
Parallel Fast N-Body
HPCSE II - Spring 2015

Last time
• N-body solvers for long range interactions

• Naive: O(N^2)

• Idea: treat cluster of far away particles as one

• Barnes-Hut: O(N logN)

• Fast Multipole Method: O(N)

The Barnes-Hut algorithm
• Asymptotic complexity: O(N logN)

• BUT much higher implementation complexity

tree building

multipole expansions

tree traversal

force summation

force summationvs

Data structure
• Requirements:

• Hierarchical spatial decomposition

• Simple to build and traverse

• Extension of the binary tree in multiple dimensions:

• Quadtree (2D)

• Octree (3D)

Quadtree

pictures from http://arborjs.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Building the quadtree
• Top-down approach

• Particles are inserted in an initially empty tree

• 3 types of nodes:

• internal - contain multiple leaves

• leaf - contains a single particle

• empty

Building the quadtree
for each particle

current_node = root_node

while (true)

if (current_node != empty && !internal)

insert particle, exit loop

else if (current_node == internal)

put into corresponding quadrant of current_node

else

split current_node into its children (one for each quadrant)

put particles into their quadrants nodes

Building the quadtree

pictures from http://arborjs.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Multipole expansions

• Multipole expansions computations

• Option 1: while building the tree  
(more difficult to parallelize)

• Option 2: after building the tree  
(bottom-up, “reduction” operation)

Traversing the tree
for each particle

current_node = root_node

if (current_node==leaf && particle contained not self)

compute force, add to self

else if (s/d<theta)

compute force with internal node

else

follow this procedure on each child

s

d

Traversing the tree

pictures from http://arborjs.org/docs/barnes-hut

http://arborjs.org/docs/barnes-hut

Fast multipole method

• Particle-box interactions

• Box-box interactions

• Convergence rate proportional to
✓
RM

R

◆P+1

R

RM

P multipole moments expansions

Box-box interactions

• Interactions computed at the coarsest level  
 
 

• Velocities computed at finest level

4 1 Fast Multipole Method

boxes in the hierarchy. Hence the expansions of the coarser level boxes have to be transferred down
to their descendants as follows :

�

children
l =

PX

k=l

✓
k � 1

k � l

◆
�

parent
k

�
Z

children
M � Z

parent
M

�k�l
(1.8)

This shifting uses (⇤⇤) and, as in equation (1.4), does not introduce any additional errors. One
may observe here the di↵erent use of the coe�cients ↵k and �l when computing velocities on the
particles. The coe�cients �l of a certain box are used to compute the velocity on the particles of
the same (childless) box whereas the ↵k’s are used to compute the velocities due to particles that
belong to well separated boxes.
Proofs for the above results may be found in a more rigorous and complete form in Greengard
and Rohklin (1987). They show that the series converges if the distance between interacting boxes
and/or particles is at least twice as large as the radius of the cluster involved. By using the expan-
sions when clusters are separated by larger distances one may reduce the number of expansions
that are necessary to obtain the same level of accuracy. This trade-o↵ may be optimized by link-
ing the number of expansions employed to the distance between the interacting pairs dynamically
(Salmon, 1991). However this may result in increased cost for the construction of the interaction
lists and it would complicate the algorithm and reduce its vectorizability.

1.2 The Data Structure

The two-dimensional space is considered to be a square enclosing all computational elements. We
apply the operation of continuously subdividing a square into four identical squares until each
square has only a certain maximum number of particles in it (see Fig. 1 for an example) or the
maximum allowable level of subdivisions has been reached (the latter requirement seems obligatory
when one programs in FORTRAN and has to predefine array dimensions). This procedure for a
roughly uniform particle distribution results in O(log4N) levels of squares.
The two fast algorithms under discussion, PB and BB, exploit the topology of the computational
domain each with a di↵erent degree of complexity and e�ciency. The hierarchy of boxes defines a
tree data structure which is common for both algorithms. However its key ingredients and address
arrays are implemented in a di↵erent way as explained below for the two algorithms. The tree
construction proceeds level by level starting at the finest level of the particles and proceeding
upwards to coarser box levels.
Due to the simplicity of the geometry of the computational domain the addressing of the elements
of the data structure is facilitated significantly. As the construction proceeds pointers are assigned
to the boxes so that there is direct addressing of the first and last particle index in them as well
as there is direct access to their children and parents. This facilitates the computation of the
expansion coe�cients of the children from the expansions of the parents for the BB algorithm and
the expansions of the parents from those of the children for the PB algorithm.

