diff --git a/Arm Designer/Arm Designer.vcxproj b/Arm Designer/Arm Designer.vcxproj
index d6a3d273f8ad74a2ab2cba3c8d4b3d82e6415859..47e135727a5baa7ea5953761a739201451757493 100644
--- a/Arm Designer/Arm Designer.vcxproj	
+++ b/Arm Designer/Arm Designer.vcxproj	
@@ -42,13 +42,13 @@
   <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
     <ConfigurationType>Application</ConfigurationType>
     <UseDebugLibraries>true</UseDebugLibraries>
-    <PlatformToolset>v143</PlatformToolset>
+    <PlatformToolset>v142</PlatformToolset>
     <CharacterSet>Unicode</CharacterSet>
   </PropertyGroup>
   <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
     <ConfigurationType>Application</ConfigurationType>
     <UseDebugLibraries>false</UseDebugLibraries>
-    <PlatformToolset>v143</PlatformToolset>
+    <PlatformToolset>v142</PlatformToolset>
     <WholeProgramOptimization>true</WholeProgramOptimization>
     <CharacterSet>Unicode</CharacterSet>
   </PropertyGroup>
diff --git a/include/arm_designer.hpp b/include/arm_designer.hpp
index 0531f3d36ede0b140ee683f1c1a32f269fa8e056..504aa2502aacfe7b7e1401e37e5c638b779ebf73 100644
--- a/include/arm_designer.hpp
+++ b/include/arm_designer.hpp
@@ -20,9 +20,9 @@
 #define GL_GPU_MEM_INFO_CURRENT_AVAILABLE_MEM_NVX 0x9049
 /*Paths*/
 /*HOME*/
-//#define RESOURCEPATH "C:\\Users\\engel\\repos\\arm-designer\\resources\\"
+#define RESOURCEPATH "C:\\Users\\engel\\repos\\arm-designer\\resources\\"
 /*ZYGOTE*/
-#define RESOURCEPATH "C:\\Users\\Pascal\\repos\\arm-designer\\resources\\"
+//#define RESOURCEPATH "C:\\Users\\Pascal\\repos\\arm-designer\\resources\\"
 class ArmDesigner {
 public:
 	ArmDesigner();
diff --git a/notebooks/DrumContour.ipynb b/notebooks/DrumContour.ipynb
index 6c371c0666568eb4d5c512e64ed013f5c3c4076c..3a0ce862a865b228972b950863fcc0073e8c2b33 100644
--- a/notebooks/DrumContour.ipynb
+++ b/notebooks/DrumContour.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -15,7 +15,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -24,7 +24,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -35,7 +35,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -51,7 +51,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [
     {
@@ -74,7 +74,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -90,16 +90,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5e76b8850>]"
+       "[<matplotlib.lines.Line2D at 0x173f48ea9d0>]"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -122,16 +122,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5e77c7e20>]"
+       "[<matplotlib.lines.Line2D at 0x173f69f9cd0>]"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -154,7 +154,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -166,7 +166,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 11,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -178,16 +178,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 12,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5e9c49eb0>]"
+       "[<matplotlib.lines.Line2D at 0x173f6e7e250>]"
       ]
      },
-     "execution_count": 11,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -210,7 +210,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 13,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -219,7 +219,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 14,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -245,7 +245,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 15,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -254,7 +254,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 16,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -264,7 +264,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 17,
    "metadata": {
     "scrolled": false
    },
@@ -275,7 +275,7 @@
        "(0.35, 0.55)"
       ]
      },
-     "execution_count": 16,
+     "execution_count": 17,
      "metadata": {},
      "output_type": "execute_result"
     },
@@ -302,7 +302,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 18,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -313,7 +313,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 19,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -327,7 +327,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 20,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -343,7 +343,1125 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_device_pixel_ratio', {\n",
+       "                device_pixel_ratio: fig.ratio,\n",
+       "            });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                img\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * https://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k' + event.key;\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(data);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"360\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Max radius: 0.5007285610021447 at (0.17676177423050082,0.4684915868766098)\n",
+      "Min radius: 0.44909155658275357 at (0.036978412466203786,0.44756655729109146)\n",
+      "Min x: 0.022997204287084974 at (0.022997204287084974,0.45356369579002237)\n",
+      "Max x: 0.21096808365683925 at (0.21096808365683925,0.44975275029332273)\n",
+      "Min y: 0.44429312197716647 at (0.19643992016352538,0.44429312197716647)\n",
+      "Max y: 0.47231123826247445 at (0.15705086472735147,0.47231123826247445)\n",
+      "Max Delta x: 0.18797087936975426\n",
+      "Max Delta y: 0.02801811628530798\n",
+      "Points in old: 81\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x173f6f9b160>]"
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "circx = 0.55 * np.sin(np.linspace(0,2. * np.pi, 100))\n",
+    "circy = 0.55 * np.cos(np.linspace(0,2. * np.pi, 100))\n",
+    "\n",
+    "%matplotlib notebook\n",
+    "plt.figure(figsize=(5,5))\n",
+    "#plt.plot(np.array(filteredSorted)[:,0], np.array(filteredSorted)[:,1], 'r')\n",
+    "plt.plot(filterX,filterY,'b')\n",
+    "plt.plot(circx, circy)\n",
+    "plt.xlim([0.0125,0.2125])\n",
+    "plt.ylim([0.35,0.55])\n",
+    "rads = np.sqrt(filterX*filterX + filterY*filterY)\n",
+    "print(f\"Max radius: {np.max(rads)} at ({filterX[np.argmax(rads)]},{filterY[np.argmax(rads)]})\")\n",
+    "print(f\"Min radius: {np.min(rads)} at ({filterX[np.argmin(rads)]},{filterY[np.argmin(rads)]})\")\n",
+    "print(f\"Min x: {np.min(filterX)} at ({filterX[np.argmin(filterX)]},{filterY[np.argmin(filterX)]})\")\n",
+    "print(f\"Max x: {np.max(filterX)} at ({filterX[np.argmax(filterX)]},{filterY[np.argmax(filterX)]})\")\n",
+    "print(f\"Min y: {np.min(filterY)} at ({filterX[np.argmin(filterY)]},{filterY[np.argmin(filterY)]})\")\n",
+    "print(f\"Max y: {np.max(filterY)} at ({filterX[np.argmax(filterY)]},{filterY[np.argmax(filterY)]})\")\n",
+    "print(f\"Max Delta x: {np.max(filterX) - np.min(filterX)}\")\n",
+    "print(f\"Max Delta y: {np.max(filterY) - np.min(filterY)}\")\n",
+    "\n",
+    "print(f\"Points in old: {len(filterX)}\")\n",
+    "\n",
+    "a = (np.max(filterX) - np.min(filterX))/2.\n",
+    "b = (np.max(filterY) - np.min(filterY))/2.\n",
+    "cx = np.mean(filterX)\n",
+    "cy = np.mean(filterY)\n",
+    "ellx = cx + a * np.cos(np.linspace(0,2.*np.pi,100))\n",
+    "elly = cy + b * np.sin(np.linspace(0,2.*np.pi,100))\n",
+    "plt.plot(ellx,elly)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "np.savetxt('boundary.txt',np.transpose(np.array([filterX,filterY])))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Silicon Sample Design"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def rot(point_in, deg):\n",
+    "    point_out = [point_in[0], point_in[1]]\n",
+    "    rad = deg*np.pi/180.\n",
+    "    point_out[0] = point_in[0] * np.cos(rad) - point_in[1] * np.sin(rad)\n",
+    "    point_out[1] = point_in[0] * np.sin(rad) + point_in[1] * np.cos(rad)\n",
+    "    return point_out"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "filterXcomplete = []\n",
+    "filterYcomplete = []\n",
+    "for i in range(len(filterX)):\n",
+    "    filterXcomplete.append(filterX[i])\n",
+    "    filterYcomplete.append(filterY[i])\n",
+    "#angle = -3.*360./36.\n",
+    "angle = -360./7.3\n",
+    "for i in range(len(filterX)):\n",
+    "    p = rot([filterX[i],filterY[i]], angle)\n",
+    "    filterXcomplete.append(p[0])\n",
+    "    filterYcomplete.append(p[1])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Max arg: 63\n",
+      "Min arg: 18\n",
+      "Max distance from origin: [0.17676177423050082, 0.4684915868766098]\n",
+      "Min distance from origin: [0.036978412466203786, 0.44756655729109146]\n",
+      "18\n"
+     ]
+    }
+   ],
+   "source": [
+    "max_rad_arg = np.argmax(filterX**2+filterY**2)\n",
+    "min_rad_arg = np.argmin(filterX**2+filterY**2)\n",
+    "print(f\"Max arg: {max_rad_arg}\")\n",
+    "print(f\"Min arg: {min_rad_arg}\")\n",
+    "print(f\"Max distance from origin: [{filterX[max_rad_arg]}, {filterY[max_rad_arg]}]\")\n",
+    "print(f\"Min distance from origin: [{filterX[min_rad_arg]}, {filterY[min_rad_arg]}]\")\n",
+    "p_max = [filterX[max_rad_arg], filterY[max_rad_arg]]\n",
+    "p_min = [filterX[min_rad_arg], filterY[min_rad_arg]]\n",
+    "print(min_rad_arg)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
    "metadata": {},
    "outputs": [
     {
@@ -1314,7 +2432,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"360\">"
+       "<img src=\"\" width=\"576\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -1323,145 +2441,91 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Max radius: 0.5007285610021447 at (0.17676177423050082,0.4684915868766098)\n",
-      "Min radius: 0.44909155658275357 at (0.036978412466203786,0.44756655729109146)\n",
-      "Min x: 0.022997204287084974 at (0.022997204287084974,0.45356369579002237)\n",
-      "Max x: 0.21096808365683925 at (0.21096808365683925,0.44975275029332273)\n",
-      "Min y: 0.44429312197716647 at (0.19643992016352538,0.44429312197716647)\n",
-      "Max y: 0.47231123826247445 at (0.15705086472735147,0.47231123826247445)\n",
-      "Max Delta x: 0.18797087936975426\n",
-      "Max Delta y: 0.02801811628530798\n",
-      "Points in old: 81\n"
-     ]
-    },
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5e9d6fe20>]"
+       "(-0.5, 0.5)"
       ]
      },
-     "execution_count": 20,
+     "execution_count": 25,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "circx = 0.55 * np.sin(np.linspace(0,2. * np.pi, 100))\n",
-    "circy = 0.55 * np.cos(np.linspace(0,2. * np.pi, 100))\n",
-    "\n",
-    "%matplotlib notebook\n",
-    "plt.figure(figsize=(5,5))\n",
-    "#plt.plot(np.array(filteredSorted)[:,0], np.array(filteredSorted)[:,1], 'r')\n",
-    "plt.plot(filterX,filterY,'b')\n",
-    "plt.plot(circx, circy)\n",
-    "plt.xlim([0.0125,0.2125])\n",
-    "plt.ylim([0.35,0.55])\n",
-    "rads = np.sqrt(filterX*filterX + filterY*filterY)\n",
-    "print(f\"Max radius: {np.max(rads)} at ({filterX[np.argmax(rads)]},{filterY[np.argmax(rads)]})\")\n",
-    "print(f\"Min radius: {np.min(rads)} at ({filterX[np.argmin(rads)]},{filterY[np.argmin(rads)]})\")\n",
-    "print(f\"Min x: {np.min(filterX)} at ({filterX[np.argmin(filterX)]},{filterY[np.argmin(filterX)]})\")\n",
-    "print(f\"Max x: {np.max(filterX)} at ({filterX[np.argmax(filterX)]},{filterY[np.argmax(filterX)]})\")\n",
-    "print(f\"Min y: {np.min(filterY)} at ({filterX[np.argmin(filterY)]},{filterY[np.argmin(filterY)]})\")\n",
-    "print(f\"Max y: {np.max(filterY)} at ({filterX[np.argmax(filterY)]},{filterY[np.argmax(filterY)]})\")\n",
-    "print(f\"Max Delta x: {np.max(filterX) - np.min(filterX)}\")\n",
-    "print(f\"Max Delta y: {np.max(filterY) - np.min(filterY)}\")\n",
-    "\n",
-    "print(f\"Points in old: {len(filterX)}\")\n",
-    "\n",
-    "a = (np.max(filterX) - np.min(filterX))/2.\n",
-    "b = (np.max(filterY) - np.min(filterY))/2.\n",
-    "cx = np.mean(filterX)\n",
-    "cy = np.mean(filterY)\n",
-    "ellx = cx + a * np.cos(np.linspace(0,2.*np.pi,100))\n",
-    "elly = cy + b * np.sin(np.linspace(0,2.*np.pi,100))\n",
-    "plt.plot(ellx,elly)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 21,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "np.savetxt('boundary.txt',np.transpose(np.array([filterX,filterY])))"
+    "plt.figure(figsize=(8,8))\n",
+    "plt.plot(filterXcomplete,filterYcomplete,'b')\n",
+    "plt.plot([p_max[0]], [p_max[1]], '*', c='r')\n",
+    "plt.plot([p_min[0]], [p_min[1]], '*', c='r')\n",
+    "plt.plot([filterXcomplete[40]], [filterYcomplete[40]], '*', c='g')\n",
+    "plt.xlim([-0.5,0.5])\n",
+    "plt.ylim([-0.5,0.5])"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Silicon Sample Design"
+    "## Strategy:\n",
+    "\n",
+    "For the unrotated hole, keep all points with indices in [0,min] or [max, len].\n",
+    "\n",
+    "For the rotated hole, keep all points with indices in [min, max]."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 26,
    "metadata": {},
    "outputs": [],
    "source": [
-    "def rot(point_in, deg):\n",
-    "    point_out = [point_in[0], point_in[1]]\n",
-    "    rad = deg*np.pi/180.\n",
-    "    point_out[0] = point_in[0] * np.cos(rad) - point_in[1] * np.sin(rad)\n",
-    "    point_out[1] = point_in[0] * np.sin(rad) + point_in[1] * np.cos(rad)\n",
-    "    return point_out"
+    "#assemble arcs\n",
+    "Rinner = np.sqrt(p_min[0]**2 + p_min[1]**2)\n",
+    "Router = np.sqrt(p_max[0]**2 + p_max[1]**2)\n",
+    "arcInnerX = []\n",
+    "arcInnerY = []\n",
+    "arcOuterX = []\n",
+    "arcOuterY = []\n",
+    "\n",
+    "arcSegments = 50.\n",
+    "for n in range(int(arcSegments)):\n",
+    "    pinner = rot(p_min, n*angle/arcSegments)\n",
+    "    arcInnerX.append(pinner[0])\n",
+    "    arcInnerY.append(pinner[1])\n",
+    "    pouter = rot(rot(p_max, angle), -n*angle/arcSegments)\n",
+    "    arcOuterX.append(pouter[0])\n",
+    "    arcOuterY.append(pouter[1])"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 27,
    "metadata": {},
    "outputs": [],
    "source": [
-    "filterXcomplete = []\n",
-    "filterYcomplete = []\n",
-    "for i in range(len(filterX)):\n",
-    "    filterXcomplete.append(filterX[i])\n",
-    "    filterYcomplete.append(filterY[i])\n",
-    "#angle = -3.*360./36.\n",
-    "angle = -360./7.3\n",
-    "for i in range(len(filterX)):\n",
-    "    p = rot([filterX[i],filterY[i]], angle)\n",
-    "    filterXcomplete.append(p[0])\n",
-    "    filterYcomplete.append(p[1])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 24,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Max arg: 63\n",
-      "Min arg: 18\n",
-      "Max distance from origin: [0.17676177423050082, 0.4684915868766098]\n",
-      "Min distance from origin: [0.036978412466203786, 0.44756655729109146]\n",
-      "18\n"
-     ]
-    }
-   ],
-   "source": [
-    "max_rad_arg = np.argmax(filterX**2+filterY**2)\n",
-    "min_rad_arg = np.argmin(filterX**2+filterY**2)\n",
-    "print(f\"Max arg: {max_rad_arg}\")\n",
-    "print(f\"Min arg: {min_rad_arg}\")\n",
-    "print(f\"Max distance from origin: [{filterX[max_rad_arg]}, {filterY[max_rad_arg]}]\")\n",
-    "print(f\"Min distance from origin: [{filterX[min_rad_arg]}, {filterY[min_rad_arg]}]\")\n",
-    "p_max = [filterX[max_rad_arg], filterY[max_rad_arg]]\n",
-    "p_min = [filterX[min_rad_arg], filterY[min_rad_arg]]\n",
-    "print(min_rad_arg)"
+    "#assemble final hole\n",
+    "finalHoleX = []\n",
+    "finalHoleY = []\n",
+    "for i in range(min_rad_arg):\n",
+    "    finalHoleX.append(filterXcomplete[i])\n",
+    "    finalHoleY.append(filterYcomplete[i])\n",
+    "for i in range(len(arcInnerX)):\n",
+    "    finalHoleX.append(arcInnerX[i])\n",
+    "    finalHoleY.append(arcInnerY[i])\n",
+    "for i in range(min_rad_arg+1+len(filterX), max_rad_arg+len(filterX)):\n",
+    "    finalHoleX.append(filterXcomplete[i])\n",
+    "    finalHoleY.append(filterYcomplete[i])\n",
+    "for i in range(len(arcOuterX)):\n",
+    "    finalHoleX.append(arcOuterX[i])\n",
+    "    finalHoleY.append(arcOuterY[i])\n",
+    "for i in range(max_rad_arg+1, len(filterX)):\n",
+    "    finalHoleX.append(filterXcomplete[i])\n",
+    "    finalHoleY.append(filterYcomplete[i])\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 28,
    "metadata": {},
    "outputs": [
     {
@@ -2447,85 +3511,103 @@
        "(-0.5, 0.5)"
       ]
      },
-     "execution_count": 25,
+     "execution_count": 28,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "plt.figure(figsize=(8,8))\n",
-    "plt.plot(filterXcomplete,filterYcomplete,'b')\n",
-    "plt.plot([p_max[0]], [p_max[1]], '*', c='r')\n",
-    "plt.plot([p_min[0]], [p_min[1]], '*', c='r')\n",
-    "plt.plot([filterXcomplete[40]], [filterYcomplete[40]], '*', c='g')\n",
+    "plt.plot(finalHoleX,finalHoleY,'b')\n",
     "plt.xlim([-0.5,0.5])\n",
     "plt.ylim([-0.5,0.5])"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "np.savetxt('boundary_si_6arms.txt',np.transpose(np.array([finalHoleX,finalHoleY])))"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Strategy:\n",
-    "\n",
-    "For the unrotated hole, keep all points with indices in [0,min] or [max, len].\n",
-    "\n",
-    "For the rotated hole, keep all points with indices in [min, max]."
