ETH High Performance Computing for

Eidgenossische Technische Hochschule Ziirich S C I e n Ce a n d E n gl n ee rl n g I I
Swiss Federal Institute of Technology Zurich Sp” ng semester 2015

M. Troyer
ETH Ziirich, HIT G 31.8
CH-8093 Ziirich

Set 9 - GPUs Il

Issued: May 11, 2015
Hand in: May 18, 2015

Question 1: Diffusion on GPUs - Part Il

In this exercise we will further improve the 2D diffusion code on GPUs.

a) Write a kernel for GetMoment () to further reduce the memory transfer needed between
GPU and CPU by calculating (at least) paritial sums on the GPU.
Hint: An important part of the operation is a reduction.
While you can spend a full talk on how to optimize reductiond] a simple GPU reduction
will do here. It is called only every 100th update and will not dominate the execution time
of our code. A simple reduction scheme within a block using the shared memory can be
achieved by selecting only specific thread indices:

1 _ shared_ float data[8];
2
3 o o o

4+ if (threadIdx.x < 4)

5 data[threadIdx.x] += datal[threadldx.x + 4];
6 __syncthreads();

7 i1f (threadIdx.x < 2)

8 data[threadIdx.x] += datal[threadIldx.x + 2];
9 __syncthreads () ;

10 1f (threadIdx.x < 1)

11 data[threadIdx.x] += datal[threadIldx.x + 1];

A solution code is found in solution/diffusion2d_cuda_shared. cu, the achieved speed-
up is listed in table [1]

b) Think about good choices for blocksPerGrid and threadsPerBlock of your kernels and explain
your choice.
Since the NVIDIA's Fermi (GF) and Kepler (GK) GPUs schedule threads in groups of
32 threads (called a “warp”), threadsPerBlock should be a multiple of 32. Apart from
this general rule, there are a few ways to obtain a good pair of threadsPerBlock and
blocksPerGrid, such as using the NVIDIA Visual Profiler or using the CUDA occupancy

calculator. We decided to use the latter in this solution.
Compiling our solution code with following additional options, reveals some properties of
the compiled kernels, such as the number of required registers and shared memory usage:

M. Harris, Optimizing Parallel Reduction in CUDA, 2007,
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf

http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf

Version time speed-up
OpenMP 263.0s 1.0x
CUDA 161.8s 1.6x
CUDA with shared mem | 119.3s 2.2x

getMoment() on GPU

CUDA 130.6s 2.0x
CUDA with shared mem | 89.2s 2.9x

Table 1: Execution time of the 2D diffusion solution for system size 2! x 211,

1 nvcc —03 —arch=sm_20 —ptxas—options=—v —o diffusion_cuda_shared diffusion2d_cuda_shared
.cu

2 ptxas info : Compiling entry function ’_Zl6diffusion_kernelPfPKffi’ for ’'sm_20'

3 ptxas info : Function properties for _Zl6diffusion_kernelPfPKffi

4 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

5 ptxas info : Used 12 registers, 1296+0 bytes smem, 56 bytes cmem[0]

6

7 ptxas info : Compiling entry function ’_Z17get_moment_kernelPfPKfffi’ for ’'sm_20'

8 ptxas info : Function properties for _Zl7get_moment_kernelPfPKfffi

9 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

10 ptxas info : Used 18 registers, 512+0 bytes smem, 60 bytes cmem[0]

We use this information in the CUDA Occupancy calculator CUDA_Occupancy_Calculator.xls
of the CUDA toolkit. Given information about the Hardware (“compute capability”) and the
kernel requirements the spreadsheet calculates how many warps may be scheduled on one
multiprocessor when launching the kernel. The occupancy is the number of active warps
divided the number of warps supported by one of the multiprocessors of the GPU. If less
warps are active, the multiprocessor will have more problems to hide latencies (e.g. memory
access latencies), because it has less warps to schedule for execution while a warp is waiting

for an operation to finish. It will be more likely that the multiprocessor is idle, because all
warps/threads are waiting for some operations to finish at the same time. Hence, we try to
optimize for highest occupancy to make best use of the multiprocessor.

We start by analyzing the get_moment_kernel() and make an initial guess of
threadsPerBlock=128. Using the get_compute_capability.cu program we obtain
the compute cababilty of the Fermi GPUs installed on Brutus, which is 2.0. Compiling
our kernel for a device with compute capability 2.0 (nvcc -arch=sm_20), we require 18
registers per thread and 512 Bytes of shared memory per block, as shown in the compiler
output above. Entering this data in the occupancy calculator, we obtain an occupancy 67%,
which corresponds to only 32 warps of the 48 supported warps being active. The graphs
on the right reveal the limiting factor is neither the register requirements of the threads nor
the shared memory requirements of the thread blocks, but the chosen threadsPerBlock.
Increasing the threadsPerBlock=256, which also increases the shared memory to 1024
Bytes, yields a perfect occupancy of 100%. (Note that we may also need to adapt the
number of steps in our parallel reduction within the kernel if we change the number of
threads per block.)

The same analysis of the diffusion_kernel() with our initial guess of 16 x 16 = 256
threads per block, using 12 registers per thread and 1296 Bytes of shared memory per block,
yields already a perfect occupancy.

Summary

Summarize your answers, results and plots into a short PDF document. Furthermore, elucidate
the main structure of the code and report possible code details that are relevant in terms of
accuracy or performance. Send the PDF document and source code to your assigned teaching
assistant.

