diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..ad2c176421fcd4f8a51bb51f2c1b1bf60b04fb23
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,3 @@
+data/
+*.ipynb
+
diff --git a/plot/bell_plotting_helpers.py b/plot/bell_plotting_helpers.py
index 1fd34a21ebef2622c29fb04d55f1f2636aef1c2e..504284765f1ef17b238646374a7479a2eaf4285c 100644
--- a/plot/bell_plotting_helpers.py
+++ b/plot/bell_plotting_helpers.py
@@ -1256,7 +1256,7 @@ def errors_sym_vs_asym(p_eg = 0.0,
             errors_5[i][j] = (bell_universal_new(p_ge = p_ge_range[i],
                                                before_measure_flip_probability=p_x_err_range[j],
                                                after_clifford_depolarization= after_clifford_depolarization, 
-                                                after_reset_flip_probability = after_reset_flip_probability,
+                                                after_s17reset_flip_probability = after_reset_flip_probability,
                                                 before_round_data_depolarization=before_round_data_depolarization,
                                                 cycles = cycles, rounds=3, parity=parity, phase=phase, runs = runs,
                                                 ancilla_fb=True, ancilla_fb_adaptive=True, ancilla_multiple=True, break_experiment= break_experiment)/runs)
diff --git a/plot/s17_plotting_helpers.py b/plot/s17_plotting_helpers.py
index f99ae06906357786ed486e05cae8e591f644c09e..d81ba2246a9ab4737b2f648dfe4926e823cd9887 100644
--- a/plot/s17_plotting_helpers.py
+++ b/plot/s17_plotting_helpers.py
@@ -3,7 +3,9 @@ import numpy as np
 import random
 import matplotlib.pyplot as plt
 import scipy
+import pymatching
 
+import json
 
 
 # amplitude decay probability before measurement. 
@@ -11,7 +13,8 @@ import scipy
 def simulate_circuit(circuit_in, 
                      p_amp_ge = 0.01, 
                      ancilla_fb = False, 
-                     after_clifford_depolarization_2 = 0.01): 
+                     after_clifford_depolarization_2 = 0.01, 
+                     active_reset = True): 
     ### Operator string. 
     # qb: 1, 3, 5
     logical_qubits = [1,3,5]  # qubits of logical operator on S17
@@ -97,6 +100,7 @@ def simulate_circuit(circuit_in,
                             if len(x_ancillas_dict[qubit]['msmt_last']) > 3:
                                 x_ancillas_dict[qubit]['msmt_last'].pop(0) 
         
+        # 2-qubit gates different error probabilities. 
         elif instruction.name == 'DEPOLARIZE2' :
             ts = instruction.targets_copy()
             qubits = [q.value for q in ts]
@@ -108,7 +112,6 @@ def simulate_circuit(circuit_in,
         
     return simulator
         
-import pymatching
 
 def count_logical_errors(circuit: stim.Circuit,   num_shots: int,
                          p_amp_ge = 0.01, ancilla_fb = False, after_clifford_depolarization_2 =0.01) -> int:
@@ -144,6 +147,145 @@ def count_logical_errors(circuit: stim.Circuit,   num_shots: int,
     return num_errors
 
