
HPCSE II

Dense linear algebra

Basic Linear Algebra Subprograms (BLAS)

BLAS is the de-facto standard API for any dense vector and matrix
operations, first published in 1979

A reference implementation is available on netlib.org:
http://www.netlib.org/blas/ for the original Fortran version
http://www.netlib.org/clapack/ for an f2c translated C version

BLAS is the building block of many other libraries and programs. These
libraries rely on an optimized BLAS library for optimal performance

LAPACK and LINPACK
NAG (commercial)
IMSL (commercial)
Matlab
Python (numpy and scipy)

Optimized BLAS implementations

Don’t get the reference implementation but an optimized one.
ATLAS (free) http://www.netlib.org/atlas/, self-tuned BLAS, included with many
Linux distributions
GOTO BLAS http://www.tacc.utexas.edu/tacc-projects/gotoblas2/ 
hand-optimized by Kazushige Goto before he was hired by Microsoft

Optimized versions exist from many hardware vendors:
Apple: included with MacOS X in the Accelerate framework (-framework Accelerate)
IBM: part of the ESSL (Engineering and Scientific Subroutine Library)
Cray: part of libsci library
NEC: part of the PDLIB/SX library

And from CPU manufacturers
Intel MKL library http://software.intel.com/en-us/intel-mkl/ , available on IDES
AMD ACML library http://developer.amd.com/tools/cpu/acml/pages/default.aspx

Homework: get the fastest BLAS for all your computers

BLAS levels 1, 2 and 3

The BLAS functions are split into three groups

BLAS level 1
scalar and vector operations
scale as O(1) or O(N)

BLAS level 2
matrix-vector operations
scale as O(N2)

BLAS level 3
matrix-matrix operations
scale worse than O(N2), often O(N3)

Calling BLAS functions

BLAS is a Fortran library. It can be called from any language but you have to
learn some facts about Fortran and calling Fortran functions.

Function names and arguments:
The function names are all lowercase independent of what is written in (case-
insensitive) Fortran code
Function names on most machines add a trailing _ compared to C/C++ functions.
Parameter types are not mangled into the function name:  
use extern “C” in the function declaration
all arguments are passed by address (or equivalently reference in C++). The best
convention is to

pass scalar arguments by reference
pass C-style arrays as pointers

Be careful about how integer types relate. This can depend on compiler options.
Typically a Fortran integer is a C/C++ int, but it can be a long.

Example: DDOT

The Fortran DDOT function

has the following C++ prototype

and can easily be called.

Don’t forget to link against the BLAS library

 DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
 INTEGER INCX,INCY,N
 DOUBLE PRECISION DX(*),DY(*)
*
* DDOT forms the dot product of two vectors.
* uses unrolled loops for increments equal to one.
*

extern “C” double ddot_(int& n, double *x, int& incx, double *y, int& incy);

int main()
{
 std::vector<double> x(10, 1.); // intialize a vector with ten 1s
 std::vector<double> y(10, 2.); // intialize a vector with ten 2s

 // calculate the inner product
 int n=x.size();
 int one = 1;
 double d = ddot_(n,&x[0],one,&y[0],one);
 std:: cout << d << "\n"; // should be 20
}

Linking against Fortran libraries

The C++ compiler automatically links against the C++ and C runtime
libraries. Use the --verbose option with g++ to see what it does.

The Fortran compiler automatically links against the Fortran runtime
libraries. Use a --verbose option or similar with your Fortran compiler.