+    "# Final Structure"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 30,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0, 60.0, 120.0, 180.0, 240.0, 300.0]\n"
+     ]
+    }
+   ],
    "source": [
-    "#assemble arcs\n",
-    "Rinner = np.sqrt(p_min[0]**2 + p_min[1]**2)\n",
-    "Router = np.sqrt(p_max[0]**2 + p_max[1]**2)\n",
-    "arcInnerX = []\n",
-    "arcInnerY = []\n",
-    "arcOuterX = []\n",
-    "arcOuterY = []\n",
-    "\n",
-    "arcSegments = 50.\n",
-    "for n in range(int(arcSegments)):\n",
-    "    pinner = rot(p_min, n*angle/arcSegments)\n",
-    "    arcInnerX.append(pinner[0])\n",
-    "    arcInnerY.append(pinner[1])\n",
-    "    pouter = rot(rot(p_max, angle), -n*angle/arcSegments)\n",
-    "    arcOuterX.append(pouter[0])\n",
-    "    arcOuterY.append(pouter[1])"
+    "holes = []\n",
+    "angle_increment = 360/6\n",
+    "hole_angles = [0]\n",
+    "while(hole_angles[-1]+angle_increment < 360.):\n",
+    "    hole_angles.append(hole_angles[-1]+angle_increment)\n",
+    "print(hole_angles)\n",
+    "for a in hole_angles:\n",
+    "    newX = []\n",
+    "    newY = []\n",
+    "    for i in range(len(finalHoleX)):\n",
+    "        p = rot([finalHoleX[i], finalHoleY[i]], a)\n",
+    "        newX.append(p[0])\n",
+    "        newY.append(p[1])\n",
+    "    holes.append([newX,newY])"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 31,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Tightest spots of arms: 6.0124378098987625um\n",
+      "pmin: -0.3544019214225213, 0.31800081067889774\n",
+      "qmin: -0.35942287352644114, 0.32130829437319514\n"
+     ]
+    }
+   ],
    "source": [
-    "#assemble final hole\n",
-    "finalHoleX = []\n",
-    "finalHoleY = []\n",
-    "for i in range(min_rad_arg):\n",
-    "    finalHoleX.append(filterXcomplete[i])\n",
-    "    finalHoleY.append(filterYcomplete[i])\n",
-    "for i in range(len(arcInnerX)):\n",
-    "    finalHoleX.append(arcInnerX[i])\n",
-    "    finalHoleY.append(arcInnerY[i])\n",
-    "for i in range(min_rad_arg+1+len(filterX), max_rad_arg+len(filterX)):\n",
-    "    finalHoleX.append(filterXcomplete[i])\n",
-    "    finalHoleY.append(filterYcomplete[i])\n",
-    "for i in range(len(arcOuterX)):\n",
-    "    finalHoleX.append(arcOuterX[i])\n",
-    "    finalHoleY.append(arcOuterY[i])\n",
-    "for i in range(max_rad_arg+1, len(filterX)):\n",
-    "    finalHoleX.append(filterXcomplete[i])\n",
-    "    finalHoleY.append(filterYcomplete[i])\n"
+    "#find tightest spot in arms\n",
+    "mindist = 1000.\n",
+    "pmin = [0.,0.]\n",
+    "qmin = [0.,0.]\n",
+    "for hi in range(-1,len(holes)-1):\n",
+    "    for i in range(len(holes[hi][0])):\n",
+    "        p = [holes[hi][0][i], holes[hi][1][i]]\n",
+    "        for j in range(len(holes[hi+1][0])):\n",
+    "            q = [holes[hi+1][0][j], holes[hi+1][1][j]]\n",
+    "            dist = np.sqrt((p[0]-q[0])**2 + (p[1]-q[1])**2)\n",
+    "            if(dist <= mindist):\n",
+    "                mindist = dist\n",
+    "                pmin = [p[0], p[1]]\n",
+    "                qmin = [q[0], q[1]]\n",
+    "print(f\"Tightest spots of arms: {mindist*1000.}um\")\n",
+    "print(f\"pmin: {pmin[0]}, {pmin[1]}\")\n",
+    "print(f\"qmin: {qmin[0]}, {qmin[1]}\")\n",
+    "\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 32,
    "metadata": {},
    "outputs": [
     {
@@ -3496,7 +4578,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"576\">"
+       "<img src=\"\" width=\"720\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -3508,106 +4590,118 @@
     {
      "data": {
       "text/plain": [
-       "(-0.5, 0.5)"
+       "[<matplotlib.lines.Line2D at 0x1b5ea279610>]"
       ]
      },
-     "execution_count": 28,
+     "execution_count": 32,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.figure(figsize=(8,8))\n",
-    "plt.plot(finalHoleX,finalHoleY,'b')\n",
-    "plt.xlim([-0.5,0.5])\n",
-    "plt.ylim([-0.5,0.5])"
+    "%matplotlib notebook\n",
+    "plt.figure(figsize=(10,10))\n",
+    "for h in holes:\n",
+    "    plt.plot(h[0], h[1], 'b')\n",
+    "plt.plot([pmin[0]],pmin[1],'*',c='r')\n",
+    "plt.plot([qmin[0]],qmin[1],'*',c='r')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Generate SpaceClaim File"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 57,
    "metadata": {},
    "outputs": [],
    "source": [
-    "np.savetxt('boundary_si_6arms.txt',np.transpose(np.array([finalHoleX,finalHoleY])))"
+    "def SC_curves(holes, filename):\n",
+    "    printstring = '3d = true\\npolyline = true\\nfit = false\\nfittol = 0.0001\\n\\n'\n",
+    "    for hi, h in enumerate(holes):\n",
+    "        for i in range(len(h[0])):\n",
+    "            printstring += f'{h[0][i]} {h[1][i]} 0\\n'\n",
+    "        printstring += '\\n'\n",
+    "    with open(filename, 'w') as file:\n",
+    "        file.write(printstring)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "SC_curves(holes, 'polylines_0.txt')"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Final Structure"
+    "# Generate Current Silicon Nitride Design for SpaceClaim"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 35,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "[0, 60.0, 120.0, 180.0, 240.0, 300.0]\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
+    "num_holes = 36\n",
     "holes = []\n",
-    "angle_increment = 360/6\n",
-    "hole_angles = [0]\n",
-    "while(hole_angles[-1]+angle_increment < 360.):\n",
-    "    hole_angles.append(hole_angles[-1]+angle_increment)\n",
-    "print(hole_angles)\n",
-    "for a in hole_angles:\n",
-    "    newX = []\n",
-    "    newY = []\n",
-    "    for i in range(len(finalHoleX)):\n",
-    "        p = rot([finalHoleX[i], finalHoleY[i]], a)\n",
-    "        newX.append(p[0])\n",
-    "        newY.append(p[1])\n",
-    "    holes.append([newX,newY])"
+    "angle = 0.\n",
+    "dangle = 360. / num_holes\n",
+    "while angle < 359.99:\n",
+    "    newXs = []\n",
+    "    newYs = []\n",
+    "    for i in range(len(filterX)):\n",
+    "        p = rot([filterX[i], filterY[i]], angle)\n",
+    "        newXs.append(p[0])\n",
+    "        newYs.append(p[1])\n",
+    "    holes.append([newXs, newYs])\n",
+    "    angle += dangle"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 36,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Tightest spots of arms: 6.0124378098987625um\n",
-      "pmin: -0.3544019214225213, 0.31800081067889774\n",
-      "qmin: -0.35942287352644114, 0.32130829437319514\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
-    "#find tightest spot in arms\n",
-    "mindist = 1000.\n",
-    "pmin = [0.,0.]\n",
-    "qmin = [0.,0.]\n",
-    "for hi in range(-1,len(holes)-1):\n",
-    "    for i in range(len(holes[hi][0])):\n",
-    "        p = [holes[hi][0][i], holes[hi][1][i]]\n",
-    "        for j in range(len(holes[hi+1][0])):\n",
-    "            q = [holes[hi+1][0][j], holes[hi+1][1][j]]\n",
-    "            dist = np.sqrt((p[0]-q[0])**2 + (p[1]-q[1])**2)\n",
-    "            if(dist <= mindist):\n",
-    "                mindist = dist\n",
-    "                pmin = [p[0], p[1]]\n",
-    "                qmin = [q[0], q[1]]\n",
-    "print(f\"Tightest spots of arms: {mindist*1000.}um\")\n",
-    "print(f\"pmin: {pmin[0]}, {pmin[1]}\")\n",
-    "print(f\"qmin: {qmin[0]}, {qmin[1]}\")\n",
-    "\n"
+    "SC_curves(holes, 'polylines_1.txt')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plot the holes"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 37,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pxs = []\n",
+    "pys = []\n",
+    "for h in holes:\n",
+    "    pxs.append([])\n",
+    "    pys.append([])\n",
+    "    for i in range(len(h[0])):\n",
+    "        pxs[-1].append(h[0][i])\n",
+    "        pys[-1].append(h[1][i])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
    "metadata": {},
    "outputs": [
     {
@@ -4578,7 +5672,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"720\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -4586,122 +5680,249 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ea279610>]"
-      ]
-     },
-     "execution_count": 32,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
     "%matplotlib notebook\n",
-    "plt.figure(figsize=(10,10))\n",
-    "for h in holes:\n",
-    "    plt.plot(h[0], h[1], 'b')\n",
-    "plt.plot([pmin[0]],pmin[1],'*',c='r')\n",
-    "plt.plot([qmin[0]],qmin[1],'*',c='r')"
+    "#for i in range(len(pxs)):\n",
+    "#    plt.plot(pxs[i],pys[i])\n",
+    "plt.plot(pxs[0],pys[0])\n",
+    "plt.show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Generate SpaceClaim File"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 33,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def SC_curves(holes, filename):\n",
-    "    printstring = '3d = true\\npolyline = true\\nfit = false\\nfittol = 0.0001\\n\\n'\n",
-    "    for hi, h in enumerate(holes):\n",
-    "        for i in range(len(h[0])):\n",
-    "            printstring += f'{h[0][i]} {h[1][i]} 0\\n'\n",
-    "        printstring += '\\n'\n",
-    "    with open(filename, 'w') as file:\n",
-    "        file.write(printstring)"
+    "### Check the dimensions"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
+   "execution_count": 39,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Combo 0,1: Arm Width 4.7227758290841555 um\n",
+      "Combo 1,2: Arm Width 4.722775829084213 um\n",
+      "Combo 2,3: Arm Width 4.7227758290841395 um\n",
+      "Combo 3,4: Arm Width 4.722775829084109 um\n",
+      "Combo 4,5: Arm Width 4.72277582908416 um\n",
+      "Combo 5,6: Arm Width 4.722775829084169 um\n",
+      "Combo 6,7: Arm Width 4.722775829084106 um\n",
+      "Combo 7,8: Arm Width 4.722775829084162 um\n",
+      "Combo 8,9: Arm Width 4.7227758290841635 um\n",
+      "Combo 9,10: Arm Width 4.722775829084099 um\n",
+      "Combo 10,11: Arm Width 4.722775829084212 um\n",
+      "Combo 11,12: Arm Width 4.72277582908413 um\n",
+      "Combo 12,13: Arm Width 4.722775829084148 um\n",
+      "Combo 13,14: Arm Width 4.722775829084185 um\n",
+      "Combo 14,15: Arm Width 4.722775829084179 um\n",
+      "Combo 15,16: Arm Width 4.722775829084103 um\n",
+      "Combo 16,17: Arm Width 4.722775829084116 um\n",
+      "Combo 17,18: Arm Width 4.722775829084196 um\n",
+      "Combo 18,19: Arm Width 4.72277582908413 um\n",
+      "Combo 19,20: Arm Width 4.7227758290841635 um\n",
+      "Combo 20,21: Arm Width 4.722775829084152 um\n",
+      "Combo 21,22: Arm Width 4.722775829084139 um\n",
+      "Combo 22,23: Arm Width 4.72277582908421 um\n",
+      "Combo 23,24: Arm Width 4.72277582908418 um\n",
+      "Combo 24,25: Arm Width 4.722775829084141 um\n",
+      "Combo 25,26: Arm Width 4.722775829084071 um\n",
+      "Combo 26,27: Arm Width 4.722775829084156 um\n",
+      "Combo 27,28: Arm Width 4.722775829084128 um\n",
+      "Combo 28,29: Arm Width 4.722775829084108 um\n",
+      "Combo 29,30: Arm Width 4.722775829084183 um\n",
+      "Combo 30,31: Arm Width 4.722775829084184 um\n",
+      "Combo 31,32: Arm Width 4.722775829084098 um\n",
+      "Combo 32,33: Arm Width 4.722775829084091 um\n",
+      "Combo 33,34: Arm Width 4.722775829084154 um\n",
+      "Combo 34,35: Arm Width 4.722775829084145 um\n",
+      "Combo 35,0: Arm Width 4.722775829084151 um\n"
+     ]
+    }
+   ],
    "source": [
-    "SC_curves(holes, 'polylines_0.txt')"
+    "#find minimum arm size\n",
+    "for i in range(len(holes)):\n",
+    "    mindist = 10000.\n",
+    "    h0 = holes[i]\n",
+    "    h1 = holes[(i+1)%(len(holes))]\n",
+    "    x0s = h0[0]\n",
+    "    y0s = h0[1]\n",
+    "    x1s = h1[0]\n",
+    "    y1s = h1[1]\n",
+    "    for j in range(len(x0s)):\n",
+    "        for k in range(len(x1s)):\n",
+    "            p0 = [x0s[j], y0s[j]]\n",
+    "            p1 = [x1s[k], y1s[k]]\n",
+    "            dist = np.sqrt((p0[0]-p1[0])**2 + (p0[1]-p1[1])**2)\n",
+    "            if dist < mindist:\n",
+    "                mindist = dist\n",
+    "    print(f\"Combo {i},{(i+1)%len(holes)}: Arm Width {mindist*1000.} um\")"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Generate Current Silicon Nitride Design for SpaceClaim"
+    "# Smoothen Corners"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 40,
    "metadata": {},
    "outputs": [],
    "source": [
-    "num_holes = 36\n",
-    "holes = []\n",
-    "angle = 0.\n",
-    "dangle = 360. / num_holes\n",
-    "while angle < 359.99:\n",
-    "    newXs = []\n",
-    "    newYs = []\n",
-    "    for i in range(len(filterX)):\n",
-    "        p = rot([filterX[i], filterY[i]], angle)\n",
-    "        newXs.append(p[0])\n",
-    "        newYs.append(p[1])\n",
-    "    holes.append([newXs, newYs])\n",
-    "    angle += dangle"
+    "def intersect_straights(p, r, q, r_pr):\n",
+    "    if(math.isclose(r[0], 0.) and math.isclose(r[1], 0.)):\n",
+    "        print(\"INTERSECT_ERROR: Straight 0 has degenerate direction vector.\")\n",
+    "        return None\n",
+    "    if(math.isclose(r_pr[0], 0.) and math.isclose(r_pr[1], 0.)):\n",
+    "        print(\"INTERSECT_ERROR: Straight 1 has degenerate direction vector.\")\n",
+    "        return None\n",
+    "    if math.isclose(r[0] / r[1], r_pr[0] / r_pr[1]):\n",
+    "        print(\"INTERSECT_ERROR: Straights are parallel.\")\n",
+    "        return None\n",
+    "    if math.isclose(r[1], 0.):\n",
+    "        print(\"INTERSECT_ERROR: Method needs extension, ry=0 encountered.\")\n",
+    "        return None\n",
+    "    #calculate intersection parameters\n",
+    "    s = (p[0] - q[0] + r[0] / r[1] * (q[1] - p[1])) / (r_pr[0] - r[0] * r_pr[1] / r[1])\n",
+    "    t = (q[1] - p[1] + s * r_pr[1]) / r[1]\n",
+    "    #calculate the arising intersection points\n",
+    "    int_s = [q[0] + s * r_pr[0], q[1] + s * r_pr[1]]\n",
+    "    int_t = [p[0] + t * r[0], p[1] + t * r[1]]\n",
+    "    if not ( math.isclose(int_s[0], int_t[0]) ) and ( math.isclose(int_s[1], int_t[1]) ):\n",
+    "            print(f\"INTERSECT_ERROR: Calculated intersections do not agree in x (delta {int_t[0] - int_s[0]:.6f}): {int_t[0]:.6f} vs {int_s[0]:.6f}\")\n",
+    "            return None\n",
+    "    elif not ( math.isclose(int_s[1], int_t[1]) ) and ( math.isclose(int_s[0], int_t[0]) ):\n",
+    "            print(f\"INTERSECT_ERROR: Calculated intersections do not agree in y (delta {int_t[1] - int_s[1]:.6f}): {int_t[1]:.6f} vs {int_s[1]:.6f}\")\n",
+    "            return None\n",
+    "    elif not ( math.isclose(int_s[0], int_t[0]) and math.isclose(int_s[1], int_t[1]) ):\n",
+    "        print(f\"INTERSECT_ERROR: Calculated intersections do not agree (int_t = [{int_t[0]:.6f}, {int_t[1]:.6f}], int_s = [{int_s[0]:.6f}, {int_s[1]:.6f}])\")\n",
+    "        return None\n",
+    "    return int_s\n",
+    "\n",
+    "def intersect_segments(seg0_p0, seg0_p1, seg2_p0, seg2_p1):\n",
+    "    r = [seg0_p1[0]-seg0_p0[0], seg0_p1[1]-seg0_p0[1]]\n",
+    "    r_pr = [seg2_p0[0]-seg2_p1[0], seg2_p0[1]-seg2_p1[1]]\n",
+    "    p = [seg0_p0[0], seg0_p0[1]]\n",
+    "    q = [seg2_p1[0], seg2_p1[1]]\n",
+    "    \n",
+    "    return intersect_straights(p, r, q, r_pr)\n",
+    "\n",
+    "def point_at_half_distance(seg1_p0, seg1_p1, intersection):\n",
+    "    #straight along segment\n",
+    "    r = [seg1_p1[0]-seg1_p0[0], seg1_p1[1]-seg1_p0[1]]\n",
+    "    p = [seg1_p0[0], seg1_p0[1]]\n",
+    "    #normal straight through intersection\n",
+    "    r_pr = [r[1], -r[0]]\n",
+    "    q = [intersection[0], intersection[1]]\n",
+    "    crossing = intersect_straights(p, r, q, r_pr)\n",
+    "    if crossing == None:\n",
+    "        return None\n",
+    "    if math.isclose(r[0], 0.) or math.isclose(r[1], 0.):\n",
+    "        print(\"PAHD_ERROR: Method needs extension, zero component in direction vector.\")\n",
+    "        return None\n",
+    "    t0 = (crossing[0] - p[0]) / r[0]\n",
+    "    t1 = (crossing[1] - p[1]) / r[1]\n",
+    "    if not math.isclose(t0, t1):\n",
+    "        print(\"PAHD_ERROR: Parameters are not the same.\")\n",
+    "        return None\n",
+    "    if not t0 >= 0. and t0 <= 1.:\n",
+    "        print(\"PAHD_INFO: Crossing is not above segment\")\n",
+    "        return None\n",
+    "    projection = [p[0] + t0 * r[0], p[1] + t0 * r[1]]\n",
+    "    return [crossing[0] + 0.5 * (intersection[0] - crossing[0]), crossing[1] + 0.5 * (intersection[1] - crossing[1])]\n",
+    "\n",
+    "def get_new_node(seg0_p0, seg0_p1, seg2_p0, seg2_p1):\n",
+    "    intersection = intersect_segments(seg0_p0, seg0_p1, seg2_p0, seg2_p1)\n",
+    "    if intersection == None:\n",
+    "        return None\n",
+    "    return point_at_half_distance(seg0_p1, seg2_p0, intersection)\n",
+    "\n",
+    "def get_slope_delta(seg0_p0, seg0_p1, seg1_p1):\n",
+    "    if math.isclose(seg0_p1[0] - seg0_p0[0], 0.):\n",
+    "        print(\"GSD_ERROR: Infinite slope encountered.\")\n",
+    "        return 0.\n",
+    "    if math.isclose(seg1_p1[0] - seg0_p1[0], 0.):\n",
+    "        print(\"GSD_ERROR: Infinite slope encountered.\")\n",
+    "        return 0.\n",
+    "    m0 = (seg0_p1[1] - seg0_p0[1]) / (seg0_p1[0] - seg0_p0[0])\n",
+    "    m1 = (seg1_p1[1] - seg0_p1[1]) / (seg1_p1[0] - seg0_p1[0])\n",
+    "    return abs(m0-m1)\n",
+    "def get_angle_delta(seg0_p0, seg0_p1, seg1_p1, i=-1):\n",
+    "    v = [seg0_p1[0] - seg0_p0[0], seg0_p1[1] - seg0_p0[1]]\n",
+    "    w = [seg1_p1[0] - seg0_p1[0], seg1_p1[1] - seg0_p1[1]]\n",
+    "    sp = v[0] * w[0] + v[1] * w[1]\n",
+    "    sp /= np.sqrt(v[0] * v[0] + v[1] * v[1]) * np.sqrt(w[0] * w[0] + w[1] * w[1])\n",
+    "    angle = np.arccos(sp) * 180 / np.pi\n",
+    "    if(i != -1):\n",
+    "        print(f\"i: {i}, v: {v}, w: {w}, sp: {sp}\")\n",
+    "        print(f\"p0: {seg0_p0}, p1: {seg0_p1}, p2: {seg1_p1}\")\n",
+    "    return angle"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 41,
    "metadata": {},
    "outputs": [],
    "source": [
-    "SC_curves(holes, 'polylines_1.txt')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Plot the holes"
+    "def plot_hole_indexed(hole, labels=None):\n",
+    "    xs = []\n",
+    "    ys = []\n",
+    "    ind = []\n",
+    "    index = 0\n",
+    "    for h in hole:\n",
+    "        xs.append(h[0])\n",
+    "        ys.append(h[1])\n",
+    "        ind.append(index)\n",
+    "        index += 1\n",
+    "    if labels != None:\n",
+    "        if len(labels) != len(xs):\n",
+    "            print(\"PHI_ERROR: Not each node has a label.\")\n",
+    "    fig, ax = plt.subplots(1, 1)\n",
+    "    ax.axis('equal')\n",
+    "    ax.plot(xs,ys)\n",
+    "    ax.scatter(xs,ys,c='r')\n",
+    "    for i in range(len(xs)):\n",
+    "        if labels == None or len(labels) != len(xs):\n",
+    "            ax.text(xs[i], ys[i], f\"{i}\")\n",
+    "        else:\n",