 import scipy
+
+
+
+def plot_data_S17_rounds(decoding_rounds = 22,
+                        after_clifford_depolarization=0.001, 
+                        after_clifford_depolarization_2 = 0.01,
+                        after_reset_flip_probability=0.00,
+                        before_round_data_depolarization=0.00,
+                        before_measure_flip_probability = 0.00, 
+                        p_ge=0.01, 
+                        runs=100, 
+                        plot_from_data_dict = False, 
+                        data_dict = None
+):
+            if not plot_from_data_dict: 
+                data_dict = {}
+            
+            # No amplitude damping, no ancilla feedback
+            if not plot_from_data_dict:
+                rounds_array, logical_err_array  = data_S17_rounds(decoding_rounds = decoding_rounds,  
+                    after_clifford_depolarization= after_clifford_depolarization, 
+                    after_clifford_depolarization_2 = after_clifford_depolarization_2,
+                    after_reset_flip_probability = after_reset_flip_probability, 
+                    before_measure_flip_probability = before_measure_flip_probability,  
+                    before_round_data_depolarization=before_round_data_depolarization, 
+                    p_ge = 0, 
+                    runs = runs,
+                    ancilla_fb = False)
+                data_dict['no_amp_no_fb'] = {}
+                data_dict['no_amp_no_fb']['rounds_array'] = list(rounds_array)
+                data_dict['no_amp_no_fb']['logical_err_array'] = logical_err_array
+            else: 
+                rounds_array = data_dict['no_amp_no_fb']['rounds_array']
+                logical_err_array = data_dict['no_amp_no_fb']['logical_err_array']
+                
+            param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t),  rounds_array,  logical_err_array)
+            plt.plot(rounds_array,logical_err_array, label= rf'raw: $p_{{ge}}:${0}', color='r', marker='o')
+            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $ p_{{ge}}:${0} ($T_1$:{ round(1/param[0],1)})',\
+                linestyle = 'dotted', color='r', marker = 'x' )
+            
+            # With amplitude damping, no ancilla feedback
+            if not plot_from_data_dict:
+                rounds_array, logical_err_array  = data_S17_rounds(decoding_rounds = decoding_rounds,  
+                    after_clifford_depolarization= after_clifford_depolarization, 
+                    after_clifford_depolarization_2 = after_clifford_depolarization_2,
+                    after_reset_flip_probability = after_reset_flip_probability, 
+                    before_measure_flip_probability = before_measure_flip_probability,  
+                    before_round_data_depolarization=before_round_data_depolarization, 
+                    p_ge = p_ge, 
+                    runs = runs,
+                    ancilla_fb = False)
+                data_dict['with_amp_no_fb'] = {}
+                data_dict['with_amp_no_fb']['rounds_array'] = list(rounds_array)
+                data_dict['with_amp_no_fb']['logical_err_array'] = logical_err_array
+            else: 
+                rounds_array = data_dict['with_amp_no_fb']['rounds_array']
+                logical_err_array = data_dict['with_amp_no_fb']['logical_err_array']
+        
+            param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t),  rounds_array,  logical_err_array)
+            plt.plot(rounds_array,logical_err_array, label=rf'raw: no fb, $p_{{ge}}:${p_ge}', color='b', marker='o')
+            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: no fb, $p_{{ge}}:${p_ge} ($T_1$:{ round(1/param[0],1)})',\
+                linestyle = 'dotted',color='b',marker = 'x' )
+
+            # With amplitude damping, with ancilla feedback
+            if not plot_from_data_dict:
+                rounds_array, logical_err_array  = data_S17_rounds(decoding_rounds = decoding_rounds,  
+                    after_clifford_depolarization= after_clifford_depolarization, 
+                    after_clifford_depolarization_2 = after_clifford_depolarization_2,
+                    after_reset_flip_probability = after_reset_flip_probability, 
+                    before_measure_flip_probability = before_measure_flip_probability,  
+                    before_round_data_depolarization=before_round_data_depolarization, 
+                    p_ge = p_ge, 
+                    runs = runs,
+                    ancilla_fb = True)
+                data_dict['with_amp_with_fb'] = {}
+                data_dict['with_amp_with_fb']['rounds_array'] = list(rounds_array)
+                data_dict['with_amp_with_fb']['logical_err_array'] = logical_err_array
+            else:
+                rounds_array = data_dict['with_amp_with_fb']['rounds_array']
+                logical_err_array = data_dict['with_amp_with_fb']['logical_err_array']
+            
+            param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t),  rounds_array,  logical_err_array)
+            plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${p_ge}', color='g', marker='.')
+            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${p_ge} ($T_1$:{ round(1/param[0],1)})',\
+                linestyle = 'dotted',color='g',marker = 'x' )
+
+            # Store data: 
+            print('data_dict', data_dict)
+            if not plot_from_data_dict:
+                with open(f'data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.txt', 'w') as f:
+                    json.dump(data_dict, f, indent=4)
+                    print(f'wrote data to file data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.txt')
+
+            plt.legend( loc='upper left', borderaxespad=0)
+            plt.title(rf' S17, logical error probability $E_L$ (for $|0\rangle_L$), $p_{{ge}}$: {p_ge}, $p_{{2qgate}}$: {after_clifford_depolarization_2}')
+            plt.xlabel('rounds')
+            plt.ylabel('logical error probability $E_L$ ')
+            plt.ylim([0,0.6])
+            plt.savefig(f'data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.png')
+            print(f'saved plot to data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.png')
+            plt.show() 
+    
+def data_S17_rounds(decoding_rounds = 3,  
+                  after_clifford_depolarization= 0.001, 
+                  after_clifford_depolarization_2 = 0.01,
+                  after_reset_flip_probability = 0.001, 
+                  before_measure_flip_probability = 0.001,  
+                  before_round_data_depolarization=0.01, 
+                  p_ge = 0.5, 
+                  runs = 1000,
+                  ancilla_fb = False):
+    
+
+    logical_err_array = []
+    
+    rounds_array = range(3, decoding_rounds, 3)
+    for rounds in rounds_array:
+        surface_code_circuit = stim.Circuit.generated(
+            "surface_code:rotated_memory_z",
+            rounds=rounds,
+            distance=3,
+            after_clifford_depolarization= after_clifford_depolarization,
+            after_reset_flip_probability=after_reset_flip_probability,
+            before_measure_flip_probability= before_measure_flip_probability,
+            before_round_data_depolarization=before_round_data_depolarization
+        )
+
+        n_errors = count_logical_errors(surface_code_circuit,  
+                                        runs, 
+                                        p_amp_ge=p_ge, 
+                                        ancilla_fb = ancilla_fb, 
+                                        after_clifford_depolarization_2= after_clifford_depolarization_2)
+        logical_err = n_errors/runs
+        logical_err_array.append(logical_err)
+    return rounds_array, logical_err_array
+
+
+
+'''
 def plot_data_S17(decoding_rounds = 3,  
                   after_clifford_depolarization= 0.01, 
                   after_clifford_depolarization_2 = 0.01,
@@ -192,71 +334,4 @@ def plot_data_S17(decoding_rounds = 3,
         plt.ylabel('p_error')
 