Fortran libraries might need the Fortran runtime libraries but your C++
compiler does not know them. Hence we need to:

find the Fortran runtime libraries
add them to the link command of your C/C++ code

Instructions that work on many common machines:
MacOS X: -framework Accelerate
Linux: -lgfortran

Array storage

Fortran indices by default start at 1, while C/C++ starts at 0
Fortran stores arrays in column-major order,  
while C/C++ uses row-major order

Consequence:
matrices are typically transposed
A[i][j] in C/C++ is A(j+1,i+1) in Fortran

0 5 10 15 20
1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24

0 1 2 3 4
5 6 7 8 9

10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

column-major (Fortran) row-major (C/C++)

Another look at DDOT: increments

The DDOT dot product function takes two pointers and two increments

In arrays the increments is typically 1
The increments exist as arguments to be able to treat columns and rows in
matrices as vectors

 DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
 INTEGER INCX,INCY,N
 DOUBLE PRECISION DX(*),DY(*)
*
* DDOT forms the dot product of two vectors.
* uses unrolled loops for increments equal to one.
*

0 5 10 15 20
1 6 11 16 21
2 7 12 17 22

3 8 13 18 23
4 9 14 19 24

DX = start of storage + 2
INCX = 5

BLAS naming conventions

BLAS functions always have one (or two) prefix indicating the type of the
arguments and optional return value

Example: dot product

I int

S float

D double

C std::complex<float>

Z std::complex<double>

generic name _DOT
float SDOT

double DDOT
std::complex<float> CDOT

std::complex<double> ZDOT

BLAS-1: vector operations
BLAS level 1, vector-vector operations

Reduction operations:
s x · y inner product DOT
s max{|xi |} pivot search I AMAX
s kxk2 norm of a vector NRM2
s

P
i |xi | sum of abs ASUM

Vector to vector transformations:
y x copy x into y COPY
x $ y swap SWAP
y ↵ · x scale x SCAL
y ↵ · x + y saxpy AXPY

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS level 1, vector-vector operations

Reduction operations:
s x · y inner product DOT
s max{|xi |} pivot search I AMAX
s kxk2 norm of a vector NRM2
s

P
i |xi | sum of abs ASUM

Vector to vector transformations:
y x copy x into y COPY
x $ y swap SWAP
y ↵ · x scale x SCAL
y ↵ · x + y saxpy AXPY

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS-1 (continued):

Generate and apply Givens rotations:

Compute rotation:✓
c s
�s c

◆
a
b

�
!


r
0

�
c , s 3 r =

p
a2 + b2 ROTG

Apply rotation:
x
y

�

✓
c s
�s c

◆
x
y

�
ROT

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS matrix types and naming conventions

BLAS 2 and BLAS 3 support various matrix types, given as two letters after the prefix.

Example: DGEMV is matrix-vector multiplication for a general matrix of doubles

GE general dense matrix
GB banded matrix, stored packed
SY symmetric, stored like a general dense matrix
SP symmetric, stored packed
SB symmetric banded, stored packed
HE hermitian, stored like a general dense matrix
HP hermitian, stored packed
HB hermitian banded, stored packed
TR upper or lower triangular, stored like a general dense matrix
TP upper or lower triangular, stored packed
TB upper or lower triangular band matrix, stored packed

Packed storage formats

Recall for banded matrices:

For triangular matrices, depending on the UPLO parameter:

Symmetric and hermitian packed formats store only one triangle

Dense storage of matrix Packed storage as a packed matrix

UPLO Dense storage of matrix Packed storage as array

U

L

Dense matrix storage

It’s a bit more complicated than you thought
Fortran-77 and earlier did not allow dynamical allocation
One might want to operate just on a submatrix

Matrix operations accept three size arguments:
matrix size: rows and columns of the matrix
leading dimension: increment between columns

0 5 10 15 20
1 6 11 16 21
2 7 12 17 22

3 8 13 18 23
4 9 14 19 24

number of rows: 3
number of columns: 3
leading dimension: 5

BLAS-2: matrix-vector operations

BLAS level 2, matrix-vector operations

Matrix times Vector
x ↵Ax + �y general GEMV

general band GBMV
general hermitian HEMV
hermitian banded HBMV
hermitian packed HPMV
general symmetric SYMV
symmetric banded SBMV
symmetric packed SPMV

x Ax triangular TRMV
triangular banded TBMV
triangular packed TPMV

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS-2, matrix-vector operations (cont.)

