Sparse linear algebra

1-d diffusion equation

2
Recall the one dimensional diffusion equation 381; =Cg f:
X

Discretize space on a regular mesh

x. = iAx ———————+—+—+————+—+

l

Replace the spatial derivative by a finite difference stencil

af(xi) £ Cazf(xi) = Cf(xi+1)+f(xi_1)_ zf(—x,)
ot ox’ (Ax)’

Discretize time and replace the temporal derivative by a finite difference

Of (%) _ f(xt+ A1) — f(x;,0) zCf(xi+1,t)+f(xl-_pl)—2f(xi,t)
ot At (AX)2

We get a forward-Euler integrator

cAt
(Ax)*

F(x t+ At = f(x,,0)+ [F(x ot + F(x o) =2 (x,,0)]

Rewriting as a matrix problem

Interpret the function at time t as a vector f(t) with elements
S (@)= f(x;,1)
Then the integrator can be written as

A
F+An=£(1)+ (Zx; (£ O+ £ (O-2£0)]

Boundary conditions: let us fix them to keep it simple

fie+An) = £,@) [+ A= f, ()
This is just a matrix equation 1 0 0
with a tridiagonal matrix M cAf . 2cht i

S (Ax)’ (A (Axy
(t+At)=)> M. f.(t s z ;

7) Jz_:’ o/ cAt . 2cht chi

2 z (Ax)* (Ax)" (Ax)’

J(t+Ar)= Mf(t) 0 . ;

2-d diffusion equation

O D

Jdf
= ox’ £ dy’

Let’s go to two dimensions et

Discretize space on a regular 2D mesh
7, = (iAx, jAY)
And we get a two-dimensional version of the finite difference equation
cAt

FE A= fF D+ ——| fE)+ LG D)+ fF o)+ fG L)= 4fF LD]

(Ax)*
This uses the second order “stencil” for the two-dimensional Laplacian
+1
(i,j+1)
1 - 1
8 b)t

(l/]'l)
+1

2d diffusion equation as matrix equation

We can again rewrite this as a matrix equation.
On an L x L mesh use the indexing

Jiry (O = f(7 ;1)
We again get a matrix equation, but now with a banded matrix

£a+An=Y M f.(1) (5

ft+An) = Mf()
M =

nonzero entries only for
I-]=0,+1,+L

Differential equations as sparse matrix problems

The mapping is much more general. We can map any iteration
procedure for differential equations to a matrix problem

finite differences, finite elements or other finite basis sets
regular or unstructured grids
arbitrary graphs

Images from Wikipedia

The Poisson equation A¢= f

A widely used partial differential equation

It relates the potential of gravity to the mass distribution

Ap=4rnGp
G =6.673%10"m’kg's™* is the gravitational constant

p 1s the mass density
It relates the electric potential to the charge distribution
Av=_F

E
€ = permitivity of the medium (8.85x 10~ F / m in vacuum)

p 1s the charge density

We can put it on a mesh like the diffusion equation and write it as a matrix equation
2. M, =4nGp,
J

M(_[) = 47rG7)

Iteratively solving the Poisson equation

The Poisson equation can be solved easily by iteration, after realizing that
the central value of the solution is the average of the surrounding values
minus the local density:
1
(Ax)*

= 0G)= <[)+ 0G)+OG) +0G) |- TG ()
4

Start with a random guess (ﬁ(o)

[0,)+,)+)+0() -4) |=4nGp(F)

lterate the fixed point equation """ = M¢" — G(Ax) p

Speed up convergence with successive overrelaxation (SOR)
apply the proposed change multiplied by a factor

—(n+1) —(n)

6" =(1-c)p" +a| M" - xG(axyp |

Ifa<?2

Sparse and dense matrices

A sparse vector of length N has m << N non-zero entries
vector operations can be performed with O(m) instead of O(N) effort

storage requirements are O(m) instead of O(N)
store the indices and values of non-zero entries in two vectors of size m

A sparse matrix of size NxN has m= O(N) or m= O(N log N)
often

storage requirements are O(m) instead of O(N?)
many operations are faster

Sparse matrix examples:
tridiagonal matrix for 1d diffusion equation: 3N-4 nonzero entries
band matrix for 2d diffusion equation: less than 5N non-zero entries

Complexity of matrix operations

Sparse matrix with

Operation Dense matrix O(N) non-zero entries
Matrix additions O(N2) O(N)
Matrix-vector ;
multiplications 2 o
Linear equation solvers O(N3) O(N)
Calculate some eigenvalues O(N?) O(N)

The first two only need to iterate over non-zero elements

Linear equations and eigenvalue problems can be solved by iterative
methods using only matrix-vector multiplications, such as in

~(n+1) —~(n)

0" =(1-0)p +oc[M<7>”” —ncf)}

Iterative linear solvers

Sparse linear equations can be solved by iterative methods that only need
the matrix in the form of matrix-vector products, and hence have linear
scaling for sparse matrices!