     return p_amp_ge_array, logical_err_array
-
-
-
-
-def plot_data_S17_rounds(decoding_rounds = 3,  
-                  after_clifford_depolarization= 0.001, 
-                  after_clifford_depolarization_2 = 0.01,
-                  after_reset_flip_probability = 0.001, 
-                  before_measure_flip_probability = 0.001,  
-                  before_round_data_depolarization=0.01, 
-                  n_points = 50, max_err = 0.5, runs = 1000, plot = True, 
-                  ancilla_fb = False):
-    
-
-    logical_err_array = []
-    
-    rounds_array = range(3, decoding_rounds, 3)
-    for rounds in rounds_array:
-        surface_code_circuit = stim.Circuit.generated(
-            "surface_code:rotated_memory_z",
-            rounds=rounds,
-            distance=3,
-            after_clifford_depolarization= after_clifford_depolarization,
-            after_reset_flip_probability=after_reset_flip_probability,
-            before_measure_flip_probability= before_measure_flip_probability,
-            before_round_data_depolarization=before_round_data_depolarization
-        )
-
-        n_errors = count_logical_errors(surface_code_circuit,  
-                                        runs, 
-                                        p_amp_ge=max_err, 
-                                        ancilla_fb = ancilla_fb, 
-                                        after_clifford_depolarization_2= after_clifford_depolarization_2)
-        logical_err = n_errors/runs
-        logical_err_array.append(logical_err)
-        
-    if plot:    
-        param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t),  rounds_array,  logical_err_array)
-        print(param)
-        if max_err == 0 and not ancilla_fb:
-            plt.plot(rounds_array,logical_err_array, label= rf'raw: $p_{{ge}}:${max_err}', color='r', marker='o')
-            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $ p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\
-                linestyle = 'dotted', color='r', marker = 'x' )
-
-        elif max_err == 0 and ancilla_fb:
-            plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${max_err}', color='g', marker='o')
-            plt.plot(rounds_array,1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})' ,\
-                linestyle = 'dotted',color='g',marker = 'x' )
-             
-        elif ancilla_fb:
-            plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${max_err}', color='b', marker='o')
-            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\
-                linestyle = 'dotted',color='b',marker = 'x' )
-            
-        else: 
-            plt.plot(rounds_array,logical_err_array, label=rf'raw: $p_{{ge}}:${max_err}', color='k', marker='.')
-            plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\
-                linestyle = 'dotted',color='k',marker = 'x' )
-            
-        plt.legend(  loc='upper left', borderaxespad=0)
-        # plt.title(f' S17 Logical Z-error on  vs. p_eg on ancillas (dec. rnds: {decoding_rounds}, depol gate err: {after_clifford_depolarization}, p_eg: {max_err} \
-        #     ,data_err before rnd: {before_round_data_depolarization}, after_reset_flip_probability; {after_reset_flip_probability},before_measure_flip_probability:\
-        #         {before_measure_flip_probability} runs: {runs})')
-        plt.title(rf' S17, logical error probability $E_L$ (for $|0\rangle_L$), $p_{{ge}}$: {max_err}')
-        plt.xlabel('rounds')
-        plt.ylabel('logical error probability $E_L$ ')
-
-    return rounds_array, logical_err_array
\ No newline at end of file
+'''
\ No newline at end of file