Triangular solve:
x A�1x triangular TRSV

triangular banded TBSV
triangular packed TPSV

Rank one and rank two updates:
A ↵xyT + A general GER
A ↵xx⇤ + A general hermitian HER

hermitian packed HPR
A ↵(xy⇤ + yx⇤) + A gen. Hermitian HER2

hermitian packed HPR2

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS-2, matrix-vector operations (cont.)

Triangular solve:
x A�1x triangular TRSV

triangular banded TBSV
triangular packed TPSV

Rank one and rank two updates:
A ↵xyT + A general GER
A ↵xx⇤ + A general hermitian HER

hermitian packed HPR
A ↵(xy⇤ + yx⇤) + A gen. Hermitian HER2

hermitian packed HPR2

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS-2, matrix-vector operations (cont.)

A ↵xxT + A general symmetric SYR
symmetric packed SPR

A ↵(xyT + yxT) + A gen. symmetric SYR2
symmetric packed SPR2

FS 2010 Numerical Parallel Computing (401-2694-00)

BLAS-3 matrix-matrix operations

BLAS level 3, matrix-matrix operations

Matrix product:
C ↵A · B + �C general GEMM

symmetric SYMM
hermitian HEMM

B ↵A · B triangular TRMM
Rank k update:

C ↵A · AT + �C SYRK
C ↵A · AH + �C HERK
C ↵(A · BT + B · AT) + �C SYRK2
C ↵(A · BH + B · AH) + �C HERK2

Triangular solve for multiple r.h.s.:
B ↵A�1 · B triangular TRSM

FS 2010 Numerical Parallel Computing (401-2694-00)

Transpose arguments

_GEMV, _GBMV, _T_MV, and _T_SV take arguments indicating whether the
matrix should be transposed

Similarly some of the BLAS-3 calls take one or two transpose arguments:
_GEMM,_TRMM
 _SYRK, _HERK, _SY2RK,
 _TRSM

TRANS real matrix 
S,D

complex matrix
C,Z

‘N’ or ‘n’ no transpose no transpose

‘T’ or ‘t’ transposed transposed

‘C’ or ‘c’ transposed transposed and complex
conjugated

Optimizing linear algebra operations

BLAS-1 is best optimized by SIMD vectorization

BLAS-2 and BLAS-3 build on top of BLAS-1
reuse all optimizations done for BLAS-1
potential for further optimization by multithreading

Other libraries, like LAPACK, are built on top of BLAS
reuse all optimizations done for BLAS-1, 2 and 3
further parallelization may be possible

we will optimize at _DOT and _SCAL and look at I_AMAX

we will optimize _GEMV
you will optimize _GEMM

we will optimize Gaussian elimination (_GEFA)

Parallelizing _GEMV

We have two loops in _GEMV over i and j

Four versions:
loop order can be i,j or j,i
either the inner or the outer loop can be parallelized

Two more versions:
split the matrix into blocks and use a single-threaded BLAS _GEMV for
each block
hope for a parallel BLAS and just call _GEMV

yi = Aij
j
∑ x j

Case 1: i,j, parallelizing outer loop

Parallelize the outer loop over i
 #pragma omp parallel for
 for (int i=0; i<M; i++) {
 y[i] = 0.;
 for (int j=0; j<N; j++)
 y[i] += A(i,j) * x[j];
 }

=*
Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 2: i,j, parallelizing inner loop

Parallelize the inner loop over j
 for (int i=0; i<M; i++) {
 double tmp = 0.
 #pragma omp parallel for reduction(+ : tmp)
 for (int j=0; j<N; j++)
 tmp += A(i,j) * x[j];
 y[i] = tmp;
 }

=*
Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 3: j,i, parallelizing outer loop