1.2.1 Parameters of the Data Structure

The data structure is used to determine when the expansions are to be used and when pairwise
interactions have to be calculated. Usually this data structure is referred to as the ‘(family) tree ’ of
the particles. It helps in communicating to the computer the geometric distribution of the particles
in the computational domain. The particles reside at the finest level of the structure. Clusters
of particles form the interior nodes of the tree and hierarchical relations are established. The
data structure adds to the otherwise minimal memory requirements of the vortex method. This
extra memory however is the tradeo↵ for the speed of the fast algorithms. One may add several
features to this data structure trying to relate to the computer architecture as much information

1.1 Multipole Methods for the Velocity Evaluation 3

By expanding now the denominator inside the sum using (⇤) and keeping (P) terms in the expan-
sions the velocity is determined by (see also proof in section 1.6.1):

V (Z) =
i

2⇡

1

Z � ZM

PX

k=0

↵k

(Z � ZM)k
(1.3)

The complex coe�cients ↵k express the moments of the discrete vorticity distribution in the cell
and are computed by:

↵k =
MX

m=1

�m (Zm � ZM)k

k = 0, . . . , P.

(1.4)

To make the computations more e�cient the coe�cients of boxes that belong to coarser levels
of the hierarchy are not constructed directly from the particles. Instead they are obtained by a
shifting of the expansions of their descendants. To obtain then the expansions of a parent box
from those of its children we use identity (⇤⇤) to get (see also proof in section 1.6.2):

↵

parent
l =

lX

k=0

✓
l

k

◆
↵

children
k

�
Z

children
M � Z

parent
M

�l�k
(1.5)

We may observe now from (1.3), that at a distance R from the center of the cluster the rate of
convergence of the expansions would be proportional to (RM/R)P+1 and, for example, if R � 2RM

this rate is proportional to (1/2)P+1, implying the geometric convergence of the series.
The above expansions are the main tools for the PB algorithm. However one may proceed one
step further and recast the Laurent series into Taylor series and consider the interactions between
groups of particles. These interactions take place in the form of shifting the center of expansions
of one cluster (M) to the center of another (G). Those expansions are then used to compute the
velocity of the particles in each box. This results in eliminating the logN factor from the work
count of the scheme.
To obtain these expansions we add and subtract ZG in the denominator of the expression 1.2 so
we have that the velocity induced by the group M at a point Z in the neighborhood of ZG is equal
to:

V (Z) =
i

2⇡

PX

k=0

↵k

(ZG � ZM)k+1 (1 + ⇠)k+1
,

where ⇠ = (Z � ZG)/(ZG � ZM). Expanding this expression for ⇠ using equation (⇤), the velocity
field induced by particles in the cluster M , at a point Z in the neighborhood of ZG is (see also
proof in section 1.6.3):

V (Z) =
i

2⇡

PX

l=1

�l(Z � ZG)
l�1 (1.6)

where the coe�cients �l are determined by :

�l =
(�1)l+1

(ZG � ZM)l

PX

k=0

✓
l + k � 1

k

◆
↵k

(ZG � ZM)k)

l = 1, . . . , P

(1.7)

Interactions are computed at the coarsest possible level while satisfying the accuracy criterion.
However the velocities of the individual particles are computed from the expansions of the finest

1.1 Multipole Methods for the Velocity Evaluation 3

By expanding now the denominator inside the sum using (⇤) and keeping (P) terms in the expan-
sions the velocity is determined by (see also proof in section 1.6.1):

V (Z) =
i

2⇡

1

Z � ZM

PX

k=0

↵k

(Z � ZM)k
(1.3)

The complex coe�cients ↵k express the moments of the discrete vorticity distribution in the cell
and are computed by:

↵k =
MX

m=1

�m (Zm � ZM)k

k = 0, . . . , P.

(1.4)

To make the computations more e�cient the coe�cients of boxes that belong to coarser levels
of the hierarchy are not constructed directly from the particles. Instead they are obtained by a
shifting of the expansions of their descendants. To obtain then the expansions of a parent box
from those of its children we use identity (⇤⇤) to get (see also proof in section 1.6.2):

↵

parent
l =

lX

k=0

✓
l

k

◆
↵

children
k

�
Z

children
M � Z

parent
M

�l�k
(1.5)

We may observe now from (1.3), that at a distance R from the center of the cluster the rate of
convergence of the expansions would be proportional to (RM/R)P+1 and, for example, if R � 2RM

this rate is proportional to (1/2)P+1, implying the geometric convergence of the series.
The above expansions are the main tools for the PB algorithm. However one may proceed one
step further and recast the Laurent series into Taylor series and consider the interactions between
groups of particles. These interactions take place in the form of shifting the center of expansions
of one cluster (M) to the center of another (G). Those expansions are then used to compute the
velocity of the particles in each box. This results in eliminating the logN factor from the work
count of the scheme.
To obtain these expansions we add and subtract ZG in the denominator of the expression 1.2 so
we have that the velocity induced by the group M at a point Z in the neighborhood of ZG is equal
to:

V (Z) =
i

2⇡

PX

k=0

↵k

(ZG � ZM)k+1 (1 + ⇠)k+1
,

where ⇠ = (Z � ZG)/(ZG � ZM). Expanding this expression for ⇠ using equation (⇤), the velocity
field induced by particles in the cluster M , at a point Z in the neighborhood of ZG is (see also
proof in section 1.6.3):

V (Z) =
i

2⇡

PX

l=1

�l(Z � ZG)
l�1 (1.6)

where the coe�cients �l are determined by :

�l =
(�1)l+1

(ZG � ZM)l

PX

k=0

✓
l + k � 1

k

◆
↵k

(ZG � ZM)k)

l = 1, . . . , P

(1.7)

Interactions are computed at the coarsest possible level while satisfying the accuracy criterion.
However the velocities of the individual particles are computed from the expansions of the finest

�l

↵k

Accuracy considerations
• Multiple parameters affect accuracy

• : ratio of box size to distance

• : number of expansions

✓ =
RM

R

P

RM1

R1

P1

P2 > P1

RM1

R1

R2

RM2

✓1

✓2 < ✓1
✓1, P1

Parallelization of BH

• Material based on Gibbon et al, Parallel Tree Codes  
(http://juser.fz-juelich.de/record/16155/files/IAS_Series_06.pdf)

• Irregular code

• How to distribute and define the work?

• How to minimize communication in MPI?

http://juser.fz-juelich.de/record/16155/files/IAS_Series_06.pdf

Parallel algorithm
for t in time

(i) perform domain decomposition

(ii) build tree

(iii) traverse tree and build  
 interaction list

(iv) perform force summation

Domain decomposition

✓ Simple

x Highly unbalanced

Domain decomposition

✓ Simple

x Unbalanced 
(different number of
force summations)

x Bad locality
vision - what to treat as multipole
expansion and what to treat as direct
summation

Domain decomposition

✓ Good locality with
space-filling curves

✓ Load balancing

x Requires sorting

Space-filling curves
• SFC show better locality

• Split particles along a 1D curve

• Morton indexing (Z-ordering): 
computation by interleaving bits of coordinates

(i) Compute particle index

(ii) Sort particles

• Other options: Hilbert, Peano

picture from http://flash.uchicago.edu/~jbgallag/2012/flash4_ug/node14.html

Z-ordering SFC

http://flash.uchicago.edu/~jbgallag/2012/flash4_ug/node14.html

Load balancing

• Use information of previous time steps

• #interactions computed for a given particle?

• Rationale: the number doesn’t change much

Building the quadtree
• Each parallel unit builds its part of the tree

• Needed: “ghosts” at extremes of 1D curve

• Z-ordering encodes the quadtree

• position in the tree must be extracted

• access is O(1) instead of O(logN)

Building the quadtree

where h is the number of bits available for the address. This address then acts as a pointer
to the particle or multipole properties. In case two or more keys give the same address (a
’collision’), a linked-list is constructed to resolve it. Clearly a high occurrence of collisions
will ultimately degrade performance; however, as Warren & Salmon pointed out9, the dis-
tribution of particles and nodes between many processors with their own address-spaces
helps to reduce their number to a negligible level.

Once a set of particles has been allocated to a particular processor, and their associated
properties (mass, charge, velocity etc.) have been fetched from their original location,
one can immediately begin to construct the local trees. This can be done very efficiently
because the particle keys implicitly contain the necessary information on all their ancestor
nodes up to the root. The parent of a particle or twig-node is simply found by a 3-bit shift
operation:

kparent = RIGHTSHIFT(k,3) (4)

Likewise, if a node’s children are numbered from 0 to 7 (in a 3D oct-tree), their keys can
be obtained by the inverse operation:

kchild = LEFTSHIFT(k,3) OR child(0-7), (5)

Figure 4: Obtaining parent and child key from node: quadric and binary notation

As an example, the full key for the highlighted cell in Fig. 4 is 131 in quadric, 11101
in binary notation (we have dropped the place-holder bit in the figure for clarity).

The local sorted list of particle keys would thus provide a natural starting point for de-
termining their parent nodes if we knew how they were distributed. In a dynamic applica-
tion we cannot assume anything about their distribution, however, so instead we start from
the highest (coarsest) level and work down to the leaves. As in a sequential algorithm3, all
particles are initially attached to the root, in this case a cube encompassing the whole simu-
lation region. Next, the region is subdivided into 8 sub-boxes, and the particles re-attached
accordingly. A sub-box containing exactly one particle is defined as a leaf; a box with 2 or
more constitutes a twig and empty boxes are discarded. This procedure is continued at the

70

• Parents can be obtained by right bit shifts

• Children are obtained by left bit shifts

picture from Gibbon et al, Parallel Tree Codes

Tree traversal

• Each parallel element creates an interaction list

• On distributed memory architectures:  
interaction list reduces communication messages

Force summation

• Given interaction lists, update particles

• Separate step:

• keeps physics separated

• some load balancing can be performed