+    "            #ax.text(xs[i], ys[i], f\"{labels[i]:.2f} ({xs[i]:.4f},{ys[i]:.4f})\")\n",
+    "            ax.text(xs[i], ys[i], f\"{i}: {labels[i]:.2f}\")\n",
+    "    fig.show()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 42,
    "metadata": {},
    "outputs": [],
    "source": [
-    "pxs = []\n",
-    "pys = []\n",
-    "for h in holes:\n",
-    "    pxs.append([])\n",
-    "    pys.append([])\n",
-    "    for i in range(len(h[0])):\n",
-    "        pxs[-1].append(h[0][i])\n",
-    "        pys[-1].append(h[1][i])"
+    "hx = holes[0][0]\n",
+    "hy = holes[0][1]\n",
+    "hole = []\n",
+    "for i in range(len(hx)):\n",
+    "    hole.append([hx[i], hy[i]])\n",
+    "\n",
+    "#Get slope deltas\n",
+    "slope_deltas = [0]\n",
+    "for i in range(len(hole)-2):\n",
+    "    #print(f\"{i+1}: {get_slope_delta(hole[i], hole[i+1], hole[i+2])}\")\n",
+    "    slope_deltas.append(get_slope_delta(hole[i], hole[i+1], hole[i+2]))\n",
+    "slope_deltas.append(0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 38,
+   "execution_count": 43,
    "metadata": {},
    "outputs": [
     {
@@ -5684,245 +6905,58 @@
    ],
    "source": [
     "%matplotlib notebook\n",
-    "#for i in range(len(pxs)):\n",
-    "#    plt.plot(pxs[i],pys[i])\n",
-    "plt.plot(pxs[0],pys[0])\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Check the dimensions"
+    "plot_hole_indexed(hole, slope_deltas)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 39,
+   "execution_count": 44,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Combo 0,1: Arm Width 4.7227758290841555 um\n",
-      "Combo 1,2: Arm Width 4.722775829084213 um\n",
-      "Combo 2,3: Arm Width 4.7227758290841395 um\n",
-      "Combo 3,4: Arm Width 4.722775829084109 um\n",
-      "Combo 4,5: Arm Width 4.72277582908416 um\n",
-      "Combo 5,6: Arm Width 4.722775829084169 um\n",
-      "Combo 6,7: Arm Width 4.722775829084106 um\n",
-      "Combo 7,8: Arm Width 4.722775829084162 um\n",
-      "Combo 8,9: Arm Width 4.7227758290841635 um\n",
-      "Combo 9,10: Arm Width 4.722775829084099 um\n",
-      "Combo 10,11: Arm Width 4.722775829084212 um\n",
-      "Combo 11,12: Arm Width 4.72277582908413 um\n",
-      "Combo 12,13: Arm Width 4.722775829084148 um\n",
-      "Combo 13,14: Arm Width 4.722775829084185 um\n",
-      "Combo 14,15: Arm Width 4.722775829084179 um\n",
-      "Combo 15,16: Arm Width 4.722775829084103 um\n",
-      "Combo 16,17: Arm Width 4.722775829084116 um\n",
-      "Combo 17,18: Arm Width 4.722775829084196 um\n",
-      "Combo 18,19: Arm Width 4.72277582908413 um\n",
-      "Combo 19,20: Arm Width 4.7227758290841635 um\n",
-      "Combo 20,21: Arm Width 4.722775829084152 um\n",
-      "Combo 21,22: Arm Width 4.722775829084139 um\n",
-      "Combo 22,23: Arm Width 4.72277582908421 um\n",
-      "Combo 23,24: Arm Width 4.72277582908418 um\n",
-      "Combo 24,25: Arm Width 4.722775829084141 um\n",
-      "Combo 25,26: Arm Width 4.722775829084071 um\n",
-      "Combo 26,27: Arm Width 4.722775829084156 um\n",
-      "Combo 27,28: Arm Width 4.722775829084128 um\n",
-      "Combo 28,29: Arm Width 4.722775829084108 um\n",
-      "Combo 29,30: Arm Width 4.722775829084183 um\n",
-      "Combo 30,31: Arm Width 4.722775829084184 um\n",
-      "Combo 31,32: Arm Width 4.722775829084098 um\n",
-      "Combo 32,33: Arm Width 4.722775829084091 um\n",
-      "Combo 33,34: Arm Width 4.722775829084154 um\n",
-      "Combo 34,35: Arm Width 4.722775829084145 um\n",
-      "Combo 35,0: Arm Width 4.722775829084151 um\n"
+      "PAHD_INFO: Crossing is not above segment\n",
+      "PAHD_INFO: Crossing is not above segment\n",
+      "PAHD_INFO: Crossing is not above segment\n",
+      "New hole: 155\n",
+      "Old hole: 81\n"
      ]
     }
    ],
    "source": [
-    "#find minimum arm size\n",
-    "for i in range(len(holes)):\n",
-    "    mindist = 10000.\n",
-    "    h0 = holes[i]\n",
-    "    h1 = holes[(i+1)%(len(holes))]\n",
-    "    x0s = h0[0]\n",
-    "    y0s = h0[1]\n",
-    "    x1s = h1[0]\n",
-    "    y1s = h1[1]\n",
-    "    for j in range(len(x0s)):\n",
-    "        for k in range(len(x1s)):\n",
-    "            p0 = [x0s[j], y0s[j]]\n",
-    "            p1 = [x1s[k], y1s[k]]\n",
-    "            dist = np.sqrt((p0[0]-p1[0])**2 + (p0[1]-p1[1])**2)\n",
-    "            if dist < mindist:\n",
-    "                mindist = dist\n",
-    "    print(f\"Combo {i},{(i+1)%len(holes)}: Arm Width {mindist*1000.} um\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Smoothen Corners"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 40,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def intersect_straights(p, r, q, r_pr):\n",
-    "    if(math.isclose(r[0], 0.) and math.isclose(r[1], 0.)):\n",
-    "        print(\"INTERSECT_ERROR: Straight 0 has degenerate direction vector.\")\n",
-    "        return None\n",
-    "    if(math.isclose(r_pr[0], 0.) and math.isclose(r_pr[1], 0.)):\n",
-    "        print(\"INTERSECT_ERROR: Straight 1 has degenerate direction vector.\")\n",
-    "        return None\n",
-    "    if math.isclose(r[0] / r[1], r_pr[0] / r_pr[1]):\n",
-    "        print(\"INTERSECT_ERROR: Straights are parallel.\")\n",
-    "        return None\n",
-    "    if math.isclose(r[1], 0.):\n",
-    "        print(\"INTERSECT_ERROR: Method needs extension, ry=0 encountered.\")\n",
-    "        return None\n",
-    "    #calculate intersection parameters\n",
-    "    s = (p[0] - q[0] + r[0] / r[1] * (q[1] - p[1])) / (r_pr[0] - r[0] * r_pr[1] / r[1])\n",
-    "    t = (q[1] - p[1] + s * r_pr[1]) / r[1]\n",
-    "    #calculate the arising intersection points\n",
-    "    int_s = [q[0] + s * r_pr[0], q[1] + s * r_pr[1]]\n",
-    "    int_t = [p[0] + t * r[0], p[1] + t * r[1]]\n",
-    "    if not ( math.isclose(int_s[0], int_t[0]) ) and ( math.isclose(int_s[1], int_t[1]) ):\n",
-    "            print(f\"INTERSECT_ERROR: Calculated intersections do not agree in x (delta {int_t[0] - int_s[0]:.6f}): {int_t[0]:.6f} vs {int_s[0]:.6f}\")\n",
-    "            return None\n",
-    "    elif not ( math.isclose(int_s[1], int_t[1]) ) and ( math.isclose(int_s[0], int_t[0]) ):\n",
-    "            print(f\"INTERSECT_ERROR: Calculated intersections do not agree in y (delta {int_t[1] - int_s[1]:.6f}): {int_t[1]:.6f} vs {int_s[1]:.6f}\")\n",
-    "            return None\n",
-    "    elif not ( math.isclose(int_s[0], int_t[0]) and math.isclose(int_s[1], int_t[1]) ):\n",
-    "        print(f\"INTERSECT_ERROR: Calculated intersections do not agree (int_t = [{int_t[0]:.6f}, {int_t[1]:.6f}], int_s = [{int_s[0]:.6f}, {int_s[1]:.6f}])\")\n",
-    "        return None\n",
-    "    return int_s\n",
-    "\n",
-    "def intersect_segments(seg0_p0, seg0_p1, seg2_p0, seg2_p1):\n",
-    "    r = [seg0_p1[0]-seg0_p0[0], seg0_p1[1]-seg0_p0[1]]\n",
-    "    r_pr = [seg2_p0[0]-seg2_p1[0], seg2_p0[1]-seg2_p1[1]]\n",
-    "    p = [seg0_p0[0], seg0_p0[1]]\n",
-    "    q = [seg2_p1[0], seg2_p1[1]]\n",
-    "    \n",
-    "    return intersect_straights(p, r, q, r_pr)\n",
-    "\n",
-    "def point_at_half_distance(seg1_p0, seg1_p1, intersection):\n",
-    "    #straight along segment\n",
-    "    r = [seg1_p1[0]-seg1_p0[0], seg1_p1[1]-seg1_p0[1]]\n",
-    "    p = [seg1_p0[0], seg1_p0[1]]\n",
-    "    #normal straight through intersection\n",
-    "    r_pr = [r[1], -r[0]]\n",
-    "    q = [intersection[0], intersection[1]]\n",
-    "    crossing = intersect_straights(p, r, q, r_pr)\n",
-    "    if crossing == None:\n",
-    "        return None\n",
-    "    if math.isclose(r[0], 0.) or math.isclose(r[1], 0.):\n",
-    "        print(\"PAHD_ERROR: Method needs extension, zero component in direction vector.\")\n",
-    "        return None\n",
-    "    t0 = (crossing[0] - p[0]) / r[0]\n",
-    "    t1 = (crossing[1] - p[1]) / r[1]\n",
-    "    if not math.isclose(t0, t1):\n",
-    "        print(\"PAHD_ERROR: Parameters are not the same.\")\n",
-    "        return None\n",
-    "    if not t0 >= 0. and t0 <= 1.:\n",
-    "        print(\"PAHD_INFO: Crossing is not above segment\")\n",
-    "        return None\n",
-    "    projection = [p[0] + t0 * r[0], p[1] + t0 * r[1]]\n",
-    "    return [crossing[0] + 0.5 * (intersection[0] - crossing[0]), crossing[1] + 0.5 * (intersection[1] - crossing[1])]\n",
-    "\n",
-    "def get_new_node(seg0_p0, seg0_p1, seg2_p0, seg2_p1):\n",
-    "    intersection = intersect_segments(seg0_p0, seg0_p1, seg2_p0, seg2_p1)\n",
-    "    if intersection == None:\n",
-    "        return None\n",
-    "    return point_at_half_distance(seg0_p1, seg2_p0, intersection)\n",
-    "\n",
-    "def get_slope_delta(seg0_p0, seg0_p1, seg1_p1):\n",
-    "    if math.isclose(seg0_p1[0] - seg0_p0[0], 0.):\n",
-    "        print(\"GSD_ERROR: Infinite slope encountered.\")\n",
-    "        return 0.\n",
-    "    if math.isclose(seg1_p1[0] - seg0_p1[0], 0.):\n",
-    "        print(\"GSD_ERROR: Infinite slope encountered.\")\n",
-    "        return 0.\n",
-    "    m0 = (seg0_p1[1] - seg0_p0[1]) / (seg0_p1[0] - seg0_p0[0])\n",
-    "    m1 = (seg1_p1[1] - seg0_p1[1]) / (seg1_p1[0] - seg0_p1[0])\n",
-    "    return abs(m0-m1)\n",
-    "def get_angle_delta(seg0_p0, seg0_p1, seg1_p1, i=-1):\n",
-    "    v = [seg0_p1[0] - seg0_p0[0], seg0_p1[1] - seg0_p0[1]]\n",
-    "    w = [seg1_p1[0] - seg0_p1[0], seg1_p1[1] - seg0_p1[1]]\n",
-    "    sp = v[0] * w[0] + v[1] * w[1]\n",
-    "    sp /= np.sqrt(v[0] * v[0] + v[1] * v[1]) * np.sqrt(w[0] * w[0] + w[1] * w[1])\n",
-    "    angle = np.arccos(sp) * 180 / np.pi\n",
-    "    if(i != -1):\n",
-    "        print(f\"i: {i}, v: {v}, w: {w}, sp: {sp}\")\n",
-    "        print(f\"p0: {seg0_p0}, p1: {seg0_p1}, p2: {seg1_p1}\")\n",
-    "    return angle"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 41,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def plot_hole_indexed(hole, labels=None):\n",
-    "    xs = []\n",
-    "    ys = []\n",
-    "    ind = []\n",
-    "    index = 0\n",
-    "    for h in hole:\n",
-    "        xs.append(h[0])\n",
-    "        ys.append(h[1])\n",
-    "        ind.append(index)\n",
-    "        index += 1\n",
-    "    if labels != None:\n",
-    "        if len(labels) != len(xs):\n",
-    "            print(\"PHI_ERROR: Not each node has a label.\")\n",
-    "    fig, ax = plt.subplots(1, 1)\n",
-    "    ax.axis('equal')\n",
-    "    ax.plot(xs,ys)\n",
-    "    ax.scatter(xs,ys,c='r')\n",
-    "    for i in range(len(xs)):\n",
-    "        if labels == None or len(labels) != len(xs):\n",
-    "            ax.text(xs[i], ys[i], f\"{i}\")\n",
-    "        else:\n",
-    "            #ax.text(xs[i], ys[i], f\"{labels[i]:.2f} ({xs[i]:.4f},{ys[i]:.4f})\")\n",
-    "            ax.text(xs[i], ys[i], f\"{i}: {labels[i]:.2f}\")\n",
-    "    fig.show()"
+    "#refine once\n",
+    "new_hole = []\n",
+    "new_hole.append(hole[0])\n",
+    "new_hole.append(hole[1])\n",
+    "index = 2\n",
+    "while index < len(hole) - 1:\n",
+    "    new_node = get_new_node(new_hole[-2], new_hole[-1], hole[index], hole[index+1])\n",
+    "    if(new_node != None):\n",
+    "        new_hole.append(new_node)\n",
+    "    new_hole.append(hole[index])\n",
+    "    index += 1\n",
+    "print(f\"New hole: {len(new_hole)}\")\n",
+    "print(f\"Old hole: {len(hole)}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 42,
+   "execution_count": 45,
    "metadata": {},
    "outputs": [],
    "source": [
-    "hx = holes[0][0]\n",
-    "hy = holes[0][1]\n",
-    "hole = []\n",
-    "for i in range(len(hx)):\n",
-    "    hole.append([hx[i], hy[i]])\n",
-    "\n",
-    "#Get slope deltas\n",
-    "slope_deltas = [0]\n",
-    "for i in range(len(hole)-2):\n",
+    "slope_deltas_new = [0]\n",
+    "for i in range(len(new_hole)-2):\n",
     "    #print(f\"{i+1}: {get_slope_delta(hole[i], hole[i+1], hole[i+2])}\")\n",
-    "    slope_deltas.append(get_slope_delta(hole[i], hole[i+1], hole[i+2]))\n",
-    "slope_deltas.append(0)"
+    "    slope_deltas_new.append(get_slope_delta(new_hole[i], new_hole[i+1], new_hole[i+2]))\n",
+    "slope_deltas_new.append(0)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 43,
+   "execution_count": 46,
    "metadata": {},
    "outputs": [
     {
@@ -6905,58 +7939,12 @@
    ],
    "source": [
     "%matplotlib notebook\n",
-    "plot_hole_indexed(hole, slope_deltas)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 44,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "PAHD_INFO: Crossing is not above segment\n",
-      "PAHD_INFO: Crossing is not above segment\n",
-      "PAHD_INFO: Crossing is not above segment\n",
-      "New hole: 155\n",
-      "Old hole: 81\n"
-     ]
-    }
-   ],
-   "source": [
-    "#refine once\n",
-    "new_hole = []\n",
-    "new_hole.append(hole[0])\n",
-    "new_hole.append(hole[1])\n",
-    "index = 2\n",
-    "while index < len(hole) - 1:\n",
-    "    new_node = get_new_node(new_hole[-2], new_hole[-1], hole[index], hole[index+1])\n",
-    "    if(new_node != None):\n",
-    "        new_hole.append(new_node)\n",
-    "    new_hole.append(hole[index])\n",
-    "    index += 1\n",
-    "print(f\"New hole: {len(new_hole)}\")\n",
-    "print(f\"Old hole: {len(hole)}\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 45,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "slope_deltas_new = [0]\n",
-    "for i in range(len(new_hole)-2):\n",
-    "    #print(f\"{i+1}: {get_slope_delta(hole[i], hole[i+1], hole[i+2])}\")\n",
-    "    slope_deltas_new.append(get_slope_delta(new_hole[i], new_hole[i+1], new_hole[i+2]))\n",
-    "slope_deltas_new.append(0)\n"
+    "plot_hole_indexed(new_hole, slope_deltas_new)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 46,
+   "execution_count": 47,
    "metadata": {},
    "outputs": [
     {
@@ -7939,14 +8927,28 @@
    ],
    "source": [
     "%matplotlib notebook\n",
-    "plot_hole_indexed(new_hole, slope_deltas_new)"
+    "plot_hole_indexed(hole, slope_deltas)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Smoothening via splines"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 47,
+   "execution_count": 48,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Number Old/New Nodes: 81/501\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -8923,30 +9925,15 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%matplotlib notebook\n",
-    "plot_hole_indexed(hole, slope_deltas)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Smoothening via splines"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 48,
-   "metadata": {},
-   "outputs": [
+    },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Number Old/New Nodes: 81/501\n"
+      "Old: 81\n",
+      "New: 501\n",
+      "Maximum angle delta old: 43.40° at node 14\n",
+      "Maximum angle delta smoothed: 19.66° at node 84\n"
      ]
     },
     {
@@ -9925,15 +10912,125 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
+    }
+   ],
+   "source": [
+    "from scipy import interpolate\n",
+    "tck, u = interpolate.splprep([holes[0][0], holes[0][1]], s=0)\n",
+    "unew = np.arange(0, 1.00005, 0.002)\n",
+    "print(f\"Number Old/New Nodes: {len(holes[0][0])}/{len(unew)}\")\n",
+    "out = interpolate.splev(unew, tck)\n",
+    "%matplotlib notebook\n",
+    "fig, ax = plt.subplots(1, 1)\n",
+    "ax.axis('equal')\n",
+    "ax.plot(holes[0][0], holes[0][1], 'x')\n",
+    "ax.plot(out[0], out[1], 'x:')\n",
+    "fig.show()\n",
+    "print(f\"Old: {len(holes[0][0])}\")\n",
+    "print(f\"New: {len(out[0])}\")\n",
+    "shole = []\n",
+    "for i in range(len(out[0])):\n",
+    "    shole.append([out[0][i], out[1][i]])\n",
+    "\n",
+    "#Get slope deltas\n",
+    "angle_deltas = [0]\n",
+    "for i in range(len(shole)-2):\n",
+    "    angle_deltas.append(get_angle_delta(shole[i], shole[i+1], shole[i+2]))\n",
+    "angle_deltas.append(0)\n",
+    "angle_deltas_old = [0]\n",
+    "for i in range(len(hole)-2):\n",
+    "    angle_deltas_old.append(get_angle_delta(hole[i], hole[i+1], hole[i+2]))\n",
+    "angle_deltas_old.append(0)\n",
+    "print(f\"Maximum angle delta old: {np.max(angle_deltas_old):.2f}° at node {np.argmax(angle_deltas_old)}\")\n",
+    "print(f\"Maximum angle delta smoothed: {np.max(angle_deltas):.2f}° at node {np.argmax(angle_deltas)}\")\n",
+    "plot_hole_indexed(shole, angle_deltas)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.09160548840938904"
+      ]
+     },
+     "execution_count": 49,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.tan(5.234*np.pi/180.)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 59,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def expand_points(x, y, num=20):\n",
+    "    retx = []\n",
+    "    rety = []\n",
+    "    ks = np.linspace(0,1,num)\n",
+    "    for i in range(len(x)-1):\n",
+    "        for k in ks:\n",
+    "            retx.append(x[i]*(1.-k) + x[i+1]*k)\n",
+    "            rety.append(y[i]*(1.-k) + y[i+1]*k)\n",
+    "    return retx, rety"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 55,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def hole_to_SC_curves(finalHoleX, finalHoleY, filename, num_holes=36):\n",
+    "    holes = []\n",
+    "    angle = 0.\n",
+    "    dangle = 360. / num_holes\n",
+    "    while angle < 359.99:\n",
+    "        newXs = []\n",
+    "        newYs = []\n",
+    "        for i in range(len(finalHoleX)):\n",
+    "            p = rot([finalHoleX[i], finalHoleY[i]], angle)\n",
+    "            newXs.append(p[0])\n",
+    "            newYs.append(p[1])\n",
+    "        holes.append([newXs, newYs])\n",
+    "        angle += dangle\n",
+    "    SC_curves(holes, filename)\n",
+    "    #check min arm width\n",
+    "    if num_holes > 1:\n",
+    "        x0,y0 = expand_points(holes[0][0], holes[0][1])\n",
+    "        x1,y1 = expand_points(holes[1][0], holes[1][1])\n",
+    "        mindist = 1000.\n",
+    "        for i in range(len(x0)):\n",
+    "            for j in range(len(x1)):\n",
+    "                if(np.sqrt((x0[i]-x1[j])**2 + (y0[i]-y1[j])**2) < mindist):\n",
+    "                    mindist = np.sqrt((x0[i]-x1[j])**2 + (y0[i]-y1[j])**2)\n",
+    "        print(f\"Minimum Arm Width: {mindist*1000:.2f} um\")\n",
+    "    fig,ax = plt.subplots(1,1)\n",
+    "    for h in holes:\n",
+    "        ax.plot(h[0], h[1], '-', c='b')\n",
+    "    circt = np.linspace(0.,2.*np.pi, 100)\n",
+    "    ax.plot(1.05*np.sin(circt)/2., 1.05*np.cos(circt)/2., '-', c='r')\n",
+    "    return fig,ax"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 52,
+   "metadata": {},
+   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Old: 81\n",
-      "New: 501\n",
-      "Maximum angle delta old: 43.40° at node 14\n",
-      "Maximum angle delta smoothed: 19.66° at node 84\n"
+      "Minimum Arm Width: 4.39 um\n"
      ]
     },
     {
@@ -10912,125 +12009,39 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "from scipy import interpolate\n",