Parallelize the outer loop over j
 followed by a vector reduction

 std::fill(y.begin(),y.end(),0.);
 double z[M];
 #pragma omp parallel private(z)
 {
 std::fill(z,z+M,0.);
 #pragma omp for
 for (int j=0; j<N; j++)
 for (int i=0; i<M; i++)
 z[i] += A(i,j) * x[j];
 #pragma omp critical
 for (int i=0; i<M; i++)
 y[i] += z[i];
 }

=*
Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 4: j,i, parallelizing inner loop

Parallelize the inner loop over i
 for (int i=0; i<M; i++)
 y[i] = 0.;

 for (int j=0; j<N; j++)
 #pragma omp parallel for
 for (int i=0; i<M; i++)
 y[i] += A (i,j) * x[j];

=*
Colors indicate splitting of
the matrix over threads for
the case of 4 threads

Case 5: calling BLAS from every thread
 double DONE = 1.;
 double DZERO = 0.;
 int ONE = 1;
 int lda = N;
 #pragma omp parallel
 {
 int p = omp_get_num_threads();
 int n0 = (M + p - 1)/p;
 #pragma omp for
 for (int i=0; i<p; i++) {
 int n1 = std::min(n0, M-i*n0);
 dgemv_("N", n1, n, DONE, A.data()+i*n0, lda, &x[0], ONE, DZERO, &y[i*n0], ONE);
 }
 }

=*
Colors indicate splitting of
the matrix over threads for
the case of 4 threads

What code is the fastest?

Give us your best guess. Which code is the fastest?

N=2000, g++
MacBook Pro

N=2000, iCC
MacBook Pro Your machine

Case 1 9.5 ms 9.4 ms

Case 2 70 ms 67 ms

Case 3 1.67 ms 1.57 ms

Case 4 119 ms 5.2 ms

Case 5 2.1 ms

Case 6 1.58 ms

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination
2x + y − z = 8

−3x − y + 2z = −11
−2x + y + 2z = −3

1. start with system of equations

−3x − y + 2z = −11
2x + y − z = 8

−2x + y + 2z = −3

2. swap largest coefficient of x to the first row
(pivot) and store the pivot

pivot = [2]

−3x − y + 2z = −11

2 − 2
3
3⎛

⎝⎜
⎞
⎠⎟ x + 1− 2

3
⎛
⎝⎜

⎞
⎠⎟ y + (−1+

2
3
2)z = 8 − 2

3
11

−2 + 2
3
3⎛

⎝⎜
⎞
⎠⎟ x + 1+ 2

3
⎛
⎝⎜

⎞
⎠⎟ y + 2 − 2

3
2⎛

⎝⎜
⎞
⎠⎟ z = −3+ 2

3
11

3. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

0
−2
3

2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination
2x + y − z = 8

−3x − y + 2z = −11
−2x + y + 2z = −3

1. start with system of equations

−3x − y + 2z = −11
2x + y − z = 8

−2x + y + 2z = −3

2. swap largest coefficient of x to the first row
(pivot) and store the pivot

pivot = [2]

3. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

0
−2
3

2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3x − y + 2z = −11
1
3
y + 1

3
z = 2

3
5
3
y + 2

3
z = 13

3

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

4. now continue with the next row
−3x − y + 2z = −11

1
3
y + 1

3
z = 2

3
5
3
y + 2

3
z = 13

3

5. swap largest coefficient of x to the current row
(pivot) and store the pivot
pivot = [2, 3]

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
3
y + 1

3
z = 2

3
6. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

0 0
−2
3 0

2
3

1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
3
− 1
5
5
3

⎛
⎝⎜

⎞
⎠⎟ y +

1
3
− 1
5
2
3

⎛
⎝⎜

⎞
⎠⎟ z =

2
3
− 1
5
13
3

Gaussian elimination / LU factorization

Recall how we solve dense linear systems of equations by Gaussian elimination

4. now continue with the next row
−3x − y + 2z = −11

1
3
y + 1

3
z = 2

3
5
3
y + 2

3
z = 13

3

5. swap largest coefficient of x to the current row
(pivot) and store the pivot
pivot = [2, 3]