SOR for the Poisson equation was a very simple example. but there are
more and better ones

Conjugate Gradient (CQ)

Templates
BiCG for the Solution
of Linear Systems:
GMRES Building Blocks
for Ilterative Methngs
L\

All methods nicely explained including
pseudo-code in the templates book

http://www.netlib.org/linalg/htm| templates/Templates.html

PDF version http://www.netlib.org/templates/templates.pdf

Unstructured grids: PageRank

The page rank matrix, used to rank web pages is a prime example of an
unstructured sparse matrix problem.

It is a diffusion matrix on the graph of all web pages, mimicking a random
surfer. The simplest version is

pick one of the links on a page at random.Jump to a random page from all pages if
there is no link on a page

the matrix row for a given page s contains an entry 1/L(s) in every column
corresponding to one of the L(s) pages that it links to.

since all entries are positive and the row sums are 1, this is a Markov transition
matrix.

The equilibrium distribution gives the page rank. Recall that this is the largest left
eigenvector of the matrix:

p=DW.pop -—pWasp-Wrp

The power method

The power method is the simplest iterative eigensolver. Just multiply the
vector many times with the matrix.

Algorithm from the template book
http://web.eecs.utk.edu/~dongarra/etemplates/

ALGORITHM 4.1: Power Method for HEP

(1) start with vector y = z, the initial guess
(2) for k=1,2,...

(3) v =y/llyll2

(4) y=Av

(9) f=uv"y

(6) if [ly — 0|l < enr6], stop

(7) end for
(8) accept A\ =8 and x = v

Why the power method works

Proof of the power method for Hermitian matrices
decompose the starting vector into a sum of eigenvectors

=2 ¢,
i
where Au, = Au;, and 14, >4, I> ...

after n iterations the vector is
A’”‘y:A”ECi Zc A'u, —ch&nj

now normalize and take the limit

“ /’L” At
An—> chﬂ’ln i 2 lln l Cl /’L}l ul

o IR0 o

g > u
n3y 2 72n 2n 2n
IA"5 I \/Zlcl/l \/Zlclz ,. \/lcllzj}n e, |
I 1

Iterative eigensolvers solvers

Sparse eigenproblems can be solved by iterative methods that only need
the matrix in the form of matrix-vector products, and hence have linear
scaling for sparse matrices if only a few eigenvectors are needed!

Power method was a very simple example but there are more and better
ones

Lanczos .

Arnoldi >3 Templates for the Solution
: 2 of Algebraic Eigenvalue Problems
Jacobi-Davidson ake A Practical Guide

All methods nicely explained including A — 1
pseudo-code in the eigenvalues templates book '+ Y. I j
http://www.cs.ucdavis.edu/~bai/ET/contents.html e > /-t"'t 7
‘ Z‘:aCJL:v’t H'.a'n
James Demmel
Jack Dongarra

Axel Rube
Henk van der Vorst

] B

un SOFTWARE » ENVIRONMENTS » TOOLS

Variants of PageRank

The PageRank matrices actually used are a bit more complicated
The “surfer” gets bored after a while:
with probability d the surfer follows a link
with probability (1-d) the surfer randomly jumps to a new page.

This will raise the weight of not so popular pages

it means that all the zeros get replaces by a small finite probability (1-d)/N
Making all zero entries finite makes the matrix dense:

M = ConstantMatrix((1—-d)/ N)+dW"

A better way is to incorporate it explicitly in the multiplication function:

multiplying a vector by a constant matrix gives a constant vector
p’ = Mp = ConstantMatrix((1-d)/ N)p+dW ' p
= ConstantVector((1-d)/N)+dW' p

we perform a sparse matrix-vector product and add a constant vector

Sparse matrix problems

Many problems in CSE can be mapped to sparse matrix problems

Explicit integrators for time integration of PDEs, such as the diffusion equation

ft+ A= Mf(1)

Implicit time integrators require solving a sparse linear systen of equations
Mf(t+At) = f(t)

Solving PDEs by mapping to sparse linear systems of equations
Mo=4nGp

Sparse eigenproblems, such as the equilibrium state of diffusion or page rank

W'p=Ap

All of these problems boil down to
sparse matrix-vector multiplication, either directly or through iterative solvers

dense vector operations

Sparse matrix storage

Discussion: how would you store a sparse matrix?

Sparse matrix storage

Matrix-free:

just code the matrix-vector multiplication instead of storing the matrix

Packed band matrices with u upper and / lower subdiagonals

store the diagonals only. ¢; stored in packed formatinp, ., ; ;

Dense storage of matrix a Packed storage as a matrix p
an a12 * G412 a3 dz4 Aa45
azn G2 423 ail G2 a3z G44 G55
31 4az2 a3z 434 az G3» G43 G54 *
o K e a3 Q43 Q53 # *

a53 454 455

Sparse storage formats:
store indices and values of non-zero elements
many options exist. What do you prefer?

