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What has been covered so far?
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HOW GPU ACCELERATION WORKS

Application Code
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Compute-Intensive Functions
Throughput critical [
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Rest of Sequential
5% of Code

CPU Code

Latency critical
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1. Copy input data from CPU memory/NIC to
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SIMPLE PROCESSING FLOW
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GPU memory
2. Load GPU program and execute

1. Copy input data from CPU memory/NIC to
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SIMPLE PROCESSING FLOW
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1. Copy input data from CPU memory/NIC to
GPU memory

Load GPU program and execute

Copy results from GPU memory to CPU
memory/NIC
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3 WAYS TO PROGRAM GPUS
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CUDA EXECUTION MODEL

> Thread: Sequential execution unit
> Threads execute in parallel
> Thread Block: a group of threads
> Executes on a single Streaming Multiprocessor (SM)
> Threads within a block can cooperate
» Light-weight synchronization
> Data exchange
- Grid: a collection of thread blocks
> Thread blocks of a grid execute across multiple SMs
> Thread blocks do not synchronize with each other

- Communication between blocks is expensive

SANVIDIA.



EXECUTION MODEL

Software Hardware
||
3 ] Threads are executed by scalar CUDA Cores
CUDA
Thread Core

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

Thread Block

A kernel is launched as a grid of thread blocks

SANVIDIA.



CUDA Memory Architecture

GPU

Multiprocessor
Multiprocessor

DRAM

Multiprocessor
Local ] Registers

Shared Memory

Global

Constant }

Constant and Texture
- > Caches

Texture




Kepler Memory Hierarchy
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Registers Registers

[ ] -
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Low Latency or High Throughput?

CPU architecture must minimize latency within each thread
GPU architecture hides latency with computation from other (warps of) threads

GPU Streaming Multiprocessor — High-throughput Processor Computation Thread/Warp

Th ]' Processing

Waiting for data

Ready to be processed

CPU core — Low-latency Processor
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NVVP: NVIDIA’S VISUAL PROFILER

[0] Tesla K40c¢
—| Context MPS (CUDA)
MemCpy (HtoD) NI (11 (I
I MemCpy (DtoH)

- Compute

7 100.0% Stepl0_c...

+ Streams

. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

oS

The first step in anal g an individual kernel is to ——
mine if the performan f the kern Stall Reasons

bounded by computation, m ry bandwidth, or Shared execution

instruction/memory latency The results at right Shared Stores de ;ndenr

indi hat the performanc rnel Global Loads 0 08/ P N

"Stepl0_cuda_kernel” is most likely limited by Global Stores

compute.

cal Lo
Local Stores

dy Perform Compute Analysis

ttle performance for this kernel is _
should first perform ysis to y | 23 data 7__|n>truttmn
fetch
Texture Cache request

Reads

uction and n y 7L
ely not the primary performance bottlenecks for thi otal 1570138
till want to perform those analyses
[ PCle configuration: Gen3 x16, 8 Gbitfs 1
08/s synchronization —~
149.375 kBJs

149.375 kBJs
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WHICH KERNEL SHOULD WE OPTIMIZE?
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BEFORE OPTIMIZING YOUR KERNELS

> Always use NVVP to determine if the kernel is the limiter

> Remember Amdahl: § = —— 5 R !
(1_P)+N (1-P)

> Kernels may not always be the limiter

..  NoActive 7|
wam . Kernell - | |
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OPTIMIZE LOCALITY AND CONCURRENCY

> Manage locality: Move data where it is used
> Primary focus of OpenACC

> Simplified by unified memory available since CUDA 6

> Keep both CPU and GPU busy

> Asynchronous transfers: No need to stall compute for transfer

SANVIDIA.
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KERNEL LAUNCH CONFIGURATION

® A kernel is a function that runs on the GPU
® A kernel is launched as a grid of blocks of threads

® Launch configuration is the number of blocks and number of threads
per block, expressed in CUDA with the <<< >>> notation:

mykernel<<<blocks per grid, threads per block>>>(..);

® What values should we pick for these?
* Need enough total threads to process entire input
* Need enough threads to keep the GPU busy

® Selection of block size is an optimization step involving warp occupancy

SANVIDIA.



® Several Streaming Multiprocessors

* E.g., Kepler GK110 has up to 15 SMs
® L2 Cache shared among SMs

® Multiple channels to DRAM

20 <ANVIDIA.