-    "tck, u = interpolate.splprep([holes[0][0], holes[0][1]], s=0)\n",
-    "unew = np.arange(0, 1.00005, 0.002)\n",
-    "print(f\"Number Old/New Nodes: {len(holes[0][0])}/{len(unew)}\")\n",
-    "out = interpolate.splev(unew, tck)\n",
-    "%matplotlib notebook\n",
-    "fig, ax = plt.subplots(1, 1)\n",
-    "ax.axis('equal')\n",
-    "ax.plot(holes[0][0], holes[0][1], 'x')\n",
-    "ax.plot(out[0], out[1], 'x:')\n",
-    "fig.show()\n",
-    "print(f\"Old: {len(holes[0][0])}\")\n",
-    "print(f\"New: {len(out[0])}\")\n",
-    "shole = []\n",
-    "for i in range(len(out[0])):\n",
-    "    shole.append([out[0][i], out[1][i]])\n",
-    "\n",
-    "#Get slope deltas\n",
-    "angle_deltas = [0]\n",
-    "for i in range(len(shole)-2):\n",
-    "    angle_deltas.append(get_angle_delta(shole[i], shole[i+1], shole[i+2]))\n",
-    "angle_deltas.append(0)\n",
-    "angle_deltas_old = [0]\n",
-    "for i in range(len(hole)-2):\n",
-    "    angle_deltas_old.append(get_angle_delta(hole[i], hole[i+1], hole[i+2]))\n",
-    "angle_deltas_old.append(0)\n",
-    "print(f\"Maximum angle delta old: {np.max(angle_deltas_old):.2f}° at node {np.argmax(angle_deltas_old)}\")\n",
-    "print(f\"Maximum angle delta smoothed: {np.max(angle_deltas):.2f}° at node {np.argmax(angle_deltas)}\")\n",
-    "plot_hole_indexed(shole, angle_deltas)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 49,
-   "metadata": {},
-   "outputs": [
+    },
     {
      "data": {
       "text/plain": [
-       "0.09160548840938904"
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 49,
+     "execution_count": 52,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "np.tan(5.234*np.pi/180.)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 50,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "def expand_points(x, y, num=20):\n",
-    "    retx = []\n",
-    "    rety = []\n",
-    "    ks = np.linspace(0,1,num)\n",
-    "    for i in range(len(x)-1):\n",
-    "        for k in ks:\n",
-    "            retx.append(x[i]*(1.-k) + x[i+1]*k)\n",
-    "            rety.append(y[i]*(1.-k) + y[i+1]*k)\n",
-    "    return retx, rety"
+    "hole_to_SC_curves(out[0], out[1], 'polylines_spline.txt')"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 51,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "def hole_to_SC_curves(finalHoleX, finalHoleY, filename, num_holes=36):\n",
-    "    holes = []\n",
-    "    angle = 0.\n",
-    "    dangle = 360. / num_holes\n",
-    "    while angle < 359.99:\n",
-    "        newXs = []\n",
-    "        newYs = []\n",
-    "        for i in range(len(finalHoleX)):\n",
-    "            p = rot([finalHoleX[i], finalHoleY[i]], angle)\n",
-    "            newXs.append(p[0])\n",
-    "            newYs.append(p[1])\n",
-    "        holes.append([newXs, newYs])\n",
-    "        angle += dangle\n",
-    "    SC_curves(holes, filename)\n",
-    "    #check min arm width\n",
-    "    if num_holes > 1:\n",
-    "        x0,y0 = expand_points(holes[0][0], holes[0][1])\n",
-    "        x1,y1 = expand_points(holes[1][0], holes[1][1])\n",
-    "        mindist = 1000.\n",
-    "        for i in range(len(x0)):\n",
-    "            for j in range(len(x1)):\n",
-    "                if(np.sqrt((x0[i]-x1[j])**2 + (y0[i]-y1[j])**2) < mindist):\n",
-    "                    mindist = np.sqrt((x0[i]-x1[j])**2 + (y0[i]-y1[j])**2)\n",
-    "        print(f\"Minimum Arm Width: {mindist*1000:.2f} um\")\n",
-    "    fig,ax = plt.subplots(1,1)\n",
-    "    for h in holes:\n",
-    "        ax.plot(h[0], h[1], '-', c='b')\n",
-    "    circt = np.linspace(0.,2.*np.pi, 100)\n",
-    "    ax.plot(1.05*np.sin(circt)/2., 1.05*np.cos(circt)/2., '-', c='r')\n",
-    "    return fig,ax"
+    "### Generate Drum With Fewer Arms"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 52,
+   "execution_count": 53,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 4.39 um\n"
+      "Minimum Arm Width: 308.64 um\n"
      ]
     },
     {
@@ -12009,39 +13020,234 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
+    }
+   ],
+   "source": [
+    "hole_to_SC_curves(out[0], out[1], 'polylines_spline_6holes.txt', 6)[0].show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Generate command block codes"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 54,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "def sys_block(total_thickness, num_layers, num_pts=3, offset=\"bottom\"):\n",
+    "    layer_thickness = total_thickness / num_layers\n",
+    "    layer_code = f\"secdata,{layer_thickness},1,0,{num_pts}\\n\"\n",
+    "    layer_code += f\"secoffset,{offset}\\n\"\n",
+    "    code = \"et,matid,281\\n\"\n",
+    "    code += \"sdelete,1,1\\n\"\n",
+    "    code += \"sectype,1,shell\\n\"\n",
+    "    for i in range(num_layers):\n",
+    "        code += layer_code\n",
+    "    code += \"slist,,,,brief\\n\"\n",
+    "    code += \"mplist,all\\n\"\n",
+    "    return code\n",
+    "def sol_block(num_layers, max_stress, min_stress = 0.):\n",
+    "    stresses = np.linspace(min_stress, max_stress, num_layers)\n",
+    "    code = \"\"\n",
+    "    for i in range(num_layers):\n",
+    "        code += f\"inistate,define,,,{i+1},,{stresses[i]},{stresses[i]},0\\n\"\n",
+    "    return code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 55,
+   "metadata": {},
+   "outputs": [
     {
-     "data": {
-      "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
-      ]
-     },
-     "execution_count": 52,
-     "metadata": {},
-     "output_type": "execute_result"
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "---------------------\n",
+      "SYS\n",
+      "---------------------\n",
+      "\n",
+      "et,matid,281\n",
+      "sdelete,1,1\n",
+      "sectype,1,shell\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "secdata,1.1904761904761905e-05,1,0,3\n",
+      "secoffset,bottom\n",
+      "slist,,,,brief\n",
+      "mplist,all\n",
+      "\n",
+      "---------------------\n",
+      "SOL\n",
+      "---------------------\n",
+      "\n",
+      "inistate,define,,,1,,0.0,0.0,0\n",
+      "inistate,define,,,2,,2.4390243902439024,2.4390243902439024,0\n",
+      "inistate,define,,,3,,4.878048780487805,4.878048780487805,0\n",
+      "inistate,define,,,4,,7.317073170731707,7.317073170731707,0\n",
+      "inistate,define,,,5,,9.75609756097561,9.75609756097561,0\n",
+      "inistate,define,,,6,,12.195121951219512,12.195121951219512,0\n",
+      "inistate,define,,,7,,14.634146341463413,14.634146341463413,0\n",
+      "inistate,define,,,8,,17.073170731707318,17.073170731707318,0\n",
+      "inistate,define,,,9,,19.51219512195122,19.51219512195122,0\n",
+      "inistate,define,,,10,,21.95121951219512,21.95121951219512,0\n",
+      "inistate,define,,,11,,24.390243902439025,24.390243902439025,0\n",
+      "inistate,define,,,12,,26.829268292682926,26.829268292682926,0\n",
+      "inistate,define,,,13,,29.268292682926827,29.268292682926827,0\n",
+      "inistate,define,,,14,,31.70731707317073,31.70731707317073,0\n",
+      "inistate,define,,,15,,34.146341463414636,34.146341463414636,0\n",
+      "inistate,define,,,16,,36.58536585365854,36.58536585365854,0\n",
+      "inistate,define,,,17,,39.02439024390244,39.02439024390244,0\n",
+      "inistate,define,,,18,,41.46341463414634,41.46341463414634,0\n",
+      "inistate,define,,,19,,43.90243902439024,43.90243902439024,0\n",
+      "inistate,define,,,20,,46.34146341463415,46.34146341463415,0\n",
+      "inistate,define,,,21,,48.78048780487805,48.78048780487805,0\n",
+      "inistate,define,,,22,,51.21951219512195,51.21951219512195,0\n",
+      "inistate,define,,,23,,53.65853658536585,53.65853658536585,0\n",
+      "inistate,define,,,24,,56.09756097560975,56.09756097560975,0\n",
+      "inistate,define,,,25,,58.536585365853654,58.536585365853654,0\n",
+      "inistate,define,,,26,,60.97560975609756,60.97560975609756,0\n",
+      "inistate,define,,,27,,63.41463414634146,63.41463414634146,0\n",
+      "inistate,define,,,28,,65.85365853658537,65.85365853658537,0\n",
+      "inistate,define,,,29,,68.29268292682927,68.29268292682927,0\n",
+      "inistate,define,,,30,,70.73170731707317,70.73170731707317,0\n",
+      "inistate,define,,,31,,73.17073170731707,73.17073170731707,0\n",
+      "inistate,define,,,32,,75.60975609756098,75.60975609756098,0\n",
+      "inistate,define,,,33,,78.04878048780488,78.04878048780488,0\n",
+      "inistate,define,,,34,,80.48780487804878,80.48780487804878,0\n",
+      "inistate,define,,,35,,82.92682926829268,82.92682926829268,0\n",
+      "inistate,define,,,36,,85.36585365853658,85.36585365853658,0\n",
+      "inistate,define,,,37,,87.80487804878048,87.80487804878048,0\n",
+      "inistate,define,,,38,,90.24390243902438,90.24390243902438,0\n",
+      "inistate,define,,,39,,92.6829268292683,92.6829268292683,0\n",
+      "inistate,define,,,40,,95.1219512195122,95.1219512195122,0\n",
+      "inistate,define,,,41,,97.5609756097561,97.5609756097561,0\n",
+      "inistate,define,,,42,,100.0,100.0,0\n",
+      "\n"
+     ]
     }
    ],
    "source": [
-    "hole_to_SC_curves(out[0], out[1], 'polylines_spline.txt')"
+    "thickness = 0.0005 # mm\n",
+    "layers = 42\n",
+    "max_stress = 100 # MPa\n",
+    "min_stress = 0 #MPa\n",
+    "print(\"---------------------\\nSYS\\n---------------------\\n\")\n",
+    "print(sys_block(thickness, layers))\n",
+    "print(\"---------------------\\nSOL\\n---------------------\\n\")\n",
+    "print(sol_block(layers, max_stress, min_stress))"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "### Generate Drum With Fewer Arms"
+    "# New Designs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Ellipse in Tilt of Old Holes"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 53,
+   "execution_count": 56,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 308.64 um\n"
+      "Minimum Arm Width: 5.10 um\n"
      ]
     },
     {
@@ -13023,231 +14229,52 @@
     }
    ],
    "source": [
-    "hole_to_SC_curves(out[0], out[1], 'polylines_spline_6holes.txt', 6)[0].show()"
+    "hole_to_SC_curves(ellx, elly, 'polylines_ellipse.txt', 24)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Generate command block codes"
+    "This leads to a deformation from 2.4 um down to -0.9 um, and a frequency of 17 kHz."
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 54,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "import numpy as np\n",
-    "def sys_block(total_thickness, num_layers, num_pts=3, offset=\"bottom\"):\n",
-    "    layer_thickness = total_thickness / num_layers\n",
-    "    layer_code = f\"secdata,{layer_thickness},1,0,{num_pts}\\n\"\n",
-    "    layer_code += f\"secoffset,{offset}\\n\"\n",
-    "    code = \"et,matid,281\\n\"\n",
-    "    code += \"sdelete,1,1\\n\"\n",
-    "    code += \"sectype,1,shell\\n\"\n",
-    "    for i in range(num_layers):\n",
-    "        code += layer_code\n",
-    "    code += \"slist,,,,brief\\n\"\n",
-    "    code += \"mplist,all\\n\"\n",
-    "    return code\n",
-    "def sol_block(num_layers, max_stress, min_stress = 0.):\n",
-    "    stresses = np.linspace(min_stress, max_stress, num_layers)\n",
-    "    code = \"\"\n",
-    "    for i in range(num_layers):\n",
-    "        code += f\"inistate,define,,,{i+1},,{stresses[i]},{stresses[i]},0\\n\"\n",
-    "    return code"
+    "## Just Circles"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 55,
+   "execution_count": 57,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "---------------------\n",
-      "SYS\n",
-      "---------------------\n",
-      "\n",
-      "et,matid,281\n",
-      "sdelete,1,1\n",
-      "sectype,1,shell\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "secdata,1.1904761904761905e-05,1,0,3\n",
-      "secoffset,bottom\n",
-      "slist,,,,brief\n",
-      "mplist,all\n",
-      "\n",
-      "---------------------\n",
-      "SOL\n",
-      "---------------------\n",
-      "\n",
-      "inistate,define,,,1,,0.0,0.0,0\n",
-      "inistate,define,,,2,,2.4390243902439024,2.4390243902439024,0\n",
-      "inistate,define,,,3,,4.878048780487805,4.878048780487805,0\n",
-      "inistate,define,,,4,,7.317073170731707,7.317073170731707,0\n",
-      "inistate,define,,,5,,9.75609756097561,9.75609756097561,0\n",
-      "inistate,define,,,6,,12.195121951219512,12.195121951219512,0\n",
-      "inistate,define,,,7,,14.634146341463413,14.634146341463413,0\n",
-      "inistate,define,,,8,,17.073170731707318,17.073170731707318,0\n",
-      "inistate,define,,,9,,19.51219512195122,19.51219512195122,0\n",
-      "inistate,define,,,10,,21.95121951219512,21.95121951219512,0\n",
-      "inistate,define,,,11,,24.390243902439025,24.390243902439025,0\n",
-      "inistate,define,,,12,,26.829268292682926,26.829268292682926,0\n",
-      "inistate,define,,,13,,29.268292682926827,29.268292682926827,0\n",
-      "inistate,define,,,14,,31.70731707317073,31.70731707317073,0\n",
-      "inistate,define,,,15,,34.146341463414636,34.146341463414636,0\n",
-      "inistate,define,,,16,,36.58536585365854,36.58536585365854,0\n",
-      "inistate,define,,,17,,39.02439024390244,39.02439024390244,0\n",
-      "inistate,define,,,18,,41.46341463414634,41.46341463414634,0\n",
-      "inistate,define,,,19,,43.90243902439024,43.90243902439024,0\n",
-      "inistate,define,,,20,,46.34146341463415,46.34146341463415,0\n",
-      "inistate,define,,,21,,48.78048780487805,48.78048780487805,0\n",
-      "inistate,define,,,22,,51.21951219512195,51.21951219512195,0\n",
-      "inistate,define,,,23,,53.65853658536585,53.65853658536585,0\n",
-      "inistate,define,,,24,,56.09756097560975,56.09756097560975,0\n",
-      "inistate,define,,,25,,58.536585365853654,58.536585365853654,0\n",
-      "inistate,define,,,26,,60.97560975609756,60.97560975609756,0\n",
-      "inistate,define,,,27,,63.41463414634146,63.41463414634146,0\n",
-      "inistate,define,,,28,,65.85365853658537,65.85365853658537,0\n",
-      "inistate,define,,,29,,68.29268292682927,68.29268292682927,0\n",
-      "inistate,define,,,30,,70.73170731707317,70.73170731707317,0\n",
-      "inistate,define,,,31,,73.17073170731707,73.17073170731707,0\n",
-      "inistate,define,,,32,,75.60975609756098,75.60975609756098,0\n",
-      "inistate,define,,,33,,78.04878048780488,78.04878048780488,0\n",
-      "inistate,define,,,34,,80.48780487804878,80.48780487804878,0\n",
-      "inistate,define,,,35,,82.92682926829268,82.92682926829268,0\n",
-      "inistate,define,,,36,,85.36585365853658,85.36585365853658,0\n",
-      "inistate,define,,,37,,87.80487804878048,87.80487804878048,0\n",
-      "inistate,define,,,38,,90.24390243902438,90.24390243902438,0\n",
-      "inistate,define,,,39,,92.6829268292683,92.6829268292683,0\n",
-      "inistate,define,,,40,,95.1219512195122,95.1219512195122,0\n",
-      "inistate,define,,,41,,97.5609756097561,97.5609756097561,0\n",
-      "inistate,define,,,42,,100.0,100.0,0\n",
-      "\n"
+      "Hole Center: (0.11725202718026935, 0.45779557666723186)\n",
+      "Hole Radius typically in [0.028, 0.188]\n"
      ]
     }
    ],
    "source": [
-    "thickness = 0.0005 # mm\n",
-    "layers = 42\n",
-    "max_stress = 100 # MPa\n",
-    "min_stress = 0 #MPa\n",
-    "print(\"---------------------\\nSYS\\n---------------------\\n\")\n",
-    "print(sys_block(thickness, layers))\n",
-    "print(\"---------------------\\nSOL\\n---------------------\\n\")\n",
-    "print(sol_block(layers, max_stress, min_stress))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# New Designs"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Ellipse in Tilt of Old Holes"
+    "print(f\"Hole Center: ({cx}, {cy})\")\n",
+    "print(f\"Hole Radius typically in [{0.028}, {0.188}]\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 56,
+   "execution_count": 58,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 5.10 um\n"
+      "Minimum Arm Width: 5.80 um\n"
      ]
     },
     {
@@ -14229,52 +15256,38 @@
     }
    ],
    "source": [
-    "hole_to_SC_curves(ellx, elly, 'polylines_ellipse.txt', 24)[0].show()"
+    "cx = 0.117\n",
+    "cy = 0.458\n",
+    "radius = 0.028 / 2.\n",
+    "hx = cx + radius * np.sin(np.linspace(0,2.*np.pi,50))\n",
+    "hy = cy + radius * np.cos(np.linspace(0,2.*np.pi,50))\n",
+    "hole_to_SC_curves(hx, hy, 'polylines_circle.txt', 88)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "This leads to a deformation from 2.4 um down to -0.9 um, and a frequency of 17 kHz."
+    "Deformation is 3 nm down to -85 nm, but the frequency is 85 kHz."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Just Circles"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 57,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Hole Center: (0.11725202718026935, 0.45779557666723186)\n",
-      "Hole Radius typically in [0.028, 0.188]\n"
-     ]
-    }
-   ],
-   "source": [
-    "print(f\"Hole Center: ({cx}, {cy})\")\n",
-    "print(f\"Hole Radius typically in [{0.028}, {0.188}]\")"
+    "## Straight Long Arms"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 58,
+   "execution_count": 59,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 5.80 um\n"
+      "Minimum Arm Width: 5.91 um\n"
      ]
     },
     {
@@ -15258,36 +16271,42 @@
    "source": [
     "cx = 0.117\n",
     "cy = 0.458\n",
-    "radius = 0.028 / 2.\n",
-    "hx = cx + radius * np.sin(np.linspace(0,2.*np.pi,50))\n",
-    "hy = cy + radius * np.cos(np.linspace(0,2.*np.pi,50))\n",
-    "hole_to_SC_curves(hx, hy, 'polylines_circle.txt', 88)[0].show()"
+    "placement_radius = np.sqrt(cx**2 + cy**2)\n",
+    "rotation_degs = 10.\n",
+    "p0 = [placement_radius, 0.]\n",
+    "p1 = [placement_radius - 0.1, 0.]\n",
+    "p2 = rot(p1,rotation_degs)\n",
+    "p3 = rot(p0,rotation_degs)\n",
+    "p4 = rot(p3,-rotation_degs + 0.1)\n",
+    "hx = [p0[0], p1[0], p2[0], p3[0], p4[0]]\n",
+    "hy = [p0[1], p1[1], p2[1], p3[1], p4[1]]\n",
+    "hole_to_SC_curves(hx, hy, 'polylines_straight.txt', 33)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation is 3 nm down to -85 nm, but the frequency is 85 kHz."
+    "Deformation is 360 nm down to -40 nm. The frequency is reduced to 50 kHz by reducing the drum radius by 40 nm."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Straight Long Arms"
+    "## Fat Straight Long Arms"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 59,
+   "execution_count": 60,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 5.91 um\n"
+      "Minimum Arm Width: 21.68 um\n"
      ]
     },
     {
@@ -16280,33 +17299,33 @@
     "p4 = rot(p3,-rotation_degs + 0.1)\n",
     "hx = [p0[0], p1[0], p2[0], p3[0], p4[0]]\n",
     "hy = [p0[1], p1[1], p2[1], p3[1], p4[1]]\n",
-    "hole_to_SC_curves(hx, hy, 'polylines_straight.txt', 33)[0].show()"
+    "hole_to_SC_curves(hx, hy, 'polylines_straight_fat.txt', 27)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation is 360 nm down to -40 nm. The frequency is reduced to 50 kHz by reducing the drum radius by 40 nm."