Compressed storage formats

Dictionary of keys (DOK)
an associative array mapping an index pair (i,j) to a value
stored as a tree or hash map of non-zero values
fast for iteratively building a matrix, slow access later

List of lists (LIL)

stores one list per row, containing column index and value of the non-
zero entries

the “list” can be a linked list, array, or vector, sorted by column index
fast for iteratively building a matrix

Coordinate list (COO)

a list of triples (column, row, value), sorted by column and row
fast for iteratively building a matrix, slow access later

Compressed storage formats (cont.)

Compressed sparse row (CSR)

stores the matrix in three arrays: column indices, values, and row starts

Werd s 22028 4

d

A W N = O
Q)

col_indices

Ok ods 3 2 g = hoihbira 7
1032|131 |4
data
d|b|c|a|h|e|f |g]
row_starts

01113 |46 (8

§ S e L

Compressed sparse column (CSC) is similar but with row indices and

column starts

These are space-saving and efficient once the matrix is constructed. It
make sense to change matrix storage format to CSR or CSC after building
the matrix if another format is used for efficient construction.

Parallelizing sparse matrix operations

Discussion: how would you parallelize a sparse matrix-vector
multiplication?

Parallelizing sparse matrix operations

A CSR matrix class

// an (incomplete) CSR class

template <class ValueType, class SizeType=std::size_t>
class csr_matrix
{

typedef ValueType value_type;

typedef SizeType size_type;

csr_matrix(size_type s = 0)
: n_(s)
, row_starts(s+1)

{}

// we are missing functions to actually fill the matrix

size_type dimension() const { return n_;}

std::vector<value_type> multiply(std::vector<value_type> const& x) const;

private:

size_type n_;
std::vector<size_type> col_indices;
std::vector<size_type> row_starts;
std::vector<value_type> data;

i

Parallelizing sparse matrix operations

Matrix-vector multiplication in CSR representation

template <class ValueType, class SizeType>
std::vector<ValueType>

csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const
{

assert(x.size()== dimension());

std::vector<value_type> y(dimension());

// loop over all rows
#pragma omp parallel for
for (size_type row = 0 ; row < dimension() ; ++ row)
// loop over all non-zero elements of the row
for (size_type i = row_starts[row] ; i != row_starts[row+l] ; ++i)
ylrow] += datali] * x[col_indices[il];

return y;

The loop over all rows can easily be parallelized

There are no race conditions since each iteration writes into a different
variable y [row]

Parallelizing sparse matrix operations

Matrix-vector multiplication in CSC representation

template <class ValueType, class SizeType>
std::vector<ValueType>

csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const

{

assert(x.size()== dimension());
std::vector<value_type> y(dimension());

// loop over all columns

#pragma omp parallel for

for (size_type col = 0 ; col < dimension() ; ++ col) {
// loop over all non-zero elements of the column

for (size_type i = col_starts[col] ; i != col_starts[col+1l] ; ++i)
#pragma omp atomic

ylrow_indices[i]] += datali] * x[coll;
}

return y;

The loop over all columns can also be parallelized

But there are potential race conditions since different iteration may write
into the same variable y[row_indices[i]]

An atomic update is needed and makes the code inefficient!

Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSR

template <class ValueType, class SizeType>
std::vector<ValueType>

csr_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const

{

assert(x.size()== dimension());
std::vector<value_type> y(dimension());

// loop over all rows
#pragma omp parallel for
for (size_type row = 0 ; row < dimension() ; ++ row)
// loop over all non-zero elements of the row
for (size_type i = row_starts[row] ; i != row_starts[row+l] ; ++i)
#pragma omp atomic
yl[col_indices[i]] += datali] * x[row];

return y;

Potential race conditions!

Parallelizing sparse matrix operations

Matrix-vector multiplication with a transposed matrix in CSC

template <class ValueType, class SizeType>
std::vector<ValueType>

csc_matrix<ValueType,SizeType>::multiply(std::vector<value_type> const& x) const

{
assert(x.size()== dimension());
std::vector<value_type> y(dimension());

// loop over all columns
#pragma omp parallel for
for (size_type col = @0 ; col < dimension() ; ++ col)
// loop over all non-zero elements of the column
for (size_type i = col_starts[col] ; i != col_starts[col+1l] ; ++i)
ylcoll += datali] * x[row_indices[i]];

return y;

All is safel

Summary of sparse matrix operations

If possible use a matrix-free method and hard-code the matrix-vector
multiplication. This uses less memory and is faster.

To iteratively build a matrix use DOK, LIL, COO or similar formats unless the
data comes in the right order for CSR or CSC

To use the matrix
prefer CSR format or similar for matrix-vector multiplication

prefer CSC format or similar for matrix-vector multiplication with the transposed
matrix

We might have to copy the matrix into a new format

What do we do if we need to multiply vectors with both the original and
the transposed matrix?