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
3
y + 1

3
z = 2

3
6. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

0 0
−2
3 0

2
3

1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
5
z = − 1

5

7. finally solve the last equation and substitute backwards

Gaussian elimination / LU factorization

Now let us look at the coefficient matrices
2x + y − z = 8

−3x − y + 2z = −11
−2x + y + 2z = −3

1. start with system of equations

−3x − y + 2z = −11
2x + y − z = 8

−2x + y + 2z = −3

2. swap largest coefficient of x to the first row
(pivot) and store the pivot

pivot = [2]

3. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

0
−2
3

2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3x − y + 2z = −11
1
3
y + 1

3
z = 2

3
5
3
y + 2

3
z = 13

3

2 1 −1
−3 −1 2
−2 1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−3 −1 2
2 1 −1
−2 1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−3 −1 2
0 1

3
1
3

0 5
3
2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Gaussian elimination / LU factorization

Now let us look at the coefficient matrices

4. now continue with the next row
−3x − y + 2z = −11

1
3
y + 1

3
z = 2

3
5
3
y + 2

3
z = 13

3

5. swap largest coefficient of x to the current
row (pivot) and store the pivot
pivot = [2, 3]

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
3
y + 1

3
z = 2

3
6. divide the coefficient of x in other rows by
that of the first row. For each row multiply
the first row by that factor and subtract it
from the row. Store the coefficients.

−3x − y + 2z = −11
5
3
y + 2

3
z = 13

3
1
5
z = − 1

5

−3 −1 2
0 1

3
1
3

0 5
3
2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3 −1 2
0 5

3
2
3

0 1
3

1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟0 0

−2
3 0

2
3

1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Gaussian elimination / LU factorization

Now let us look at the matrices

pivot = [2, 3]

0 0
−2
3 0

2
3

1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pivot Coefficients Triangular

Gaussian elimination / LU factorization

Now let us look at the matrices
Expand the coefficient matrices to a lower triangular matrix L

pivot = [2, 3] L =

0 0 0
−2
3 0 0

2
3

1
5 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pivot Coefficients Triangular

Gaussian elimination / LU factorization

Now let us look at the matrices
Expand the coefficient matrices to a lower triangular matrix L
Put ones on the diagonal of L and correct for the permutations

pivot = [2, 3] L =

1 0 0
2
3 1 0

−2
3

1
5 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

U =

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pivot Coefficients Triangular

Gaussian elimination / LU factorization

Now let us look at the matrices
Expand the coefficient matrices to a lower triangular matrix L
Put ones on the diagonal of L
Convert the pivot array into permutation matrices L
And we get an LU factorization

pivot = [2, 3]

L =

1 0 0
2
3 1 0

−2
3

1
5 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

U =

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Pivot Coefficients Triangular

P = P12P23 =
0 1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0
0 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

A =
2 1 −1
−3 −1 2
−2 1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= PLU =

0 1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0
0 0 1
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0
2
3 1 0

−2 3
1
5 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−3 −1 2
0 5

3
2
3

0 0 1
5

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Coding a linpack-style LU factorization
void dgefa(hpc12::matrix<double,hpc12::column_major>& a,
 std::vector<int> pivot)
{
 assert(a.num_rows() == a.num_cols());

 pivot.clear();
 int one=1;
 int n=a.num_rows();
 int lda=a.leading_dimension();

 for(int k=0; k < a.num_rows()-1; k++){
 // 1. find the index of the largest element in column k  
 // starting at row k
 int nk = n-k;
 int l = idamax_(nk,&a(k,k),one) + k;
 pivot.push_back(l); // and save it
 assert(a(l,k) =!0.0); // error if pivot is zero

 // 2. swap rows l and k, starting at column k
 dswap_(nk,&a(l,k),lda,&a(k,k),lda);

