 —ppn 2 ./prog

CPU affinity

Unfortunately the previous launch command will not show any speed up for your applica-
tion. The reason is that the MPICH library has some problem with CPU binding, i.e. all
processes will bind their threads to the same physical cores.

By using a debugging hello world program we obtain:

Process 0 on e2110 out of 4. Thread O of 2 running on CPU18.
Process 0 on e2110 out of 4. Thread 1 of 2 running on CPU19.
Process 1 on e2110 out of 4. Thread O of 2 running on CPU18.
Process 1 on 2110 out of 4. Thread 1 of 2 running on CPU19.
Process 2 on e2112 out of 4. Thread 0 of 2 running on CPUO.
Process 2 on e2112 out of 4. Thread 1 of 2 running on CPU1.
Process 3 on e2112 out of 4. Thread O of 2 running on CPUO.
Process 3 on e2112 out of 4. Thread 1 of 2 running on CPUL.

Attached to this document you find a binding script myrun which will fix the problem. The
script reads the CPU ids of the assigned resources and set a different CPU affinity for each
MPI process, in order to avoid overlaps.

You just have to wrap your program with it, i.e.

export OMP_NUM_ THREADS=2
bsub —n 8 —R ’span(ptile=4]’ mpirun —np 4 —ppn 2 ./myrun ./
prog

By running again the debugging program we obtain the correct binding:

Process 0 on 2074 out of 4. Thread 0 of 2 running on CPUO.
Process 0 on e2074 out of 4. Thread 1 of 2 running on CPU5.
Process 1 on e2074 out of 4. Thread O of 2 running on CPU12.
Process 1 on e2074 out of 4. Thread 1 of 2 running on CPU13.
Process 2 on e2076 out of 4. Thread 0 of 2 running on CPUO.
Process 2 on 2076 out of 4. Thread 1 of 2 running on CPU1.
Process 3 on e2076 out of 4. Thread O of 2 running on CPU2.
Process 3 on e2076 out of 4. Thread 1 of 2 running on CPU3.