+    "Deformation is 0 down to -296 nm, with a frequency of 69 kHz."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Fat Straight Long Arms"
+    "## Straight Long Arms with Holes"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 60,
+   "execution_count": 61,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 21.68 um\n"
+      "Minimum Arm Width: 25.23 um\n"
      ]
     },
     {
@@ -17292,42 +18311,44 @@
     "cy = 0.458\n",
     "placement_radius = np.sqrt(cx**2 + cy**2)\n",
     "rotation_degs = 10.\n",
-    "p0 = [placement_radius, 0.]\n",
-    "p1 = [placement_radius - 0.1, 0.]\n",
-    "p2 = rot(p1,rotation_degs)\n",
-    "p3 = rot(p0,rotation_degs)\n",
-    "p4 = rot(p3,-rotation_degs + 0.1)\n",
-    "hx = [p0[0], p1[0], p2[0], p3[0], p4[0]]\n",
-    "hy = [p0[1], p1[1], p2[1], p3[1], p4[1]]\n",
-    "hole_to_SC_curves(hx, hy, 'polylines_straight_fat.txt', 27)[0].show()"
+    "#p0 = [placement_radius, 0.]\n",
+    "#p1 = [placement_radius - 0.1, 0.]\n",
+    "#p2 = rot(p1,rotation_degs)\n",
+    "#p3 = rot(p0,rotation_degs)\n",
+    "#p4 = rot(p3,-rotation_degs + 0.1)\n",
+    "#hx = [p0[0], p1[0], p2[0], p3[0], p4[0]]\n",
+    "#hy = [p0[1], p1[1], p2[1], p3[1], p4[1]]\n",
+    "#hole_to_SC_curves(hx, hy, 'polylines_straight.txt', 33)[0].show()\n",
+    "\n",
+    "#holes\n",
+    "cr = 0.02\n",
+    "cx = placement_radius - 0.1 - 1.5*cr\n",
+    "cy = 0\n",
+    "circle_center = rot([cx,cy],rotation_degs/2.)\n",
+    "cx = circle_center[0] + cr * np.sin(np.linspace(0.,2.*np.pi,50))\n",
+    "cy = circle_center[1] + cr * np.cos(np.linspace(0.,2.*np.pi,50))\n",
+    "hole_to_SC_curves(cx, cy, 'polylines_circleholes.txt', 33)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation is 0 down to -296 nm, with a frequency of 69 kHz."
+    "Deformation 27 nm down to -368 nm. Frequency 50 kHz"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Straight Long Arms with Holes"
+    "## Central Hole"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 61,
+   "execution_count": 62,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 25.23 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -18307,46 +19328,29 @@
     }
    ],
    "source": [
-    "cx = 0.117\n",
-    "cy = 0.458\n",
-    "placement_radius = np.sqrt(cx**2 + cy**2)\n",
-    "rotation_degs = 10.\n",
-    "#p0 = [placement_radius, 0.]\n",
-    "#p1 = [placement_radius - 0.1, 0.]\n",
-    "#p2 = rot(p1,rotation_degs)\n",
-    "#p3 = rot(p0,rotation_degs)\n",
-    "#p4 = rot(p3,-rotation_degs + 0.1)\n",
-    "#hx = [p0[0], p1[0], p2[0], p3[0], p4[0]]\n",
-    "#hy = [p0[1], p1[1], p2[1], p3[1], p4[1]]\n",
-    "#hole_to_SC_curves(hx, hy, 'polylines_straight.txt', 33)[0].show()\n",
-    "\n",
-    "#holes\n",
-    "cr = 0.02\n",
-    "cx = placement_radius - 0.1 - 1.5*cr\n",
-    "cy = 0\n",
-    "circle_center = rot([cx,cy],rotation_degs/2.)\n",
-    "cx = circle_center[0] + cr * np.sin(np.linspace(0.,2.*np.pi,50))\n",
-    "cy = circle_center[1] + cr * np.cos(np.linspace(0.,2.*np.pi,50))\n",
-    "hole_to_SC_curves(cx, cy, 'polylines_circleholes.txt', 33)[0].show()"
+    "radius = 0.05\n",
+    "circ_x = radius*np.sin(np.linspace(0,2.*np.pi,50))\n",
+    "circ_y = radius*np.cos(np.linspace(0,2.*np.pi,50))\n",
+    "hole_to_SC_curves(circ_x, circ_y, 'polylines_centralhole.txt', 1)[0].show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation 27 nm down to -368 nm. Frequency 50 kHz"
+    "Deformation 0 down to -198 nm. Frequency 94 kHz."
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Central Hole"
+    "## Holes throughout"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 62,
+   "execution_count": 63,
    "metadata": {},
    "outputs": [
     {
@@ -19328,29 +20332,46 @@
     }
    ],
    "source": [
-    "radius = 0.05\n",
-    "circ_x = radius*np.sin(np.linspace(0,2.*np.pi,50))\n",
-    "circ_y = radius*np.cos(np.linspace(0,2.*np.pi,50))\n",
-    "hole_to_SC_curves(circ_x, circ_y, 'polylines_centralhole.txt', 1)[0].show()"
+    "filename = \"polylines_holesthroughout.txt\"\n",
+    "radius = 0.01\n",
+    "holes = []\n",
+    "\n",
+    "x = -0.5\n",
+    "while x <= 0.5:\n",
+    "    y = -0.5\n",
+    "    while y < 0.5:\n",
+    "        if np.sqrt(x**2 + y**2) + radius < 0.5:\n",
+    "            cx = x + radius * np.sin(np.linspace(0,2.*np.pi,20))\n",
+    "            cy = y + radius * np.cos(np.linspace(0,2.*np.pi,20))\n",
+    "            holes.append([cx,cy])\n",
+    "        y += 6. * radius\n",
+    "    x += 6. * radius\n",
+    "SC_curves(holes, filename)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "for h in holes:\n",
+    "    ax.plot(h[0], h[1], '-', c='b')\n",
+    "circt = np.linspace(0.,2.*np.pi, 100)\n",
+    "ax.plot(1.05*np.sin(circt)/2., 1.05*np.cos(circt)/2., '-', c='r')\n",
+    "plt.show()"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation 0 down to -198 nm. Frequency 94 kHz."
+    "Deformation 0.04 nm down to -57 nm. Frequency 89.8 kHz"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Holes throughout"
+    "## Perforated drum in smaller region"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 63,
+   "execution_count": 64,
    "metadata": {},
    "outputs": [
     {
@@ -20332,7 +21353,7 @@
     }
    ],
    "source": [
-    "filename = \"polylines_holesthroughout.txt\"\n",
+    "filename = \"polylines_perforated.txt\"\n",
     "radius = 0.01\n",
     "holes = []\n",
     "\n",
@@ -20340,7 +21361,7 @@
     "while x <= 0.5:\n",
     "    y = -0.5\n",
     "    while y < 0.5:\n",
-    "        if np.sqrt(x**2 + y**2) + radius < 0.5:\n",
+    "        if np.sqrt(x**2 + y**2) + radius < 0.43:\n",
     "            cx = x + radius * np.sin(np.linspace(0,2.*np.pi,20))\n",
     "            cy = y + radius * np.cos(np.linspace(0,2.*np.pi,20))\n",
     "            holes.append([cx,cy])\n",
@@ -20359,19 +21380,12 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Deformation 0.04 nm down to -57 nm. Frequency 89.8 kHz"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Perforated drum in smaller region"
+    "# Design Alteration V1"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 64,
+   "execution_count": 65,
    "metadata": {},
    "outputs": [
     {
@@ -21353,41 +22367,25 @@
     }
    ],
    "source": [
-    "filename = \"polylines_perforated.txt\"\n",
-    "radius = 0.01\n",
-    "holes = []\n",
-    "\n",
-    "x = -0.5\n",
-    "while x <= 0.5:\n",
-    "    y = -0.5\n",
-    "    while y < 0.5:\n",
-    "        if np.sqrt(x**2 + y**2) + radius < 0.43:\n",
-    "            cx = x + radius * np.sin(np.linspace(0,2.*np.pi,20))\n",
-    "            cy = y + radius * np.cos(np.linspace(0,2.*np.pi,20))\n",
-    "            holes.append([cx,cy])\n",
-    "        y += 6. * radius\n",
-    "    x += 6. * radius\n",
-    "SC_curves(holes, filename)\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "for h in holes:\n",
-    "    ax.plot(h[0], h[1], '-', c='b')\n",
-    "circt = np.linspace(0.,2.*np.pi, 100)\n",
-    "ax.plot(1.05*np.sin(circt)/2., 1.05*np.cos(circt)/2., '-', c='r')\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1"
+    "ax.set_aspect('equal')\n",
+    "ax.plot(filterX, filterY)\n",
+    "for i in range(len(filterX)):\n",
+    "    ax.text(filterX[i], filterY[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 65,
+   "execution_count": 66,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 4.38 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -22364,19 +23362,43 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 66,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(filterX, filterY)\n",
-    "for i in range(len(filterX)):\n",
-    "    ax.text(filterX[i], filterY[i], f\"{i}\")"
+    "filename = \"design_v1.txt\"\n",
+    "hole_to_SC_curves(filterX, filterY, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "I want to cut the drums by dropping points 28-39, such that point 27 directly connects to point 40."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 66,
+   "execution_count": 67,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "filteredX = np.concatenate((filterX[0:28], filterX[40:]))\n",
+    "filteredY = np.concatenate((filterY[0:28], filterY[40:]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
    "metadata": {},
    "outputs": [
     {
@@ -23369,43 +24391,43 @@
        "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 66,
+     "execution_count": 68,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "filename = \"design_v1.txt\"\n",
-    "hole_to_SC_curves(filterX, filterY, filename, num_holes=36)"
+    "hole_to_SC_curves(filteredX, filteredY, filename, num_holes=36)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "I want to cut the drums by dropping points 28-39, such that point 27 directly connects to point 40."
+    "# Design Alteration V1 larger cutout"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 67,
+   "execution_count": 69,
    "metadata": {},
    "outputs": [],
    "source": [
-    "filteredX = np.concatenate((filterX[0:28], filterX[40:]))\n",
-    "filteredY = np.concatenate((filterY[0:28], filterY[40:]))"
+    "filteredX = np.concatenate((filterX[0:24], filterX[42:]))\n",
+    "filteredY = np.concatenate((filterY[0:24], filterY[42:]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 68,
+   "execution_count": 70,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 4.38 um\n"
+      "Minimum Arm Width: 1.79 um\n"
      ]
     },
     {
@@ -24391,13 +25413,13 @@
        "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 68,
+     "execution_count": 70,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1.txt\"\n",
+    "filename = \"design_v1l.txt\"\n",
     "hole_to_SC_curves(filteredX, filteredY, filename, num_holes=36)"
    ]
   },
@@ -24405,29 +25427,36 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Design Alteration V1 larger cutout"
+    "This works, the arms deform by 150 nm while the drum deforms by less than 2 nm."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V1 larger cutout 2"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 69,
+   "execution_count": 71,
    "metadata": {},
    "outputs": [],
    "source": [
-    "filteredX = np.concatenate((filterX[0:24], filterX[42:]))\n",
-    "filteredY = np.concatenate((filterY[0:24], filterY[42:]))"
+    "filtereddX = np.concatenate((filterX[0:24], filterX[41:]))\n",
+    "filtereddY = np.concatenate((filterY[0:24], filterY[41:]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 70,
+   "execution_count": 72,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 1.79 um\n"
+      "Minimum Arm Width: 2.81 um\n"
      ]
     },
     {
@@ -25413,52 +26442,42 @@
        "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 70,
+     "execution_count": 72,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l.txt\"\n",
-    "hole_to_SC_curves(filteredX, filteredY, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This works, the arms deform by 150 nm while the drum deforms by less than 2 nm."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1 larger cutout 2"
+    "filename = \"design_v1l2.txt\"\n",
+    "hole_to_SC_curves(filtereddX, filtereddY, filename, num_holes=36)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 71,
+   "execution_count": 73,
    "metadata": {},
    "outputs": [],
    "source": [
-    "filtereddX = np.concatenate((filterX[0:24], filterX[41:]))\n",
-    "filtereddY = np.concatenate((filterY[0:24], filterY[41:]))"
+    "def compare_designs(x0,y0,x1,y1):\n",
+    "    fig,ax = plt.subplots(1,1)\n",
+    "    ax.plot(x0,y0, c='r')\n",
+    "    ax.plot(x1,y1, c='b')\n",
+    "    for i in range(len(x0)):\n",
+    "        x0[i], y0[i] = rot([x0[i],y0[i]],10)\n",
+    "        x1[i], y1[i] = rot([x1[i],y1[i]],10)\n",
+    "    ax.plot(x0,y0, c='r')\n",
+    "    ax.plot(x1,y1, c='b')\n",
+    "    ax.set_aspect('equal')\n",
+    "    fig.show()"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 72,
-   "metadata": {},
+   "execution_count": 74,
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 2.81 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -26435,48 +27454,30 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
-      ]
-     },
-     "execution_count": 72,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l2.txt\"\n",
-    "hole_to_SC_curves(filtereddX, filtereddY, filename, num_holes=36)"
+    "compare_designs(filteredX,filteredY,filtereddX,filtereddY)"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 73,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "def compare_designs(x0,y0,x1,y1):\n",
-    "    fig,ax = plt.subplots(1,1)\n",
-    "    ax.plot(x0,y0, c='r')\n",
-    "    ax.plot(x1,y1, c='b')\n",
-    "    for i in range(len(x0)):\n",
-    "        x0[i], y0[i] = rot([x0[i],y0[i]],10)\n",
-    "        x1[i], y1[i] = rot([x1[i],y1[i]],10)\n",
-    "    ax.plot(x0,y0, c='r')\n",
-    "    ax.plot(x1,y1, c='b')\n",
-    "    ax.set_aspect('equal')\n",
-    "    fig.show()"
+    "Doesn't work, deformation is back to several micrometers."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V1, constant arm thickness"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 74,
-   "metadata": {
-    "scrolled": false
-   },
+   "execution_count": 75,
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -27454,31 +28455,83 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ebdaed60>]"
+      ]
+     },
+     "execution_count": 75,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "compare_designs(filteredX,filteredY,filtereddX,filtereddY)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Doesn't work, deformation is back to several micrometers."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1, constant arm thickness"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)\n",
+    "\n",
+    "def const_dist_pt(p0, p1, p2, dist):\n",
+    "    p0n = np.array(p0)\n",
+    "    p1n = np.array(p1)\n",
+    "    p2n = np.array(p2)\n",
+    "    dir = p2n - p0n\n",
+    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
+    "    dir[0],dir[1] = -dir[1],dir[0]\n",
+    "    return p1 + dir*dist\n",
+    "    \n",
+    "nc_x = [drx[76]]\n",
+    "nc_y = [dry[76]]\n",
+    "for i in range(47,25,-1):\n",
+    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
+    "    nc_x.append(nv[0])\n",
+    "    nc_y.append(nv[1])\n",
+    "\n",
+    "ax.plot(nc_x, nc_y, 'x')\n",
+    "\n",
+    "#spline to connect to old hole\n",
+    "n = len(nc_x)\n",
+    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
+    "unew = np.arange(0, 1.00005, 0.05)\n",
+    "out = interpolate.splev(unew, tck)\n",
+    "ax.plot(out[0], out[1], 'x')\n",
+    "\n",
+    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
+    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
+    "\n",
+    "ax.plot(new_hole_x, new_hole_y, '*')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 75,
-   "metadata": {},
+   "execution_count": 76,
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 4.38 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -28459,77 +29512,44 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ebdaed60>]"
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 75,
+     "execution_count": 76,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)\n",
-    "\n",
-    "def const_dist_pt(p0, p1, p2, dist):\n",
-    "    p0n = np.array(p0)\n",
-    "    p1n = np.array(p1)\n",
-    "    p2n = np.array(p2)\n",
-    "    dir = p2n - p0n\n",
-    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
-    "    dir[0],dir[1] = -dir[1],dir[0]\n",
-    "    return p1 + dir*dist\n",
-    "    \n",
-    "nc_x = [drx[76]]\n",
-    "nc_y = [dry[76]]\n",
-    "for i in range(47,25,-1):\n",
-    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
-    "    nc_x.append(nv[0])\n",
-    "    nc_y.append(nv[1])\n",
-    "\n",
-    "ax.plot(nc_x, nc_y, 'x')\n",
-    "\n",
-    "#spline to connect to old hole\n",
-    "n = len(nc_x)\n",
-    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
-    "unew = np.arange(0, 1.00005, 0.05)\n",
-    "out = interpolate.splev(unew, tck)\n",
-    "ax.plot(out[0], out[1], 'x')\n",
-    "\n",
-    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
-    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
-    "\n",
-    "ax.plot(new_hole_x, new_hole_y, '*')"
+    "filename = \"design_v1l3.txt\"\n",
+    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Doesn't work, 3.4 um down to -1.3 um"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V1, constant arm thickness thinner"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 76,
-   "metadata": {
-    "scrolled": false
-   },
+   "execution_count": 77,
+   "metadata": {},
    "outputs": [
     {
-     "name": "stdout",
+     "name": "stderr",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 4.38 um\n"
+      "C:\\Users\\engel\\AppData\\Local\\Temp/ipykernel_21064/3497237966.py:4: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
+      "  fig,ax = plt.subplots(1,1)\n"
      ]
     },
     {
@@ -29512,46 +30532,70 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5ebfd9250>]"
       ]
      },
-     "execution_count": 76,
+     "execution_count": 77,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l3.txt\"\n",
-    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Doesn't work, 3.4 um down to -1.3 um"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1, constant arm thickness thinner"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)\n",
+    "\n",
+    "def const_dist_pt(p0, p1, p2, dist):\n",
+    "    p0n = np.array(p0)\n",
+    "    p1n = np.array(p1)\n",
+    "    p2n = np.array(p2)\n",
+    "    dir = p2n - p0n\n",
+    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
+    "    dir[0],dir[1] = -dir[1],dir[0]\n",
+    "    return p1 + dir*dist\n",
+    "    \n",
+    "nc_x = [drx[76]]\n",
+    "nc_y = [dry[76]]\n",
+    "for i in range(47,25,-1):\n",
+    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3/2)\n",
+    "    nc_x.append(nv[0])\n",
+    "    nc_y.append(nv[1])\n",
+    "\n",
+    "ax.plot(nc_x, nc_y, 'x')\n",
+    "\n",
+    "#spline to connect to old hole\n",
+    "n = len(nc_x)\n",
+    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
+    "unew = np.arange(0, 1.00005, 0.05)\n",
+    "out = interpolate.splev(unew, tck)\n",
+    "ax.plot(out[0], out[1], 'x')\n",
+    "\n",
+    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
+    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
+    "\n",
+    "ax.plot(new_hole_x, new_hole_y, '*')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 77,
+   "execution_count": 78,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "C:\\Users\\engel\\AppData\\Local\\Temp/ipykernel_21064/3497237966.py:4: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
-      "  fig,ax = plt.subplots(1,1)\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -30528,74 +31572,39 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ebfd9250>]"
-      ]
-     },
-     "execution_count": 77,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
+    "plt.close('all')\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)\n",
-    "\n",
-    "def const_dist_pt(p0, p1, p2, dist):\n",
-    "    p0n = np.array(p0)\n",
-    "    p1n = np.array(p1)\n",
-    "    p2n = np.array(p2)\n",
-    "    dir = p2n - p0n\n",
-    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
-    "    dir[0],dir[1] = -dir[1],dir[0]\n",
-    "    return p1 + dir*dist\n",
-    "    \n",
-    "nc_x = [drx[76]]\n",
-    "nc_y = [dry[76]]\n",
-    "for i in range(47,25,-1):\n",
-    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3/2)\n",
-    "    nc_x.append(nv[0])\n",
-    "    nc_y.append(nv[1])\n",
-    "\n",
-    "ax.plot(nc_x, nc_y, 'x')\n",
-    "\n",
-    "#spline to connect to old hole\n",
-    "n = len(nc_x)\n",
-    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
-    "unew = np.arange(0, 1.00005, 0.05)\n",
-    "out = interpolate.splev(unew, tck)\n",
-    "ax.plot(out[0], out[1], 'x')\n",
-    "\n",
-    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
-    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
-    "\n",
-    "ax.plot(new_hole_x, new_hole_y, '*')"
+    "ax.plot(new_hole_x,new_hole_y, '*')\n",
+    "for i in range(len(new_hole_x)):\n",
+    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 78,
+   "execution_count": 79,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "new_hole_x = np.concatenate((new_hole_x[:84], new_hole_x[88:]))\n",
+    "new_hole_y = np.concatenate((new_hole_y[:84], new_hole_y[88:]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 80,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 2.19 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -31572,39 +32581,35 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 80,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.close('all')\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(new_hole_x,new_hole_y, '*')\n",
-    "for i in range(len(new_hole_x)):\n",
-    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
-    "ax.set_aspect('equal')"
+    "filename = \"design_v1l4.txt\"\n",
+    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 79,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "new_hole_x = np.concatenate((new_hole_x[:84], new_hole_x[88:]))\n",
-    "new_hole_y = np.concatenate((new_hole_y[:84], new_hole_y[88:]))"
+    "# Design Alteration V1, constant arm thickness as thin as minimum when it worked"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 80,
+   "execution_count": 81,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 2.19 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -32585,29 +33590,68 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5ec6f01c0>]"
       ]
      },
-     "execution_count": 80,
+     "execution_count": 81,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l4.txt\"\n",
-    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1, constant arm thickness as thin as minimum when it worked"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)\n",
+    "\n",
+    "def const_dist_pt(p0, p1, p2, dist):\n",
+    "    p0n = np.array(p0)\n",
+    "    p1n = np.array(p1)\n",
+    "    p2n = np.array(p2)\n",
+    "    dir = p2n - p0n\n",
+    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
+    "    dir[0],dir[1] = -dir[1],dir[0]\n",
+    "    return p1 + dir*dist\n",
+    "    \n",
+    "nc_x = [drx[76]]\n",
+    "nc_y = [dry[76]]\n",
+    "for i in range(47,25,-1):\n",
+    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 1.79e-3)\n",
+    "    nc_x.append(nv[0])\n",
+    "    nc_y.append(nv[1])\n",
+    "\n",
+    "ax.plot(nc_x, nc_y, 'x')\n",
+    "\n",
+    "#spline to connect to old hole\n",
+    "n = len(nc_x)\n",
+    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
+    "unew = np.arange(0, 1.00005, 0.05)\n",
+    "out = interpolate.splev(unew, tck)\n",
+    "ax.plot(out[0], out[1], 'x')\n",
+    "\n",
+    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
+    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
+    "\n",
+    "ax.plot(new_hole_x, new_hole_y, '*')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 81,
+   "execution_count": 82,
    "metadata": {},
    "outputs": [
     {
@@ -33586,74 +34630,39 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ec6f01c0>]"
-      ]
-     },
-     "execution_count": 81,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
+    "plt.close('all')\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)\n",
-    "\n",
-    "def const_dist_pt(p0, p1, p2, dist):\n",
-    "    p0n = np.array(p0)\n",
-    "    p1n = np.array(p1)\n",
