diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..ad2c176421fcd4f8a51bb51f2c1b1bf60b04fb23 --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +data/ +*.ipynb + diff --git a/plot/bell_plotting_helpers.py b/plot/bell_plotting_helpers.py index 1fd34a21ebef2622c29fb04d55f1f2636aef1c2e..504284765f1ef17b238646374a7479a2eaf4285c 100644 --- a/plot/bell_plotting_helpers.py +++ b/plot/bell_plotting_helpers.py @@ -1256,7 +1256,7 @@ def errors_sym_vs_asym(p_eg = 0.0, errors_5[i][j] = (bell_universal_new(p_ge = p_ge_range[i], before_measure_flip_probability=p_x_err_range[j], after_clifford_depolarization= after_clifford_depolarization, - after_reset_flip_probability = after_reset_flip_probability, + after_s17reset_flip_probability = after_reset_flip_probability, before_round_data_depolarization=before_round_data_depolarization, cycles = cycles, rounds=3, parity=parity, phase=phase, runs = runs, ancilla_fb=True, ancilla_fb_adaptive=True, ancilla_multiple=True, break_experiment= break_experiment)/runs) diff --git a/plot/s17_plotting_helpers.py b/plot/s17_plotting_helpers.py index f99ae06906357786ed486e05cae8e591f644c09e..d81ba2246a9ab4737b2f648dfe4926e823cd9887 100644 --- a/plot/s17_plotting_helpers.py +++ b/plot/s17_plotting_helpers.py @@ -3,7 +3,9 @@ import numpy as np import random import matplotlib.pyplot as plt import scipy +import pymatching +import json # amplitude decay probability before measurement. @@ -11,7 +13,8 @@ import scipy def simulate_circuit(circuit_in, p_amp_ge = 0.01, ancilla_fb = False, - after_clifford_depolarization_2 = 0.01): + after_clifford_depolarization_2 = 0.01, + active_reset = True): ### Operator string. # qb: 1, 3, 5 logical_qubits = [1,3,5] # qubits of logical operator on S17 @@ -97,6 +100,7 @@ def simulate_circuit(circuit_in, if len(x_ancillas_dict[qubit]['msmt_last']) > 3: x_ancillas_dict[qubit]['msmt_last'].pop(0) + # 2-qubit gates different error probabilities. elif instruction.name == 'DEPOLARIZE2' : ts = instruction.targets_copy() qubits = [q.value for q in ts] @@ -108,7 +112,6 @@ def simulate_circuit(circuit_in, return simulator -import pymatching def count_logical_errors(circuit: stim.Circuit, num_shots: int, p_amp_ge = 0.01, ancilla_fb = False, after_clifford_depolarization_2 =0.01) -> int: @@ -144,6 +147,145 @@ def count_logical_errors(circuit: stim.Circuit, num_shots: int, return num_errors import scipy + + + +def plot_data_S17_rounds(decoding_rounds = 22, + after_clifford_depolarization=0.001, + after_clifford_depolarization_2 = 0.01, + after_reset_flip_probability=0.00, + before_round_data_depolarization=0.00, + before_measure_flip_probability = 0.00, + p_ge=0.01, + runs=100, + plot_from_data_dict = False, + data_dict = None +): + if not plot_from_data_dict: + data_dict = {} + + # No amplitude damping, no ancilla feedback + if not plot_from_data_dict: + rounds_array, logical_err_array = data_S17_rounds(decoding_rounds = decoding_rounds, + after_clifford_depolarization= after_clifford_depolarization, + after_clifford_depolarization_2 = after_clifford_depolarization_2, + after_reset_flip_probability = after_reset_flip_probability, + before_measure_flip_probability = before_measure_flip_probability, + before_round_data_depolarization=before_round_data_depolarization, + p_ge = 0, + runs = runs, + ancilla_fb = False) + data_dict['no_amp_no_fb'] = {} + data_dict['no_amp_no_fb']['rounds_array'] = list(rounds_array) + data_dict['no_amp_no_fb']['logical_err_array'] = logical_err_array + else: + rounds_array = data_dict['no_amp_no_fb']['rounds_array'] + logical_err_array = data_dict['no_amp_no_fb']['logical_err_array'] + + param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t), rounds_array, logical_err_array) + plt.plot(rounds_array,logical_err_array, label= rf'raw: $p_{{ge}}:${0}', color='r', marker='o') + plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $ p_{{ge}}:${0} ($T_1$:{ round(1/param[0],1)})',\ + linestyle = 'dotted', color='r', marker = 'x' ) + + # With amplitude damping, no ancilla feedback + if not plot_from_data_dict: + rounds_array, logical_err_array = data_S17_rounds(decoding_rounds = decoding_rounds, + after_clifford_depolarization= after_clifford_depolarization, + after_clifford_depolarization_2 = after_clifford_depolarization_2, + after_reset_flip_probability = after_reset_flip_probability, + before_measure_flip_probability = before_measure_flip_probability, + before_round_data_depolarization=before_round_data_depolarization, + p_ge = p_ge, + runs = runs, + ancilla_fb = False) + data_dict['with_amp_no_fb'] = {} + data_dict['with_amp_no_fb']['rounds_array'] = list(rounds_array) + data_dict['with_amp_no_fb']['logical_err_array'] = logical_err_array + else: + rounds_array = data_dict['with_amp_no_fb']['rounds_array'] + logical_err_array = data_dict['with_amp_no_fb']['logical_err_array'] + + param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t), rounds_array, logical_err_array) + plt.plot(rounds_array,logical_err_array, label=rf'raw: no fb, $p_{{ge}}:${p_ge}', color='b', marker='o') + plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: no fb, $p_{{ge}}:${p_ge} ($T_1$:{ round(1/param[0],1)})',\ + linestyle = 'dotted',color='b',marker = 'x' ) + + # With amplitude damping, with ancilla feedback + if not plot_from_data_dict: + rounds_array, logical_err_array = data_S17_rounds(decoding_rounds = decoding_rounds, + after_clifford_depolarization= after_clifford_depolarization, + after_clifford_depolarization_2 = after_clifford_depolarization_2, + after_reset_flip_probability = after_reset_flip_probability, + before_measure_flip_probability = before_measure_flip_probability, + before_round_data_depolarization=before_round_data_depolarization, + p_ge = p_ge, + runs = runs, + ancilla_fb = True) + data_dict['with_amp_with_fb'] = {} + data_dict['with_amp_with_fb']['rounds_array'] = list(rounds_array) + data_dict['with_amp_with_fb']['logical_err_array'] = logical_err_array + else: + rounds_array = data_dict['with_amp_with_fb']['rounds_array'] + logical_err_array = data_dict['with_amp_with_fb']['logical_err_array'] + + param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t), rounds_array, logical_err_array) + plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${p_ge}', color='g', marker='.') + plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${p_ge} ($T_1$:{ round(1/param[0],1)})',\ + linestyle = 'dotted',color='g',marker = 'x' ) + + # Store data: + print('data_dict', data_dict) + if not plot_from_data_dict: + with open(f'data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.txt', 'w') as f: + json.dump(data_dict, f, indent=4) + print(f'wrote data to file data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.txt') + + plt.legend( loc='upper left', borderaxespad=0) + plt.title(rf' S17, logical error probability $E_L$ (for $|0\rangle_L$), $p_{{ge}}$: {p_ge}, $p_{{2qgate}}$: {after_clifford_depolarization_2}') + plt.xlabel('rounds') + plt.ylabel('logical error probability $E_L$ ') + plt.ylim([0,0.6]) + plt.savefig(f'data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.png') + print(f'saved plot to data/S17_rounds{decoding_rounds-1}_peg{p_ge}_polerr{after_clifford_depolarization_2}_rep{runs}.png') + plt.show() + +def data_S17_rounds(decoding_rounds = 3, + after_clifford_depolarization= 0.001, + after_clifford_depolarization_2 = 0.01, + after_reset_flip_probability = 0.001, + before_measure_flip_probability = 0.001, + before_round_data_depolarization=0.01, + p_ge = 0.5, + runs = 1000, + ancilla_fb = False): + + + logical_err_array = [] + + rounds_array = range(3, decoding_rounds, 3) + for rounds in rounds_array: + surface_code_circuit = stim.Circuit.generated( + "surface_code:rotated_memory_z", + rounds=rounds, + distance=3, + after_clifford_depolarization= after_clifford_depolarization, + after_reset_flip_probability=after_reset_flip_probability, + before_measure_flip_probability= before_measure_flip_probability, + before_round_data_depolarization=before_round_data_depolarization + ) + + n_errors = count_logical_errors(surface_code_circuit, + runs, + p_amp_ge=p_ge, + ancilla_fb = ancilla_fb, + after_clifford_depolarization_2= after_clifford_depolarization_2) + logical_err = n_errors/runs + logical_err_array.append(logical_err) + return rounds_array, logical_err_array + + + +''' def plot_data_S17(decoding_rounds = 3, after_clifford_depolarization= 0.01, after_clifford_depolarization_2 = 0.01, @@ -192,71 +334,4 @@ def plot_data_S17(decoding_rounds = 3, plt.ylabel('p_error') return p_amp_ge_array, logical_err_array - - - - -def plot_data_S17_rounds(decoding_rounds = 3, - after_clifford_depolarization= 0.001, - after_clifford_depolarization_2 = 0.01, - after_reset_flip_probability = 0.001, - before_measure_flip_probability = 0.001, - before_round_data_depolarization=0.01, - n_points = 50, max_err = 0.5, runs = 1000, plot = True, - ancilla_fb = False): - - - logical_err_array = [] - - rounds_array = range(3, decoding_rounds, 3) - for rounds in rounds_array: - surface_code_circuit = stim.Circuit.generated( - "surface_code:rotated_memory_z", - rounds=rounds, - distance=3, - after_clifford_depolarization= after_clifford_depolarization, - after_reset_flip_probability=after_reset_flip_probability, - before_measure_flip_probability= before_measure_flip_probability, - before_round_data_depolarization=before_round_data_depolarization - ) - - n_errors = count_logical_errors(surface_code_circuit, - runs, - p_amp_ge=max_err, - ancilla_fb = ancilla_fb, - after_clifford_depolarization_2= after_clifford_depolarization_2) - logical_err = n_errors/runs - logical_err_array.append(logical_err) - - if plot: - param, vars = scipy.optimize.curve_fit(lambda t,b: 1-np.exp(-b*t), rounds_array, logical_err_array) - print(param) - if max_err == 0 and not ancilla_fb: - plt.plot(rounds_array,logical_err_array, label= rf'raw: $p_{{ge}}:${max_err}', color='r', marker='o') - plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $ p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\ - linestyle = 'dotted', color='r', marker = 'x' ) - - elif max_err == 0 and ancilla_fb: - plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${max_err}', color='g', marker='o') - plt.plot(rounds_array,1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})' ,\ - linestyle = 'dotted',color='g',marker = 'x' ) - - elif ancilla_fb: - plt.plot(rounds_array,logical_err_array, label=rf'raw: fb, $p_{{ge}}:${max_err}', color='b', marker='o') - plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: fb, $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\ - linestyle = 'dotted',color='b',marker = 'x' ) - - else: - plt.plot(rounds_array,logical_err_array, label=rf'raw: $p_{{ge}}:${max_err}', color='k', marker='.') - plt.plot(rounds_array, 1-np.exp(-param[0]*rounds_array),label= rf'fit: $p_{{ge}}:${max_err} ($T_1$:{ round(1/param[0],1)})',\ - linestyle = 'dotted',color='k',marker = 'x' ) - - plt.legend( loc='upper left', borderaxespad=0) - # plt.title(f' S17 Logical Z-error on vs. p_eg on ancillas (dec. rnds: {decoding_rounds}, depol gate err: {after_clifford_depolarization}, p_eg: {max_err} \ - # ,data_err before rnd: {before_round_data_depolarization}, after_reset_flip_probability; {after_reset_flip_probability},before_measure_flip_probability:\ - # {before_measure_flip_probability} runs: {runs})') - plt.title(rf' S17, logical error probability $E_L$ (for $|0\rangle_L$), $p_{{ge}}$: {max_err}') - plt.xlabel('rounds') - plt.ylabel('logical error probability $E_L$ ') - - return rounds_array, logical_err_array \ No newline at end of file +''' \ No newline at end of file