
5/11/2015

ADVANCED CUDA

Peter Messmer – pmessmer@nvidia.com

2

What has been covered so far?

3

HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions
Throughput critical

Rest of Sequential
CPU Code

Latency critical

4

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory/NIC to

GPU memory

PCI Bus

5

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory/NIC to

GPU memory

2. Load GPU program and execute

PCI Bus

6

SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory/NIC to

GPU memory

2. Load GPU program and execute

3. Copy results from GPU memory to CPU

memory/NIC

PCI Bus

7

3 WAYS TO PROGRAM GPUS

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

Maximum

Flexibility

OpenACC

Directives

Easily Accelerate

Applications

8

CUDA EXECUTION MODEL
Thread: Sequential execution unit

Threads execute in parallel

Thread Block: a group of threads

Executes on a single Streaming Multiprocessor (SM)

Threads within a block can cooperate

Light-weight synchronization

Data exchange

Grid: a collection of thread blocks

Thread blocks of a grid execute across multiple SMs

Thread blocks do not synchronize with each other

Communication between blocks is expensive

9

Software Hardware

Threads are executed by scalar CUDA Cores

Thread

CUDA

Core

Thread Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on

one multiprocessor - limited by multiprocessor

resources (shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

EXECUTION MODEL

Device

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture

Caches

L1 / L2 Cache

CUDA Memory Architecture

Kepler Memory Hierarchy

L2

Global Memory

Registers

SM-N

Registers

SM-0

Registers

SM-1

L1 SMEM Read

only L1 SMEM Read

only
L1 SMEM Read

only

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other (warps of) threads

GPU Streaming Multiprocessor – High-throughput Processor

CPU core – Low-latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

13

General Optimizations

14

NVVP: NVIDIA’S VISUAL PROFILER
Timeline

Guided

System

Analysis

15

WHICH KERNEL SHOULD WE OPTIMIZE?

16

BEFORE OPTIMIZING YOUR KERNELS

Always use NVVP to determine if the kernel is the limiter

Remember Amdahl: 𝑺 =
𝟏

𝟏−𝑷 +
𝑷

𝑵

 ≈
𝟏

(𝟏−𝑷)

Kernels may not always be the limiter

No Active

Kernel!

17

OPTIMIZE LOCALITY AND CONCURRENCY

Manage locality: Move data where it is used

Primary focus of OpenACC

Simplified by unified memory available since CUDA 6

Keep both CPU and GPU busy

Asynchronous transfers: No need to stall compute for transfer

18

Kernel Optimizations

19

KERNEL LAUNCH CONFIGURATION

 A kernel is a function that runs on the GPU

 A kernel is launched as a grid of blocks of threads

 Launch configuration is the number of blocks and number of threads
per block, expressed in CUDA with the <<< >>> notation:

mykernel<<<blocks_per_grid,threads_per_block>>>(…);

 What values should we pick for these?

Need enough total threads to process entire input

Need enough threads to keep the GPU busy

Selection of block size is an optimization step involving warp occupancy

20

HIGH-LEVEL VIEW OF GPU ARCHITECTURE

 Several Streaming Multiprocessors

E.g., Kepler GK110 has up to 15 SMs

 L2 Cache shared among SMs

 Multiple channels to DRAM

Kepler GK110

21

KEPLER STREAMING MULTIPROCESSOR (SMX)

Per SMX:

192 SP CUDA Cores

64 DP CUDA Cores

4 warp schedulers

Up to 2048 concurrent threads

One or two instructions issued per
scheduler per clock from a single
warp

Register file (256KB)

Shared memory (48KB)

22

LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many blocks should we use?

1,000 or more thread blocks is best

Rule of thumb: enough blocks to fill the GPU at least 10s of times over

Makes your code ready for several generations of future GPUs

23

LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many threads per block should we choose?

 The really short answer: 128, 256, or 512 are often good choices

 The slightly longer answer:

Pick a size that suits the problem well

Multiples of 32 threads are best

Pick a number of threads per block (and a number of blocks) that is sufficient
to keep the SM busy

24

Multiprocessor

32 Threads

Warps

A thread block consists

of warps of 32 threads

A warp is executed

physically in parallel on

some multiprocessor.

Threads of a warp issue

instructions in lock-step

(as with SIMD)

=

WARPS

Thread Block

32 Threads

32 Threads

32 Threads

25

CONCURRENCY OFFERED BY A K20X (GK110)

Number of SMX : 14 (15 on K40, K80)

Number of warps per SM : 64

Number of threads/warp : 32

Warps per device : 14*64 = 896

Active threads per device : 14*64*32 = 28’672

26

LATENCY HIDING

ide it

Occupancy

Need enough concurrent warps per

SM to hide latencies:

Instruction latencies

Memory access latencies

Hardware resources determine

number of warps that fit per SM

Occupancy = Nactual / Nmax

Occupancy Limiters

Full occupancy: Maximum choice for scheduler

Hardware limits

Registers per thread

Shared memory per thread block

Threads per thread block

Thread blocks per SMX

Optimal choice: balance resource consumption and concurrency

Kepler SM resources:

– 64K 32-bit registers

– Up to 48 KB of shared memory

– Up to 2048 concurrent threads

– Up to 16 concurrent thread blocks

Occupancy and Performance

Note that 100% occupancy isn’t needed to reach maximum

performance

Once the “needed” occupancy (enough warps to switch among to cover

latencies) is reached, further increases won’t improve performance

Level of occupancy needed depends on the code

More independent work per thread -> less occupancy is needed

Memory-bound codes tend to need more occupancy

Higher latency than for arithmetic, need more work to hide it

Thread Block Size and Occupancy

Thread block size is a multiple of warp size (32)

Even if you request fewer threads, hardware rounds up

Thread blocks can be too small

Kepler SM can run up to 16 thread blocks concurrently

SM can reach the block count limit before reaching good occupancy

E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ – probably not enough)

Thread blocks can be too big

Enough SM resources for more threads, but not enough for a whole block

A thread block isn’t started until resources are available for all of its threads

© NVIDIA 2013

Thread Block Sizing

SM resources:

Registers

Shared memory

Number of warps allowed by SM resources
Too few

threads per block

Too many

threads per block

CUDA Occupancy Calculator

Analyze effect of

resource consumption on

occupancy

33

Thank You!