-    "    p2n = np.array(p2)\n",
-    "    dir = p2n - p0n\n",
-    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
-    "    dir[0],dir[1] = -dir[1],dir[0]\n",
-    "    return p1 + dir*dist\n",
-    "    \n",
-    "nc_x = [drx[76]]\n",
-    "nc_y = [dry[76]]\n",
-    "for i in range(47,25,-1):\n",
-    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 1.79e-3)\n",
-    "    nc_x.append(nv[0])\n",
-    "    nc_y.append(nv[1])\n",
-    "\n",
-    "ax.plot(nc_x, nc_y, 'x')\n",
-    "\n",
-    "#spline to connect to old hole\n",
-    "n = len(nc_x)\n",
-    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
-    "unew = np.arange(0, 1.00005, 0.05)\n",
-    "out = interpolate.splev(unew, tck)\n",
-    "ax.plot(out[0], out[1], 'x')\n",
-    "\n",
-    "new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
-    "new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
-    "\n",
-    "ax.plot(new_hole_x, new_hole_y, '*')"
+    "ax.plot(new_hole_x,new_hole_y, '*')\n",
+    "for i in range(len(new_hole_x)):\n",
+    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 82,
+   "execution_count": 83,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "new_hole_x = np.concatenate((new_hole_x[:84], new_hole_x[88:]))\n",
+    "new_hole_y = np.concatenate((new_hole_y[:84], new_hole_y[88:]))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 84,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 1.79 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -34630,39 +35639,42 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 84,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.close('all')\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(new_hole_x,new_hole_y, '*')\n",
-    "for i in range(len(new_hole_x)):\n",
-    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
-    "ax.set_aspect('equal')"
+    "filename = \"design_v1l5.txt\"\n",
+    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 83,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
-    "new_hole_x = np.concatenate((new_hole_x[:84], new_hole_x[88:]))\n",
-    "new_hole_y = np.concatenate((new_hole_y[:84], new_hole_y[88:]))"
+    "Doesn't work, big deformation."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V1, constant arm thickness as thin as minimum when it worked, but shifting the other side of the drum"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 84,
+   "execution_count": 85,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 1.79 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -35643,36 +36655,81 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5e9ce31f0>]"
       ]
      },
-     "execution_count": 84,
+     "execution_count": 85,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l5.txt\"\n",
-    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Doesn't work, big deformation."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Design Alteration V1, constant arm thickness as thin as minimum when it worked, but shifting the other side of the drum"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)\n",
+    "\n",
+    "def const_dist_pt(p0, p1, p2, dist):\n",
+    "    p0n = np.array(p0)\n",
+    "    p1n = np.array(p1)\n",
+    "    p2n = np.array(p2)\n",
+    "    dir = p2n - p0n\n",
+    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
+    "    dir[0],dir[1] = -dir[1],dir[0]\n",
+    "    return p1 + dir*dist\n",
+    "\n",
+    "nc_x = [drx[48]]\n",
+    "nc_y = [dry[48]]\n",
+    "for i in range(76,80):\n",
+    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
+    "    nc_x.append(nv[0])\n",
+    "    nc_y.append(nv[1])\n",
+    "for i in range(0,12):\n",
+    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
+    "    nc_x.append(nv[0])\n",
+    "    nc_y.append(nv[1])\n",
+    "ax.plot(nc_x, nc_y, 'x')\n",
+    "\n",
+    "#spline to connect to old hole\n",
+    "n = len(nc_x)\n",
+    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[15],drx[14]],[nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[15],dry[14]]],s=0)\n",
+    "unew = np.arange(0, 1.00005, 0.08)\n",
+    "out = interpolate.splev(unew, tck)\n",
+    "ax.plot(out[0], out[1], 'x')\n",
+    "\n",
+    "new_hole_x = np.concatenate((drx[0:15], out[0][-1:2:-1], nc_x[-1:0:-1], drx[49:]))\n",
+    "new_hole_y = np.concatenate((dry[0:15], out[1][-1:2:-1], nc_y[-1:0:-1], dry[49:]))\n",
+    "\n",
+    "#spline to connect to old hole\n",
+    "#n = len(nc_x)\n",
+    "#tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
+    "#unew = np.arange(0, 1.00005, 0.05)\n",
+    "#out = interpolate.splev(unew, tck)\n",
+    "#ax.plot(out[0], out[1], 'x')\n",
+    "\n",
+    "#new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
+    "#new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
+    "\n",
+    "ax.plot(new_hole_x, new_hole_y, '*')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 85,
+   "execution_count": 86,
    "metadata": {},
    "outputs": [
     {
@@ -36651,87 +37708,29 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5e9ce31f0>]"
-      ]
-     },
-     "execution_count": 85,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
+    "plt.close('all')\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)\n",
-    "\n",
-    "def const_dist_pt(p0, p1, p2, dist):\n",
-    "    p0n = np.array(p0)\n",
-    "    p1n = np.array(p1)\n",
-    "    p2n = np.array(p2)\n",
-    "    dir = p2n - p0n\n",
-    "    dir /= np.sqrt(dir[0]**2 + dir[1]**2)\n",
-    "    dir[0],dir[1] = -dir[1],dir[0]\n",
-    "    return p1 + dir*dist\n",
-    "\n",
-    "nc_x = [drx[48]]\n",
-    "nc_y = [dry[48]]\n",
-    "for i in range(76,80):\n",
-    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
-    "    nc_x.append(nv[0])\n",
-    "    nc_y.append(nv[1])\n",
-    "for i in range(0,12):\n",
-    "    nv = const_dist_pt([x0[i+1],y0[i+1]], [x0[i],y0[i]], [x0[i-1],y0[i-1]], 4.38e-3)\n",
-    "    nc_x.append(nv[0])\n",
-    "    nc_y.append(nv[1])\n",
-    "ax.plot(nc_x, nc_y, 'x')\n",
-    "\n",
-    "#spline to connect to old hole\n",
-    "n = len(nc_x)\n",
-    "tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[15],drx[14]],[nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[15],dry[14]]],s=0)\n",
-    "unew = np.arange(0, 1.00005, 0.08)\n",
-    "out = interpolate.splev(unew, tck)\n",
-    "ax.plot(out[0], out[1], 'x')\n",
-    "\n",
-    "new_hole_x = np.concatenate((drx[0:15], out[0][-1:2:-1], nc_x[-1:0:-1], drx[49:]))\n",
-    "new_hole_y = np.concatenate((dry[0:15], out[1][-1:2:-1], nc_y[-1:0:-1], dry[49:]))\n",
-    "\n",
-    "#spline to connect to old hole\n",
-    "#n = len(nc_x)\n",
-    "#tck, u = interpolate.splprep([[nc_x[n-3],nc_x[n-2],nc_x[n-1],drx[21],drx[22]], [nc_y[n-3],nc_y[n-2],nc_y[n-1],dry[21],dry[22]]], s=0)\n",
-    "#unew = np.arange(0, 1.00005, 0.05)\n",
-    "#out = interpolate.splev(unew, tck)\n",
-    "#ax.plot(out[0], out[1], 'x')\n",
-    "\n",
-    "#new_hole_x = np.concatenate((nc_x[5:], out[0][4:-1], drx[23:76], nc_x[:5]))\n",
-    "#new_hole_y = np.concatenate((nc_y[5:], out[1][4:-1], dry[23:76], nc_y[:5]))\n",
-    "\n",
-    "ax.plot(new_hole_x, new_hole_y, '*')"
+    "ax.plot(new_hole_x,new_hole_y, '*')\n",
+    "for i in range(len(new_hole_x)):\n",
+    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 86,
+   "execution_count": 87,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 4.37 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -37708,29 +38707,42 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 87,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.close('all')\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(new_hole_x,new_hole_y, '*')\n",
-    "for i in range(len(new_hole_x)):\n",
-    "    ax.text(new_hole_x[i], new_hole_y[i], f\"{i}\")\n",
-    "ax.set_aspect('equal')"
+    "filename = \"design_v1l6.txt\"\n",
+    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Doesn't work. Nothing I have done so far works."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V4, but with shifted bridge"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 87,
+   "execution_count": 88,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 4.37 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -38711,36 +39723,67 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5ea49c6d0>]"
       ]
      },
-     "execution_count": 87,
+     "execution_count": 88,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v1l6.txt\"\n",
-    "hole_to_SC_curves(new_hole_x, new_hole_y, filename, num_holes=36)"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 89,
    "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[0.0834235  0.07841773 0.07347544]\n"
+     ]
+    }
+   ],
    "source": [
-    "Doesn't work. Nothing I have done so far works."
+    "print(drx[0:3])"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 90,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "# Design Alteration V4, but with shifted bridge"
+    "inner_x = np.concatenate((drx[8:19],[drx[8]+0.01*(drx[19] - drx[8])]))\n",
+    "inner_y = np.concatenate((dry[8:19],[dry[8]+0.01*(dry[19] - dry[8])]))\n",
+    "outer_x = np.concatenate((drx[20:],drx[0:7],[drx[20] - 0.01*(drx[20] - drx[7])]))\n",
+    "outer_y = np.concatenate((dry[20:],dry[0:7],[dry[20] - 0.01*(dry[20] - dry[7])]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 88,
+   "execution_count": 91,
    "metadata": {},
    "outputs": [
     {
@@ -39723,69 +40766,48 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ea49c6d0>]"
+       "[<matplotlib.lines.Line2D at 0x1b5eb322c70>]"
       ]
      },
-     "execution_count": 88,
+     "execution_count": 91,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "ax.plot(inner_x, inner_y)\n",
+    "ax.plot(outer_x, outer_y)\n",
     "\n",
     "x0 = []\n",
     "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "for i in range(len(inner_x)):\n",
+    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "ax.plot(x0,y0)\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(outer_x)):\n",
+    "    x0n, y0n = rot([outer_x[i],outer_y[i]],-10)\n",
     "    x0.append(x0n)\n",
     "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
     "ax.plot(x0,y0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 89,
+   "execution_count": 92,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "[0.0834235  0.07841773 0.07347544]\n"
+      "Minimum Arm Width: 63.54 um\n"
      ]
-    }
-   ],
-   "source": [
-    "print(drx[0:3])"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 90,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "inner_x = np.concatenate((drx[8:19],[drx[8]+0.01*(drx[19] - drx[8])]))\n",
-    "inner_y = np.concatenate((dry[8:19],[dry[8]+0.01*(dry[19] - dry[8])]))\n",
-    "outer_x = np.concatenate((drx[20:],drx[0:7],[drx[20] - 0.01*(drx[20] - drx[7])]))\n",
-    "outer_y = np.concatenate((dry[20:],dry[0:7],[dry[20] - 0.01*(dry[20] - dry[7])]))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 91,
-   "metadata": {},
-   "outputs": [
+    },
     {
      "data": {
       "application/javascript": [
@@ -40763,49 +41785,11 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5eb322c70>]"
-      ]
-     },
-     "execution_count": 91,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "ax.plot(outer_x, outer_y)\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(inner_x)):\n",
-    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(outer_x)):\n",
-    "    x0n, y0n = rot([outer_x[i],outer_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 92,
-   "metadata": {},
-   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 63.54 um\n"
+      "Minimum Arm Width: 4.38 um\n"
      ]
     },
     {
@@ -41786,12 +42770,42 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 4.38 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 92,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4_inner.txt\"\n",
+    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
+    "filename = \"design_v4_outer.txt\"\n",
+    "hole_to_SC_curves(outer_x, outer_y, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Doesn't really change anything."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V4r with bridge on the other side"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 93,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -42772,38 +43786,50 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5eaf2ed90>]"
       ]
      },
-     "execution_count": 92,
+     "execution_count": 93,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4_inner.txt\"\n",
-    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
-    "filename = \"design_v4_outer.txt\"\n",
-    "hole_to_SC_curves(outer_x, outer_y, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Doesn't really change anything."
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 94,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "# Design Alteration V4r with bridge on the other side"
+    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
+    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
+    "outer_x = np.concatenate((drx[34:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
+    "outer_y = np.concatenate((dry[34:75],[dry[34] + 0.01*(dry[34] - dry[74])]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 93,
+   "execution_count": 95,
    "metadata": {},
    "outputs": [
     {
@@ -43786,52 +44812,48 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5eaf2ed90>]"
+       "[<matplotlib.lines.Line2D at 0x1b5ea9bd370>]"
       ]
      },
-     "execution_count": 93,
+     "execution_count": 95,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "ax.plot(inner_x, inner_y)\n",
+    "ax.plot(outer_x, outer_y)\n",
     "\n",
     "x0 = []\n",
     "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "for i in range(len(inner_x)):\n",
+    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "ax.plot(x0,y0)\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(outer_x)):\n",
+    "    x0n, y0n = rot([outer_x[i],outer_y[i]],-10)\n",
     "    x0.append(x0n)\n",
     "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
     "ax.plot(x0,y0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 94,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
-    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
-    "outer_x = np.concatenate((drx[34:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
-    "outer_y = np.concatenate((dry[34:75],[dry[34] + 0.01*(dry[34] - dry[74])]))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 95,
+   "execution_count": 96,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.43 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -44809,49 +45831,11 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ea9bd370>]"
-      ]
-     },
-     "execution_count": 95,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "ax.plot(outer_x, outer_y)\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(inner_x)):\n",
-    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(outer_x)):\n",
-    "    x0n, y0n = rot([outer_x[i],outer_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 96,
-   "metadata": {},
-   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 11.43 um\n"
+      "Minimum Arm Width: 4.66 um\n"
      ]
     },
     {
@@ -45832,12 +46816,42 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 4.66 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 96,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4r_inner.txt\"\n",
+    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
+    "filename = \"design_v4r_outer.txt\"\n",
+    "hole_to_SC_curves(outer_x, outer_y, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This kinda works, 530 nm in the drum center, -380 nm in the arms"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V4r with bridge on the other side and an additional bridge"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 97,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -46818,38 +47832,54 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5ea8087c0>]"
       ]
      },
-     "execution_count": 96,
+     "execution_count": 97,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4r_inner.txt\"\n",
-    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
-    "filename = \"design_v4r_outer.txt\"\n",
-    "hole_to_SC_curves(outer_x, outer_y, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This kinda works, 530 nm in the drum center, -380 nm in the arms"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 98,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "# Design Alteration V4r with bridge on the other side and an additional bridge"
+    "#inner stays the same\n",
+    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
+    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
+    "#outer is now two holes\n",
+    "outer_1_x = np.concatenate((drx[34:45], drx[63:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
+    "outer_1_y = np.concatenate((dry[34:45], dry[63:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
+    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
+    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 97,
+   "execution_count": 99,
    "metadata": {},
    "outputs": [
     {
@@ -47832,56 +48862,56 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ea8087c0>]"
+       "[<matplotlib.lines.Line2D at 0x1b5ec858be0>]"
       ]
      },
-     "execution_count": 97,
+     "execution_count": 99,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "ax.plot(inner_x, inner_y)\n",
+    "ax.plot(outer_1_x, outer_1_y)\n",
+    "ax.plot(outer_2_x, outer_2_y)\n",
     "\n",
     "x0 = []\n",
     "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "for i in range(len(inner_x)):\n",
+    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "ax.plot(x0,y0)\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(outer_1_x)):\n",
+    "    x0n, y0n = rot([outer_1_x[i],outer_1_y[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "ax.plot(x0,y0)\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(outer_2_x)):\n",
+    "    x0n, y0n = rot([outer_2_x[i],outer_2_y[i]],-10)\n",
     "    x0.append(x0n)\n",
     "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
     "ax.plot(x0,y0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 98,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#inner stays the same\n",
-    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
-    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
-    "#outer is now two holes\n",
-    "outer_1_x = np.concatenate((drx[34:45], drx[63:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
-    "outer_1_y = np.concatenate((dry[34:45], dry[63:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
-    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
-    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 99,
+   "execution_count": 100,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.43 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -48859,57 +49889,11 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ec858be0>]"
-      ]
-     },
-     "execution_count": 99,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "ax.plot(outer_1_x, outer_1_y)\n",
-    "ax.plot(outer_2_x, outer_2_y)\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(inner_x)):\n",
-    "    x0n, y0n = rot([inner_x[i],inner_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(outer_1_x)):\n",
-    "    x0n, y0n = rot([outer_1_x[i],outer_1_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(outer_2_x)):\n",
-    "    x0n, y0n = rot([outer_2_x[i],outer_2_y[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "ax.plot(x0,y0)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 100,
-   "metadata": {},
-   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 11.43 um\n"
+      "Minimum Arm Width: 30.47 um\n"
      ]
     },
     {
@@ -49893,7 +50877,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 30.47 um\n"
+      "Minimum Arm Width: 51.71 um\n"
      ]
     },
     {
@@ -50874,12 +51858,37 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 51.71 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 100,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4r_inner.txt\"\n",
+    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
+    "filename = \"design_v4r_outer_1.txt\"\n",
+    "hole_to_SC_curves(outer_1_x, outer_1_y, filename, num_holes=36)\n",
+    "filename = \"design_v4r_outer_2.txt\"\n",
+    "hole_to_SC_curves(outer_2_x, outer_2_y, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Design Alteration V4rd, but with smoothed edges"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 101,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -51860,34 +52869,57 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5eb42c1f0>]"
       ]
      },
-     "execution_count": 100,
+     "execution_count": 101,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4r_inner.txt\"\n",
-    "hole_to_SC_curves(inner_x, inner_y, filename, num_holes=36)\n",
-    "filename = \"design_v4r_outer_1.txt\"\n",
-    "hole_to_SC_curves(outer_1_x, outer_1_y, filename, num_holes=36)\n",
-    "filename = \"design_v4r_outer_2.txt\"\n",
-    "hole_to_SC_curves(outer_2_x, outer_2_y, filename, num_holes=36)"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 102,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "# Design Alteration V4rd, but with smoothed edges"
+    "#inner stays the same\n",
+    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
+    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
+    "#outer is now two holes\n",
+    "outer_1_x = np.concatenate((drx[34:45], drx[63:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
+    "outer_1_y = np.concatenate((dry[34:45], dry[63:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
+    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
+    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 101,
-   "metadata": {},
+   "execution_count": 103,
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [
     {
      "data": {
@@ -52865,61 +53897,83 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5eb42c1f0>]"
-      ]
-     },
-     "execution_count": 101,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "ax.plot(inner_x, inner_y)\n",
+    "for i in range(len(inner_x)):\n",
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Rounding a corner means:\n",
+    "- get the corner vertex c\n",
+    "- get the two vertices v1 and v2 on either side of the corner\n",
+    "- choose a rounding radius r\n",
+    "- calculate the center of a circle of radius r that has c-v1 and c-v2 as tangents\n",
+    "- in parametric representation calculate the parameter for v1 and for v2\n",
+    "- generate arbitrarily many points between v1 and v2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from numpy import linalg\n",
+    "def circle_m(cc, v1, v2, r):\n",
+    "    c = np.array(cc)\n",
+    "    r1 = np.array(v1) - c\n",
+    "    r2 = np.array(v2) - c\n",
+    "    n1 = np.array([r1[1], -r1[0]]) / linalg.norm(r1)\n",
+    "    n2 = np.array([-r2[1], r2[0]]) / linalg.norm(r2)\n",
+    "    v1pr = np.array(v1) + r * n1\n",
+    "    v2pr = np.array(v2) + r * n2\n",
+    "    Dg = - n1[0]*v1pr[0] - n1[1]*v1pr[1]\n",
+    "    Dh = - n2[0]*v2pr[0] - n2[1]*v2pr[1]\n",
+    "    my = (n2[0] / n1[0] * Dg - Dh) / (n2[1] - n2[0] * n1[1] / n1[0])\n",
+    "    mx = (- n1[1] * my - Dg) / n1[0]\n",
+    "    return np.array([mx, my])\n",
     "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)"
+    "def circle_points(M, radius, N):\n",
+    "    ts = np.linspace(0, 2.*np.pi, N)\n",
+    "    xs = M[0] + radius * np.cos(ts)\n",
