High Performance Computing for

ETHzurich Science and Engineering Il

M. Troyer, P. Koumoutsakos Spring semester 2015
ETH Ziirich, HIT G 31.8
CH-8093 Ziirich

Set 2 - SIMD and BLAS

Issued: February 20, 2015
Hand in: March 2, 2015, 12:00pm

Question 1: SIMD force calculation

/// compute the Lennard-Jones force acting on one particle at position x0

1

2 scalar_type compute_force(std::vector<scalar_type> consté& positions,
3 scalar_type x0, scalar_type rc)
4 A

5 scalar_type rm2 = rm *x rm;

6 scalar_type force = 0.;

7 for (size_type i=0; i<N; ++i) {

8 if (std::abs(r) < rc) {

9 scalar_type r2 = r * r;

10 scalar_type s2 = rm2 / r2; // (rm/r)*2

11 scalar_type s6 = s2xs2xs2; // (rm/r)”6

12 force += 12%eps % (s6%s6 — s6) / r;

13 }

14 }

[un

return force;

o
—

Listing 1: calculate_force function included in forceld.cpp

The code above is a simple force calculation for a one-dimensional nbody problem. In this
exercise you should have to speedup the calculate_force with manual SIMD.

a) Implement the loop with manual SSE intrinsics (or AVX if you have a suitable machine).
As you cannot branch depending on the value of r when processing several values with one
instruction, you need to avoid any if statements.

Hint: The comparison intrinsics like _mm_cmplt_ps create a mask depending on the out-
come of the comparison. In a logic operation like _mm_and_ps this mask can be used to
set all vector elements to zero for which the comparison yielded false.

We have to compute the absolute value of the distance x0 - x[j], then we have to set
the force to zero if this is greater than the cut-off. For the first part we set up a bit mask
allowing us to unset the sign bits of the four floats packed into an SSE vector with a
bitwise and operation. (An alternative would be to compute and compare the squares.) For
the second part we compute the inverse distance as

__m128 rinv = _mm_and_ps(_mm_cmplt_ps(absr,rc), _mm_rcp_ps(r));

1200

I I
® e gcc-msse4.2
o v v ¥ gcc-mavx
1000} ¥ ® e jcc-mssed.2
‘ . v v v icc-mavx
e e clang -msse4.2
800 1
v v clang -mavx
I
E
g 600f
£
[
2
400F
e
v
200} * °
[] @ Ps
¥ v v v
0 ¥
no-vec auto-vec sse avx

Figure 1: Runtime of the 1D force calculation compiled with different compilers. The left
two panes are timings of the forceld_vec code without and with automatic vectorization.
The right two panes are the manually vectorized codes with SSE and AVX intrinsics,
respectively. Circles target SSE4.2 features only, triangles use AVX.

which will be zero if the comparison is not satisfied.

The rest of the loop consists of simple algebra operations only, vectorization is straight-
forward. Simple SSE and AVX implementations are provided with this solution. We don't
assume the input vector length to be a multiple of the vector length and compute the
remaining elements serially. Fig. 1 presents benchmark results with three different compilers:
GCC 4.7.1, ICC 13.0.0 and Clang 3.2. For the former two vectorization is the default and
needs to be disabled for the comparison. For Clang, the llvm vectorizer is still experimental
and needs to be enabled explicitly. With the former two compilers vectorization gives
speedups up to 5x (SSE) and 10x (AVX), exceeding the expected SIMD effects — most
probably due to the fast rcp instruction. The experimental LLVM vectorizer only manages a
factor of three. Our manual SSE and AVX codes beat the automatic vectorizers by 20 — 30%
— except for Clang/LLVM surprisingly generating 6x faster code from our forceld_avx
implementation.

Discuss how the force calculation of the attached two-dimensional Molecular Dynamics
code can be vectorized. Is a different data layout for the particle positions more suited to
SIMD vectorization? Sketch how the periodic boundaries can be implemented with SIMD
intrinsics, i.e. without branching.

Before, we had stored the particle positions as one vector of 2D positions. This allowed for
a convenient iteration over particles, but now we would like to load several x coordinates in
one SIMD vector alongside a second vector of corresponding y coordinates. Therefore we'd
like to store the x coordinates of all particles in one continuous vector and the y coordinates
in another one.

Our previous code calculated the distance considering periodic boundary conditions like this:

scalar_type r = x-y;
if (r < -extent/2) r += extent;
else if(r > extent/2) r -= extent;

As with the cut-off radius we can get rid of the branches by and'ing the shifts with the
outcome of the comparison:

// scalar_type r = x-V;

__ml128 r = _mm_sub_ps(x,y);

// if (r<-1/2) r += 1;

__m128 mask = _mm_cmplt_ps(r,minr);

__m128 shift = _mm_and_ps(mask,1);

r = _mm_add_ps(r,shift);

// else if(r > 1/2) r -=1;

mask = _mm_cmpgt_ps(r,maxr);
shift = _mm_and_ps(mask,1);
r = _mm_sub_ps(r,shift);

Question 2: BLAS

In this exercise you should familiarize yourself with general matrix multiplications (GEMM)
using a BLAS library. We provide you with a skeleton code where you should replace the matrix
multiplication with a call to GEMM. Finish the skeleton code and install a BLAS library on your
personal system.

a) Report on what version of BLAS you are using, how you can link to it, if it is single-threaded
or multi-threaded, and how can you specify the number of threads in the multi-threaded
version. How much faster is your code with BLAS compared to the trivial implementation
of the matrix multiplication in the skeleton code?

One can find many BLAS libraries on the market, basically every hardware vendor has its own
implementation which is tuned for its own hardware. For example the vendor could optimize
the block size to the available cache, or even use special proprietary instructions to improve
performance.

Here are some common BLAS packages:

OpenBLAS http://www.openblas.net
Usual linking with: c++ -lopenblas -lpthread main.cpp.
Number of threads can be set with the OPENBLAS_NUM_THREADS environment variable.

Intel MKL https://software.intel.com/en-us/intel-mkl

For linking see the online guide
https://software.intel.com/en-us/articles/intel-mkl-1link-line-advisor.
For every installation one has different linking arguments.

Number of threads can be set with the MKL._NUM_THREADS environment variable.

Apple VecLib Available only on Apple devices, it can be included in your program with the
Accelerate framework: c++ -framework Accelerate main.cpp

Number of threads can be set with the VECLIB_MAXIMUM_THREADS environment variable.

ATLAS http://math-atlas.sourceforge.net
Number of threads is fixed at compile time.

b) Same as a) except that the code has to run on EULER.

Summary

Summarize your answers, results and plots into a PDF document. Furthermore, elucidate the
main structure of the code and report possible code details that are relevant in terms of accuracy
or performance. Send the PDF document and source code to your assigned teaching assistant.