KEPLER STREAMING MULTIPROCESSOR (SMX)

Per SMX:

® 192 SP CUDA Cores
® 64 DP CUDA Cores
® 4 warp schedulers

* Up to 2048 concurrent threads

# One or two instructions issued per
scheduler per clock from a single
warp

® Register file (256KB)
® Shared memory (48KB)
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LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many blocks should we use?

® 1,000 or more thread blocks is best
® Rule of thumb: enough blocks to fill the GPU at least 10s of times over

® Makes your code ready for several generations of future GPUs

<ANVIDIA.



LAUNCH CONFIGURATION: GENERAL
GUIDELINES

How many threads per block should we choose?

® The really short answer: 128, 256, or 512 are often good choices

® The slightly longer answer:
® Pick a size that suits the problem well
® Multiples of 32 threads are best

® Pick a number of threads per block (and a number of blocks) that is sufficient
to keep the SM busy

SANVIDIA.
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Thread Block

32 Threads
32 Threads

32 Threads

32 Threads
Warps

WARPS

Multiprocessor

A thread block consists
of warps of 32 threads

A warp is executed
physically in parallel on
some multiprocessor.

Threads of a warp issue

instructions in lock-step
(as with SIMD)

<ANVIDIA.



CONCURRENCY OFFERED BY A K20X (GK110)

Number of SMX
Number of warps per SM

Number of threads/warp

Warps per device

Active threads per device

14 (15 on K40, K80)
64
32

1464 = 896
14*64*32 = 28’672

SANVIDIA.



LATENCY HIDING

The warp issues

The warp waits (latency)

Fully covered latency Exposed latency

Mo warp issues

<ANVIDIA.




Occupancy

Start . 588.755ms
End | 588.808ms
Duration :
* Need enough concurrent warps per S o
SM to hide latencies: Registers/Thread 2

Shared Memory/Block 1.062 KB

Instruction latencies Memory

Global Load Efficiency 100%
Memory access latencies e | 100%
Local Memory Overhead
DRAM Utilization | 92.7% (169.74 GB/s)
Instruction E
. Branch Divergence Overhead
* Hardware resources determine Total Replay Overhead
. Shared Memory Replay Overhead
number of warps that fit per SM Global Memory Replay Overhead
Global Cache Replay Overhead
L oa@WTIe Replay Overhead
Occupancy

Occupancy = N_ uat / Niay Achieved o

Theoretical . 100%

A ——




Occupancy Limiters

* Full occupancy: Maximum choice for scheduler

» Hardware limits Kepler SM resources:
* Registers per thread — 64K 32-bit registers
* Shared memory per thread block — Up to 48 KB of shared memory

— Up to 2048 concurrent threads
— Up to 16 concurrent thread blocks

* Threads per thread block
* Thread blocks per SMX

* Optimal choice: balance resource consumption and concurrency



Occupancy and Performance

* Note that 100% occupancy isn’t needed to reach maximum
performance

® Once the “needed” occupancy (enough warps to switch among to cover
latencies) is reached, further increases won’t improve performance

* Level of occupancy needed depends on the code
* More independent work per thread -> less occupancy is needed

* Memory-bound codes tend to need more occupancy

® Higher latency than for arithmetic, need more work to hide it



Thread Block Size and Occupancy

® Thread block size is a multiple of warp size (32)

* Even if you request fewer threads, hardware rounds up

* Thread blocks can be too small
* Kepler SM can run up to 16 thread blocks concurrently
* SM can reach the block count limit before reaching good occupancy
® E.g.: 1-warp blocks = 16 warps/SM on Kepler (25% occ - probably not enough)
* Thread blocks can be too big
* Enough SM resources for more threads, but not enough for a whole block
* Athread block isn’t started until resources are available for all of its threads



Thread Block Sizing

Number of warps allowed by SM resources .
T fe SM resources:
threads per block BERERRRRRERERER * Registers
® Shared memory
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CUDA Occupancy Calculator

1.} Select Compute Capability (click):
1.b) Select Shared Memory Size Config (bytes)

2.) Enter your resource usage:
Threads Per Black

Regizters Per Thread

Shared Memory Per Bl

Active Threads per Multiprocessor

Active Warps per Multiprocessor

Active Thread Blocks per Multiprocessor
of each Multiprocessor

* Analyze effect of
resource consumption on &t

Total # o
Register allo

occupancy =

ion granulari
cimum Thread Blo

aximum Thread Bl er Multiprocessor
ited by Max Warps or Max Blocks per Multi

irrhaunina,




Thank You!
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