+    "    ys = M[1] + radius * np.sin(ts)\n",
+    "    return xs, ys"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 102,
+   "execution_count": 105,
    "metadata": {},
    "outputs": [],
    "source": [
-    "#inner stays the same\n",
-    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
-    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
-    "#outer is now two holes\n",
-    "outer_1_x = np.concatenate((drx[34:45], drx[63:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
-    "outer_1_y = np.concatenate((dry[34:45], dry[63:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
-    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
-    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
+    "radius1 = 0.003\n",
+    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
+    "radius2 = 0.0015\n",
+    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 103,
-   "metadata": {
-    "scrolled": false
-   },
+   "execution_count": 106,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 107,
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -53904,75 +54958,18 @@
     "ax.set_aspect('equal')\n",
     "ax.plot(inner_x, inner_y)\n",
     "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Rounding a corner means:\n",
-    "- get the corner vertex c\n",
-    "- get the two vertices v1 and v2 on either side of the corner\n",
-    "- choose a rounding radius r\n",
-    "- calculate the center of a circle of radius r that has c-v1 and c-v2 as tangents\n",
-    "- in parametric representation calculate the parameter for v1 and for v2\n",
-    "- generate arbitrarily many points between v1 and v2"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 104,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from numpy import linalg\n",
-    "def circle_m(cc, v1, v2, r):\n",
-    "    c = np.array(cc)\n",
-    "    r1 = np.array(v1) - c\n",
-    "    r2 = np.array(v2) - c\n",
-    "    n1 = np.array([r1[1], -r1[0]]) / linalg.norm(r1)\n",
-    "    n2 = np.array([-r2[1], r2[0]]) / linalg.norm(r2)\n",
-    "    v1pr = np.array(v1) + r * n1\n",
-    "    v2pr = np.array(v2) + r * n2\n",
-    "    Dg = - n1[0]*v1pr[0] - n1[1]*v1pr[1]\n",
-    "    Dh = - n2[0]*v2pr[0] - n2[1]*v2pr[1]\n",
-    "    my = (n2[0] / n1[0] * Dg - Dh) / (n2[1] - n2[0] * n1[1] / n1[0])\n",
-    "    mx = (- n1[1] * my - Dg) / n1[0]\n",
-    "    return np.array([mx, my])\n",
-    "\n",
-    "def circle_points(M, radius, N):\n",
-    "    ts = np.linspace(0, 2.*np.pi, N)\n",
-    "    xs = M[0] + radius * np.cos(ts)\n",
-    "    ys = M[1] + radius * np.sin(ts)\n",
-    "    return xs, ys"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 105,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "radius1 = 0.003\n",
-    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
-    "radius2 = 0.0015\n",
-    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 106,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)"
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 107,
+   "execution_count": 108,
    "metadata": {},
    "outputs": [
     {
@@ -54951,25 +55948,30 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ec3066a0>]"
+      ]
+     },
+     "execution_count": 108,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "plt.close('all')\n",
+    "inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
+    "inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(inner_x_smooth, inner_y_smooth)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 108,
+   "execution_count": 109,
    "metadata": {},
    "outputs": [
     {
@@ -55948,31 +56950,50 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ec3066a0>]"
-      ]
-     },
-     "execution_count": 108,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.close('all')\n",
-    "inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
-    "inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x_smooth, inner_y_smooth)"
+    "ax.plot(outer_1_x, outer_1_y)\n",
+    "for i in range(len(outer_1_x)):\n",
+    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
+    "\n",
+    "radius1 = 0.003\n",
+    "M1 = circle_m([outer_1_x[10],outer_1_y[10]], [outer_1_x[9],outer_1_y[9]], [outer_1_x[11],outer_1_y[11]], radius1)\n",
+    "radius2 = 0.0015\n",
+    "M2 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius2)\n",
+    "radius3 = 0.0025\n",
+    "M3 = circle_m([outer_1_x[22],outer_1_y[22]], [outer_1_x[21],outer_1_y[21]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
+    "radius4 = 0.002\n",
+    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[22],outer_1_y[22]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
+    "cx4, cy4 = circle_points(M4, radius4, 30)\n",
+    "\n",
+    "\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "ax.plot(cx3, cy3)\n",
+    "ax.plot(cx4, cy4)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
+    "for i in range(len(cx3)):\n",
+    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
+    "for i in range(len(cx4)):\n",
+    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 109,
-   "metadata": {},
+   "execution_count": 110,
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [
     {
      "data": {
@@ -56950,50 +57971,44 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ed12c790>]"
+      ]
+     },
+     "execution_count": 110,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "outer_1_x_smooth = np.concatenate((outer_1_x[1:10], cx1[21:28], cx2[27:], cx2[:7], outer_1_x[12:22], cx3[8:15], cx4[14:23]))\n",
+    "outer_1_y_smooth = np.concatenate((outer_1_y[1:10], cy1[21:28], cy2[27:], cy2[:7], outer_1_y[12:22], cy3[8:15], cy4[14:23]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_1_x, outer_1_y)\n",
-    "for i in range(len(outer_1_x)):\n",
-    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
-    "\n",
-    "radius1 = 0.003\n",
-    "M1 = circle_m([outer_1_x[10],outer_1_y[10]], [outer_1_x[9],outer_1_y[9]], [outer_1_x[11],outer_1_y[11]], radius1)\n",
-    "radius2 = 0.0015\n",
-    "M2 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius2)\n",
-    "radius3 = 0.0025\n",
-    "M3 = circle_m([outer_1_x[22],outer_1_y[22]], [outer_1_x[21],outer_1_y[21]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
-    "radius4 = 0.002\n",
-    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[22],outer_1_y[22]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
-    "cx4, cy4 = circle_points(M4, radius4, 30)\n",
-    "\n",
-    "\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "ax.plot(cx3, cy3)\n",
-    "ax.plot(cx4, cy4)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
-    "for i in range(len(cx3)):\n",
-    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
-    "for i in range(len(cx4)):\n",
-    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
+    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 110,
-   "metadata": {
-    "scrolled": false
-   },
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 111,
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -57971,43 +58986,19 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ed12c790>]"
-      ]
-     },
-     "execution_count": 110,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "outer_1_x_smooth = np.concatenate((outer_1_x[1:10], cx1[21:28], cx2[27:], cx2[:7], outer_1_x[12:22], cx3[8:15], cx4[14:23]))\n",
-    "outer_1_y_smooth = np.concatenate((outer_1_y[1:10], cy1[21:28], cy2[27:], cy2[:7], outer_1_y[12:22], cy3[8:15], cy4[14:23]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
+    "ax.plot(outer_2_x, outer_2_y)\n",
+    "for i in range(len(outer_2_x)):\n",
+    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 111,
+   "execution_count": 112,
    "metadata": {},
    "outputs": [
     {
@@ -58992,13 +59983,29 @@
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
     "ax.plot(outer_2_x, outer_2_y)\n",
-    "for i in range(len(outer_2_x)):\n",
-    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
+    "for i in range(len(outer_2_y)):\n",
+    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")\n",
+    "\n",
+    "radius1 = 0.002\n",
+    "M1 = circle_m([outer_2_x[17],outer_2_y[17]], [outer_2_x[16],outer_2_y[16]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
+    "radius2 = 0.002\n",
+    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[17],outer_2_y[17]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "\n",
+    "\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 112,
+   "execution_count": 113,
    "metadata": {},
    "outputs": [
     {
@@ -59977,37 +60984,38 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ed2b0130>]"
+      ]
+     },
+     "execution_count": 113,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "outer_2_x_smooth = np.concatenate((outer_2_x[1:17], cx1[5:14], cx2[13:21]))\n",
+    "outer_2_y_smooth = np.concatenate((outer_2_y[1:17], cy1[5:14], cy2[13:21]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_2_x, outer_2_y)\n",
-    "for i in range(len(outer_2_y)):\n",
-    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")\n",
-    "\n",
-    "radius1 = 0.002\n",
-    "M1 = circle_m([outer_2_x[17],outer_2_y[17]], [outer_2_x[16],outer_2_y[16]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
-    "radius2 = 0.002\n",
-    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[17],outer_2_y[17]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "\n",
-    "\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 113,
+   "execution_count": 114,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.71 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -60985,35 +61993,11 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ed2b0130>]"
-      ]
-     },
-     "execution_count": 113,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "outer_2_x_smooth = np.concatenate((outer_2_x[1:17], cx1[5:14], cx2[13:21]))\n",
-    "outer_2_y_smooth = np.concatenate((outer_2_y[1:17], cy1[5:14], cy2[13:21]))\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 114,
-   "metadata": {},
-   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 11.71 um\n"
+      "Minimum Arm Width: 30.80 um\n"
      ]
     },
     {
@@ -61997,7 +62981,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 30.80 um\n"
+      "Minimum Arm Width: 51.71 um\n"
      ]
     },
     {
@@ -62978,12 +63962,37 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 51.71 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 114,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4rds_inner_smooth.txt\"\n",
+    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rds_outer_1_smooth.txt\"\n",
+    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rds_outer_2_smooth.txt\"\n",
+    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Full cutout test, find out how much the drum wants to bend"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 115,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -63964,33 +64973,40 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x1b5eae451f0>]"
       ]
      },
-     "execution_count": 114,
+     "execution_count": 115,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4rds_inner_smooth.txt\"\n",
-    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rds_outer_1_smooth.txt\"\n",
-    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rds_outer_2_smooth.txt\"\n",
-    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Full cutout test, find out how much the drum wants to bend"
+    "ts = np.linspace(0., 2.*np.pi*35./36, 36)\n",
+    "xs = []\n",
+    "ys = []\n",
+    "\n",
+    "\n",
+    "r_in = 0.45\n",
+    "r_out = 0.46\n",
+    "for t in ts[-1::-1]:\n",
+    "    xs.append(r_out * np.cos(t))\n",
+    "    ys.append(r_out * np.sin(t))\n",
+    "\n",
+    "xs.append(-0.43)\n",
+    "ys.append(0)\n",
+    "xs.append(-0.43)\n",
+    "ys.append(ys[0])\n",
+    "xs.append(xs[-3]-0.02)\n",
+    "ys.append(ys[0])\n",
+    "\n",
+    "fig, ax = plt.subplots(1,1)\n",
+    "ax.plot(xs,ys, '-')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 115,
+   "execution_count": 116,
    "metadata": {},
    "outputs": [
     {
@@ -64973,40 +65989,29 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5eae451f0>]"
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
       ]
      },
-     "execution_count": 115,
+     "execution_count": 116,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "ts = np.linspace(0., 2.*np.pi*35./36, 36)\n",
-    "xs = []\n",
-    "ys = []\n",
-    "\n",
-    "\n",
-    "r_in = 0.45\n",
-    "r_out = 0.46\n",
-    "for t in ts[-1::-1]:\n",
-    "    xs.append(r_out * np.cos(t))\n",
-    "    ys.append(r_out * np.sin(t))\n",
-    "\n",
-    "xs.append(-0.43)\n",
-    "ys.append(0)\n",
-    "xs.append(-0.43)\n",
-    "ys.append(ys[0])\n",
-    "xs.append(xs[-3]-0.02)\n",
-    "ys.append(ys[0])\n",
-    "\n",
-    "fig, ax = plt.subplots(1,1)\n",
-    "ax.plot(xs,ys, '-')"
+    "filename = \"cutout.txt\"\n",
+    "hole_to_SC_curves(xs, ys, filename, num_holes=1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Standard Design, shorter Arms"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 116,
+   "execution_count": 117,
    "metadata": {},
    "outputs": [
     {
@@ -65985,35 +66990,33 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
-      ]
-     },
-     "execution_count": 116,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"cutout.txt\"\n",
-    "hole_to_SC_curves(xs, ys, filename, num_holes=1)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Standard Design, shorter Arms"
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "avx = np.mean(drx)\n",
+    "avy = np.mean(dry)\n",
+    "drx = [avx + 0.5 * (x - avx) for x in drx]\n",
+    "dry = [avy + 0.5 * (y - avy) for y in dry]\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.plot(drx,dry)\n",
+    "ax.plot(filterX,filterY, ls='dashed')\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 117,
+   "execution_count": 118,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.48 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -66990,33 +67993,51 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 118,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
-    "avx = np.mean(drx)\n",
-    "avy = np.mean(dry)\n",
-    "drx = [avx + 0.5 * (x - avx) for x in drx]\n",
-    "dry = [avy + 0.5 * (y - avy) for y in dry]\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(drx,dry)\n",
-    "ax.plot(filterX,filterY, ls='dashed')\n",
-    "ax.set_aspect('equal')"
+    "filename = \"shortarms.txt\"\n",
+    "hole_to_SC_curves(drx, dry, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This needs more thinking, it doesn't work that easily. Just scaling down doesn't even produce arms anymore."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# V4rds but with stress optimization L1"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 118,
+   "execution_count": 119,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "plt.close('all')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 11.48 um\n"
-     ]
-    },
     {
      "data": {
       "application/javascript": [
@@ -67985,7 +69006,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -67995,47 +69016,41 @@
      "output_type": "display_data"
     },
     {
-     "data": {
-      "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
-      ]
-     },
-     "execution_count": 118,
-     "metadata": {},
-     "output_type": "execute_result"
+     "ename": "NameError",
+     "evalue": "name 'rot' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_12628/2162088441.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m     11\u001b[0m \u001b[0my0\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     12\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdrx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 13\u001b[1;33m     \u001b[0mx0n\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my0n\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mrot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mdrx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mdry\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     14\u001b[0m     \u001b[0mx0\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx0n\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     15\u001b[0m     \u001b[0my0\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my0n\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+      "\u001b[1;31mNameError\u001b[0m: name 'rot' is not defined"
+     ]
     }
    ],
    "source": [
-    "filename = \"shortarms.txt\"\n",
-    "hole_to_SC_curves(drx, dry, filename, num_holes=36)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This needs more thinking, it doesn't work that easily. Just scaling down doesn't even produce arms anymore."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# V4rds but with stress optimization L1"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 119,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "plt.close('all')"
+    "import copy\n",
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 120,
+   "execution_count": 121,
    "metadata": {},
    "outputs": [
     {
@@ -69018,38 +70033,42 @@
     {
      "data": {
       "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ea6483d0>]"
+       "<matplotlib.legend.Legend at 0x1b5ed2d0670>"
       ]
      },
-     "execution_count": 120,
+     "execution_count": 121,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "import copy\n",
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
+    "#inner stays the same\n",
+    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
+    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
+    "#outer is now two holes\n",
+    "#bridge is 58,59 to 44,45\n",
+    "outer_1_x = np.concatenate((drx[34:45], drx[59:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
+    "outer_1_y = np.concatenate((dry[34:45], dry[59:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
+    "outer_2_x = np.concatenate((drx[45:59], [drx[45] + 0.01*(drx[58] - drx[45])]))\n",
+    "outer_2_y = np.concatenate((dry[45:59], [dry[45] + 0.01*(dry[58] - dry[45])]))\n",
     "fig,ax = plt.subplots(1,1)\n",
+    "ax.plot(inner_x,inner_y,label='inner')\n",
+    "ax.plot(outer_1_x,outer_1_y,label='outer 1')\n",
+    "ax.plot(outer_2_x,outer_2_y,label='outer 2')\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)"
+    "plt.legend()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Smoothen inner"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 121,
+   "execution_count": 122,
    "metadata": {},
    "outputs": [
     {
@@ -70028,46 +71047,34 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.legend.Legend at 0x1b5ed2d0670>"
-      ]
-     },
-     "execution_count": 121,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "#inner stays the same\n",
-    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
-    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
-    "#outer is now two holes\n",
-    "#bridge is 58,59 to 44,45\n",
-    "outer_1_x = np.concatenate((drx[34:45], drx[59:75],[drx[34] + 0.01*(drx[34] - drx[74])]))\n",
-    "outer_1_y = np.concatenate((dry[34:45], dry[59:75],[dry[34] + 0.01*(dry[34] - dry[74])]))\n",
-    "outer_2_x = np.concatenate((drx[45:59], [drx[45] + 0.01*(drx[58] - drx[45])]))\n",
-    "outer_2_y = np.concatenate((dry[45:59], [dry[45] + 0.01*(dry[58] - dry[45])]))\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(inner_x,inner_y,label='inner')\n",
-    "ax.plot(outer_1_x,outer_1_y,label='outer 1')\n",
-    "ax.plot(outer_2_x,outer_2_y,label='outer 2')\n",
     "ax.set_aspect('equal')\n",
-    "plt.legend()"
+    "ax.plot(inner_x, inner_y)\n",
+    "for i in range(len(inner_x)):\n",
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 123,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "## Smoothen inner"
+    "radius1 = 0.003\n",
+    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
+    "radius2 = 0.0015\n",
+    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 122,
+   "execution_count": 124,
    "metadata": {},
    "outputs": [
     {
@@ -71053,27 +72060,18 @@
     "ax.set_aspect('equal')\n",
     "ax.plot(inner_x, inner_y)\n",
     "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 123,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "radius1 = 0.003\n",
-    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
-    "radius2 = 0.0015\n",
-    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)"
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 124,
+   "execution_count": 125,
    "metadata": {},
    "outputs": [
     {
@@ -72044,7 +73042,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -72052,26 +73050,40 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ed8c7df0>]"
+      ]
+     },
+     "execution_count": 125,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "plt.close('all')\n",
+    "inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
+    "inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(inner_x_smooth, inner_y_smooth)"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 125,
+   "cell_type": "markdown",
    "metadata": {},
+   "source": [
+    "## Smoothen outer 1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 126,
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [
     {
      "data": {
@@ -73041,7 +74053,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -73049,40 +74061,41 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ed8c7df0>]"
-      ]
-     },
-     "execution_count": 125,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "plt.close('all')\n",
-    "inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
-    "inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x_smooth, inner_y_smooth)"
+    "ax.plot(outer_1_x, outer_1_y)\n",
+    "for i in range(len(outer_1_x)):\n",
+    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 127,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "## Smoothen outer 1"
+    "radius1 = 0.005\n",
+    "radius2 = 0.0025\n",
+    "radius3 = 0.002\n",
+    "radius4 = 0.002\n",
+    "M1 = circle_m([outer_1_x[10],outer_1_y[10]], [outer_1_x[9],outer_1_y[9]], [outer_1_x[11],outer_1_y[11]], radius1)\n",
+    "M2 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius2)\n",
+    "M3 = circle_m([outer_1_x[26],outer_1_y[26]], [outer_1_x[25],outer_1_y[25]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
+    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[26],outer_1_y[26]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
+    "cx4, cy4 = circle_points(M4, radius4, 30)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 126,
-   "metadata": {
-    "scrolled": false
-   },
+   "execution_count": 128,
+   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -74052,7 +75065,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -74067,33 +75080,24 @@
     "ax.set_aspect('equal')\n",
     "ax.plot(outer_1_x, outer_1_y)\n",
     "for i in range(len(outer_1_x)):\n",
-    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 127,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "radius1 = 0.005\n",
-    "radius2 = 0.0025\n",
-    "radius3 = 0.002\n",
-    "radius4 = 0.002\n",
-    "M1 = circle_m([outer_1_x[10],outer_1_y[10]], [outer_1_x[9],outer_1_y[9]], [outer_1_x[11],outer_1_y[11]], radius1)\n",
-    "M2 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius2)\n",
-    "M3 = circle_m([outer_1_x[26],outer_1_y[26]], [outer_1_x[25],outer_1_y[25]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
-    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[26],outer_1_y[26]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