 // 3. scale the column k below row k by the inverse  
 // negative pivot element, to store L in the lower part
 double t = -1./a(k,k);
 int nmk1 = n-k-1;
 dscal_(nmk1,t,&a(k+1,k),one);

 // 4. add the scaled k-th row to all rows in the lower right corner
 for(int j=k+1; j<n; j++) { // multiple daxpy
 double t = a(j,k);
 daxpy_(nmk1,t,&a(k,k+1),one,&a(j,k+1),one);
 }
 }
}

Coding a linpack-style LU factorization
void dgefa(hpc12::matrix<double,hpc12::column_major>& a,
 std::vector<int> pivot)
{
 assert(a.num_rows() == a.num_cols());

 pivot.clear();
 int one=1;
 int n=a.num_rows();
 int lda=a.leading_dimension();

 for(int k=0; k < a.num_rows()-1; k++){
 // 1. find the index of the largest element in column k  
 // starting at row k
 int nk = n-k;
 int l = idamax_(nk,&a(k,k),one) + k;
 pivot.push_back(l); // and save it
 assert(a(l,k) =!0.0); // error if pivot is zero

 // 2. swap rows l and k, starting at column k
 dswap_(nk,&a(l,k),lda,&a(k,k),lda);

 // 3. scale the column k below row k by the inverse  
 // negative pivot element, to store L in the lower part
 double t = -1./a(k,k);
 int nmk1 = n-k-1;
 dscal(nmk1,t,&a(k+1,k),one);

 // 4. add the scaled k-th row to all rows in the lower right corner
 #pragma omp parallel for
 for(int j=k+1; j<n; j++) { // multiple daxpy
 double t = a(j,k);
 daxpy(nmk1,t,&a(k,k+1),one,&a(j,k+1),one);
 }
 }
}

Optimizing the LU factorization

LU factorization is the key operation in the LINPACK benchmark used to
measure supercomputer performance

All low-level vector operations are dispatched to optimized BLAS
DSCAL
DSWAP
IDAMAX
DAXPY

The loop over many DAXPY operations can be multithreaded, e.g. by
OpenMP

Better yet: call a multi-threaded BLAS 2 outer product DGER if you have
one, or parallelize DGER in your BLAS2, instead of putting the
multithreading here

Coding a linpack-style LU factorization
void dgefa(hpc12::matrix<double,hpc12::column_major>& a,
 std::vector<int> pivot)
{
 assert(a.num_rows() == a.num_cols());

 pivot.clear();
 int one=1;
 int n=a.num_rows();
 int lda=a.leading_dimension();

 for(int k=0; k < a.num_rows()-1; k++){
 // 1. find the index of the largest element in column k  
 // starting at row k
 int nk = n-k;
 int l = idamax(nk,&a(k,k),one) + k;
 pivot.push_back(l); // and save it
 assert(a(l,k) =!0.0); // error if pivot is zero

 // 2. swap rows l and k, starting at column k
 dswap(nk,&a(l,k),lda,&a(k,k),lda);

 // 3. scale the column k below row k by the inverse  
 // negative pivot element, to store L in the lower part
 double t = -1./a(k,k);
 int nkm1 = n-k-1;
 dscal(nkm1,t,&a(k+1,k),one);

 // 4. add the scaled k-th row to all rows in the lower right corner
 double alpha=1.;
 dger_(nmk1,nmk1,alpha,&a(k+1,k),one,&a(k,k+1),lda,&a(k+1,k+1),lda);
 }
}

What do we need to optimize?

Write the fastest possible BLAS-1 and BLAS-2 functions

Are we optimal now?
No, BLAS-2 performs N2 operations on N2 data
We are limited by memory-band width

What can we do?
Rewrite DGEFA to use BLAS-3
If we can use matrix multiplication DGEMM instead of vector outer
product DGER then we can reuse data, perform O(N3) operations on
O(N2) data and get peak performance.
Do you have ideas how we can do that?