-    "cx4, cy4 = circle_points(M4, radius4, 30)"
+    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "ax.plot(cx3, cy3)\n",
+    "ax.plot(cx4, cy4)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
+    "for i in range(len(cx3)):\n",
+    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
+    "for i in range(len(cx4)):\n",
+    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 128,
+   "execution_count": 129,
    "metadata": {},
    "outputs": [
     {
@@ -75064,7 +76068,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -75072,31 +76076,35 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5edaff3d0>]"
+      ]
+     },
+     "execution_count": 129,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "outer_1_x_smooth = np.concatenate((outer_1_x[1:10], cx1[21:24], cx2[24:-1], cx2[:6], outer_1_x[13:26], cx3[8:15], cx4[15:22]))\n",
+    "outer_1_y_smooth = np.concatenate((outer_1_y[1:10], cy1[21:24], cy2[24:-1], cy2[:6], outer_1_y[13:26], cy3[8:15], cy4[15:22]))\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(outer_1_x, outer_1_y)\n",
-    "for i in range(len(outer_1_x)):\n",
-    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "ax.plot(cx3, cy3)\n",
-    "ax.plot(cx4, cy4)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
-    "for i in range(len(cx3)):\n",
-    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
-    "for i in range(len(cx4)):\n",
-    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
+    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Smoothen outer 2"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 129,
+   "execution_count": 130,
    "metadata": {},
    "outputs": [
     {
@@ -76067,7 +77075,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -76075,35 +77083,34 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5edaff3d0>]"
-      ]
-     },
-     "execution_count": 129,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "outer_1_x_smooth = np.concatenate((outer_1_x[1:10], cx1[21:24], cx2[24:-1], cx2[:6], outer_1_x[13:26], cx3[8:15], cx4[15:22]))\n",
-    "outer_1_y_smooth = np.concatenate((outer_1_y[1:10], cy1[21:24], cy2[24:-1], cy2[:6], outer_1_y[13:26], cy3[8:15], cy4[15:22]))\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
+    "ax.set_aspect('equal')\n",
+    "ax.plot(outer_2_x, outer_2_y)\n",
+    "for i in range(len(outer_2_x)):\n",
+    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 131,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "## Smoothen outer 2"
+    "radius1 = 0.005\n",
+    "radius2 = 0.0015\n",
+    "M1 = circle_m([outer_2_x[13],outer_2_y[13]], [outer_2_x[12],outer_2_y[12]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
+    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[13],outer_2_y[13]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 130,
+   "execution_count": 132,
    "metadata": {},
    "outputs": [
     {
@@ -77074,7 +78081,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -77089,27 +78096,18 @@
     "ax.set_aspect('equal')\n",
     "ax.plot(outer_2_x, outer_2_y)\n",
     "for i in range(len(outer_2_x)):\n",
-    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 131,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "radius1 = 0.005\n",
-    "radius2 = 0.0015\n",
-    "M1 = circle_m([outer_2_x[13],outer_2_y[13]], [outer_2_x[12],outer_2_y[12]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
-    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[13],outer_2_y[13]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)"
+    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 132,
+   "execution_count": 133,
    "metadata": {},
    "outputs": [
     {
@@ -78080,7 +79078,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -78088,25 +79086,28 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x1b5ede70c10>]"
+      ]
+     },
+     "execution_count": 133,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "outer_2_x_smooth = np.concatenate((outer_2_x[1:13], cx1[5:10], cx2[9:21]))\n",
+    "outer_2_y_smooth = np.concatenate((outer_2_y[1:13], cy1[5:10], cy2[9:21]))\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(outer_2_x, outer_2_y)\n",
-    "for i in range(len(outer_2_x)):\n",
-    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 133,
+   "execution_count": 134,
    "metadata": {},
    "outputs": [
     {
@@ -79077,7 +80078,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -79085,30 +80086,28 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ede70c10>]"
-      ]
-     },
-     "execution_count": 133,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "outer_2_x_smooth = np.concatenate((outer_2_x[1:13], cx1[5:10], cx2[9:21]))\n",
-    "outer_2_y_smooth = np.concatenate((outer_2_y[1:13], cy1[5:10], cy2[9:21]))\n",
     "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
+    "ax.plot(inner_x_smooth, inner_y_smooth, c='b')\n",
+    "ax.plot(outer_1_x_smooth, outer_1_y_smooth, c='b')\n",
+    "ax.plot(outer_2_x_smooth, outer_2_y_smooth, c='b')\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 134,
+   "execution_count": 135,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.71 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -80077,7 +81076,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -80085,26 +81084,12 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.plot(inner_x_smooth, inner_y_smooth, c='b')\n",
-    "ax.plot(outer_1_x_smooth, outer_1_y_smooth, c='b')\n",
-    "ax.plot(outer_2_x_smooth, outer_2_y_smooth, c='b')\n",
-    "ax.set_aspect('equal')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 135,
-   "metadata": {},
-   "outputs": [
+    },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 11.71 um\n"
+      "Minimum Arm Width: 21.16 um\n"
      ]
     },
     {
@@ -81075,7 +82060,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -81088,7 +82073,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 21.16 um\n"
+      "Minimum Arm Width: 55.19 um\n"
      ]
     },
     {
@@ -82059,7 +83044,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -82069,12 +83054,44 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 55.19 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 135,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4rdso1_inner.txt\"\n",
+    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rdso1_outer_1.txt\"\n",
+    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rdso1_outer_2.txt\"\n",
+    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Lower frequency, higher deformation"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# V4rds but with stress optimization L2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -83043,7 +84060,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -83055,40 +84072,67 @@
     {
      "data": {
       "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+       "[<matplotlib.lines.Line2D at 0x173f77bd940>]"
       ]
      },
-     "execution_count": 135,
+     "execution_count": 43,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4rdso1_inner.txt\"\n",
-    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rdso1_outer_1.txt\"\n",
-    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rdso1_outer_2.txt\"\n",
-    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
+    "drx = copy.deepcopy(filterX)\n",
+    "dry = copy.deepcopy(filterY)\n",
+    "fig,ax = plt.subplots(1,1)\n",
+    "ax.set_aspect('equal')\n",
+    "ax.plot(drx, dry)\n",
+    "for i in range(len(drx)):\n",
+    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
+    "\n",
+    "x0 = []\n",
+    "y0 = []\n",
+    "for i in range(len(drx)):\n",
+    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
+    "    x0.append(x0n)\n",
+    "    y0.append(y0n)\n",
+    "for i in range(len(x0)):\n",
+    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
+    "ax.plot(x0,y0)"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "Lower frequency, higher deformation"
+    "## Select partitioning"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#inner stays the same\n",
+    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
+    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
+    "#outer is now two holes\n",
+    "outer_1_x = np.concatenate((drx[33:45], drx[63:76],[drx[33] + 0.01*(drx[33] - drx[75])]))\n",
+    "outer_1_y = np.concatenate((dry[33:45], dry[63:76],[dry[33] + 0.01*(dry[33] - dry[75])]))\n",
+    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
+    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# V4rds but with stress optimization L2"
+    "## inner smoothening"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 136,
+   "execution_count": 45,
    "metadata": {},
    "outputs": [
     {
@@ -84059,7 +85103,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -84067,71 +85111,19 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ed0b5910>]"
-      ]
-     },
-     "execution_count": 136,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "drx = copy.deepcopy(filterX)\n",
-    "dry = copy.deepcopy(filterY)\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(drx, dry)\n",
-    "for i in range(len(drx)):\n",
-    "    ax.text(drx[i], dry[i], f\"{i}\")\n",
-    "\n",
-    "x0 = []\n",
-    "y0 = []\n",
-    "for i in range(len(drx)):\n",
-    "    x0n, y0n = rot([drx[i],dry[i]],-10)\n",
-    "    x0.append(x0n)\n",
-    "    y0.append(y0n)\n",
-    "for i in range(len(x0)):\n",
-    "    ax.text(x0[i], y0[i], f\"{i}\")\n",
-    "ax.plot(x0,y0)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Select partitioning"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 137,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "#inner stays the same\n",
-    "inner_x = np.concatenate((drx[76:],drx[:33],[drx[76]+0.01*(drx[32] - drx[76])]))\n",
-    "inner_y = np.concatenate((dry[76:],dry[:33],[dry[76]+0.01*(dry[32] - dry[76])]))\n",
-    "#outer is now two holes\n",
-    "outer_1_x = np.concatenate((drx[33:45], drx[63:76],[drx[33] + 0.01*(drx[33] - drx[75])]))\n",
-    "outer_1_y = np.concatenate((dry[33:45], dry[63:76],[dry[33] + 0.01*(dry[33] - dry[75])]))\n",
-    "outer_2_x = np.concatenate((drx[45:63], [drx[45] + 0.01*(drx[62] - drx[45])]))\n",
-    "outer_2_y = np.concatenate((dry[45:63], [dry[45] + 0.01*(dry[62] - dry[45])]))"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## inner smoothening"
+    "ax.plot(inner_x, inner_y)\n",
+    "for i in range(len(inner_x)):\n",
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 138,
+   "execution_count": 46,
    "metadata": {},
    "outputs": [
     {
@@ -85102,7 +86094,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -85113,16 +86105,30 @@
     }
    ],
    "source": [
+    "radius1 = 0.003\n",
+    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
+    "radius2 = 0.0015\n",
+    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
     "ax.plot(inner_x, inner_y)\n",
     "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")"
+    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 139,
+   "execution_count": 47,
    "metadata": {},
    "outputs": [
     {
@@ -86093,7 +87099,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -86101,33 +87107,38 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x173f9527100>]"
+      ]
+     },
+     "execution_count": 47,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "radius1 = 0.003\n",
-    "M1 = circle_m([inner_x[37],inner_y[37]], [inner_x[36],inner_y[36]], [inner_x[38],inner_y[38]], radius1)\n",
-    "radius2 = 0.0015\n",
-    "M2 = circle_m([inner_x[0],inner_y[0]], [inner_x[37],inner_y[37]], [inner_x[1],inner_y[1]], radius2)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "\n",
+    "inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
+    "inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
+    "#inner_x_smooth = np.concatenate((inner_x[1:30], [inner_x[34]-0.3 * (inner_y[34]-inner_y[35])], cx1[24:29], cx2[28:], cx2[:9]))\n",
+    "#inner_y_smooth = np.concatenate((inner_y[1:30], [inner_y[34]+0.3 * (inner_x[34]-inner_x[35])], cy1[24:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x, inner_y)\n",
-    "for i in range(len(inner_x)):\n",
-    "    ax.text(inner_x[i], inner_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(inner_x_smooth, inner_y_smooth)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## outer 1 smoothening"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 140,
+   "execution_count": 48,
    "metadata": {},
    "outputs": [
     {
@@ -87098,7 +88109,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -87106,38 +88117,19 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ed256e20>]"
-      ]
-     },
-     "execution_count": 140,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "#inner_x_smooth = np.concatenate((inner_x[1:36], cx1[22:29], cx2[28:], cx2[:9]))\n",
-    "#inner_y_smooth = np.concatenate((inner_y[1:36], cy1[22:29], cy2[28:], cy2[:9]))\n",
-    "inner_x_smooth = np.concatenate((inner_x[1:30], [inner_x[34]-0.3 * (inner_y[34]-inner_y[35])], cx1[24:29], cx2[28:], cx2[:9]))\n",
-    "inner_y_smooth = np.concatenate((inner_y[1:30], [inner_y[34]+0.3 * (inner_x[34]-inner_x[35])], cy1[24:29], cy2[28:], cy2[:9]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(inner_x_smooth, inner_y_smooth)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## outer 1 smoothening"
+    "ax.plot(outer_1_x, outer_1_y)\n",
+    "for i in range(len(outer_1_x)):\n",
+    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 141,
+   "execution_count": 49,
    "metadata": {},
    "outputs": [
     {
@@ -88108,7 +89100,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -88119,16 +89111,42 @@
     }
    ],
    "source": [
-    "fig,ax = plt.subplots(1,1)\n",
+    "radius1 = 0.003\n",
+    "M1 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius1)\n",
+    "radius2 = 0.0015\n",
+    "M2 = circle_m([outer_1_x[12],outer_1_y[12]], [outer_1_x[11],outer_1_y[1]], [outer_1_x[13],outer_1_y[13]], radius2)\n",
+    "radius3 = 0.0025\n",
+    "M3 = circle_m([outer_1_x[24],outer_1_y[24]], [outer_1_x[23],outer_1_y[23]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
+    "radius4 = 0.002\n",
+    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[24],outer_1_y[24]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
+    "cx4, cy4 = circle_points(M4, radius4, 30)\n",
+    "\n",
+    "fig, ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
     "ax.plot(outer_1_x, outer_1_y)\n",
     "for i in range(len(outer_1_x)):\n",
-    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")"
+    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "ax.plot(cx3, cy3)\n",
+    "ax.plot(cx4, cy4)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
+    "for i in range(len(cx3)):\n",
+    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
+    "for i in range(len(cx4)):\n",
+    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 142,
+   "execution_count": 50,
    "metadata": {},
    "outputs": [
     {
@@ -89099,7 +90117,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -89107,45 +90125,36 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x173f9b8dcd0>]"
+      ]
+     },
+     "execution_count": 50,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "radius1 = 0.003\n",
-    "M1 = circle_m([outer_1_x[11],outer_1_y[11]], [outer_1_x[10],outer_1_y[10]], [outer_1_x[12],outer_1_y[12]], radius1)\n",
-    "radius2 = 0.0015\n",
-    "M2 = circle_m([outer_1_x[12],outer_1_y[12]], [outer_1_x[11],outer_1_y[1]], [outer_1_x[13],outer_1_y[13]], radius2)\n",
-    "radius3 = 0.0025\n",
-    "M3 = circle_m([outer_1_x[24],outer_1_y[24]], [outer_1_x[23],outer_1_y[23]], [outer_1_x[0],outer_1_y[0]], radius3)\n",
-    "radius4 = 0.002\n",
-    "M4 = circle_m([outer_1_x[0],outer_1_y[0]], [outer_1_x[24],outer_1_y[24]], [outer_1_x[1],outer_1_y[1]], radius4)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "cx3, cy3 = circle_points(M3, radius3, 30)\n",
-    "cx4, cy4 = circle_points(M4, radius4, 30)\n",
-    "\n",
-    "fig, ax = plt.subplots(1,1)\n",
+    "outer_1_x_smooth = np.concatenate((outer_1_x[1:11], cx1[21:28], cx2[27:], cx2[:7], outer_1_x[13:24], cx3[8:15], cx4[14:23]))\n",
+    "outer_1_y_smooth = np.concatenate((outer_1_y[1:11], cy1[21:28], cy2[27:], cy2[:7], outer_1_y[13:24], cy3[8:15], cy4[14:23]))\n",
+    "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_1_x, outer_1_y)\n",
-    "for i in range(len(outer_1_x)):\n",
-    "    ax.text(outer_1_x[i], outer_1_y[i], f\"{i}\")\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "ax.plot(cx3, cy3)\n",
-    "ax.plot(cx4, cy4)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")\n",
-    "for i in range(len(cx3)):\n",
-    "    ax.text(cx3[i], cy3[i], f\"{i}\")\n",
-    "for i in range(len(cx4)):\n",
-    "    ax.text(cx4[i], cy4[i], f\"{i}\")"
+    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## outer 2 smoothening"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 143,
+   "execution_count": 51,
    "metadata": {},
    "outputs": [
     {
@@ -90116,7 +91125,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -90124,36 +91133,42 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ec9c7280>]"
-      ]
-     },
-     "execution_count": 143,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "outer_1_x_smooth = np.concatenate((outer_1_x[1:11], cx1[21:28], cx2[27:], cx2[:7], outer_1_x[13:24], cx3[8:15], cx4[14:23]))\n",
-    "outer_1_y_smooth = np.concatenate((outer_1_y[1:11], cy1[21:28], cy2[27:], cy2[:7], outer_1_y[13:24], cy3[8:15], cy4[14:23]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)"
+    "ax.plot(outer_2_x, outer_2_y)\n",
+    "for i in range(len(outer_2_x)):\n",
+    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
    ]
   },
   {
-   "cell_type": "markdown",
+   "cell_type": "code",
+   "execution_count": 52,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "## outer 2 smoothening"
+    "radius1 = 0.002\n",
+    "M1 = circle_m([outer_2_x[17],outer_2_y[17]], [outer_2_x[16],outer_2_y[16]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
+    "radius2 = 0.002\n",
+    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[17],outer_2_y[17]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
+    "\n",
+    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
+    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
+    "\n",
+    "\n",
+    "ax.plot(cx1, cy1)\n",
+    "ax.plot(cx2, cy2)\n",
+    "for i in range(len(cx1)):\n",
+    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
+    "for i in range(len(cx2)):\n",
+    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 144,
+   "execution_count": 53,
    "metadata": {},
    "outputs": [
     {
@@ -91124,7 +92139,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -91132,44 +92147,38 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x173fa0f19d0>]"
+      ]
+     },
+     "execution_count": 53,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
+    "outer_2_x_smooth = np.concatenate((outer_2_x[1:17], cx1[5:14], cx2[13:21]))\n",
+    "outer_2_y_smooth = np.concatenate((outer_2_y[1:17], cy1[5:14], cy2[13:21]))\n",
     "fig,ax = plt.subplots(1,1)\n",
     "ax.set_aspect('equal')\n",
-    "ax.plot(outer_2_x, outer_2_y)\n",
-    "for i in range(len(outer_2_x)):\n",
-    "    ax.text(outer_2_x[i], outer_2_y[i], f\"{i}\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 145,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "radius1 = 0.002\n",
-    "M1 = circle_m([outer_2_x[17],outer_2_y[17]], [outer_2_x[16],outer_2_y[16]], [outer_2_x[0],outer_2_y[0]], radius1)\n",
-    "radius2 = 0.002\n",
-    "M2 = circle_m([outer_2_x[0],outer_2_y[0]], [outer_2_x[17],outer_2_y[17]], [outer_2_x[1],outer_2_y[1]], radius2)\n",
-    "\n",
-    "cx1, cy1 = circle_points(M1, radius1, 30)\n",
-    "cx2, cy2 = circle_points(M2, radius2, 30)\n",
-    "\n",
-    "\n",
-    "ax.plot(cx1, cy1)\n",
-    "ax.plot(cx2, cy2)\n",
-    "for i in range(len(cx1)):\n",
-    "    ax.text(cx1[i], cy1[i], f\"{i}\")\n",
-    "for i in range(len(cx2)):\n",
-    "    ax.text(cx2[i], cy2[i], f\"{i}\")"
+    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 146,
+   "execution_count": 60,
    "metadata": {},
    "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Arm Width: 11.71 um\n"
+     ]
+    },
     {
      "data": {
       "application/javascript": [
@@ -92138,7 +93147,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -92147,43 +93156,11 @@
      "metadata": {},
      "output_type": "display_data"
     },
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x1b5ee178100>]"
-      ]
-     },
-     "execution_count": 146,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "outer_2_x_smooth = np.concatenate((outer_2_x[1:17], cx1[5:14], cx2[13:21]))\n",
-    "outer_2_y_smooth = np.concatenate((outer_2_y[1:17], cy1[5:14], cy2[13:21]))\n",
-    "fig,ax = plt.subplots(1,1)\n",
-    "ax.set_aspect('equal')\n",
-    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 147,
-   "metadata": {},
-   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 11.72 um\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "C:\\Users\\engel\\AppData\\Local\\Temp/ipykernel_21064/2861829821.py:25: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n",
-      "  fig,ax = plt.subplots(1,1)\n"
+      "Minimum Arm Width: 25.93 um\n"
      ]
     },
     {
@@ -93154,7 +94131,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -93167,7 +94144,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Minimum Arm Width: 25.93 um\n"
+      "Minimum Arm Width: 51.71 um\n"
      ]
     },
     {
@@ -94138,7 +95115,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -94148,12 +95125,30 @@
      "output_type": "display_data"
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Minimum Arm Width: 51.71 um\n"
-     ]
-    },
+     "data": {
+      "text/plain": [
+       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
+      ]
+     },
+     "execution_count": 60,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "filename = \"design_v4rdso2_inner.txt\"\n",
+    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rdso2_outer_1.txt\"\n",
+    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
+    "filename = \"design_v4rdso2_outer_2.txt\"\n",
+    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 61,
+   "metadata": {},
+   "outputs": [
     {
      "data": {
       "application/javascript": [
@@ -95122,7 +96117,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"432\">"
+       "<img src=\"\" width=\"432\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -95130,25 +96125,14 @@
      },
      "metadata": {},
      "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "(<Figure size 432x288 with 1 Axes>, <AxesSubplot:>)"
-      ]
-     },
-     "execution_count": 147,
-     "metadata": {},
-     "output_type": "execute_result"
     }
    ],
    "source": [
-    "filename = \"design_v4rdso2_inner.txt\"\n",
-    "hole_to_SC_curves(inner_x_smooth, inner_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rdso2_outer_1.txt\"\n",
-    "hole_to_SC_curves(outer_1_x_smooth, outer_1_y_smooth, filename, num_holes=36)\n",
-    "filename = \"design_v4rdso2_outer_2.txt\"\n",
-    "hole_to_SC_curves(outer_2_x_smooth, outer_2_y_smooth, filename, num_holes=36)"
+    "fig, ax = plt.subplots(1,1)\n",
+    "ax.plot(inner_x_smooth, inner_y_smooth)\n",
+    "ax.plot(outer_1_x_smooth, outer_1_y_smooth)\n",
+    "ax.plot(outer_2_x_smooth, outer_2_y_smooth)\n",
+    "ax.set_aspect('equal')"
    ]
   },
   {
diff --git a/resources/designs/design_v4rdso2_inner.txt b/resources/designs/design_v4rdso2_inner.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9250cde1c27f755ad326c3f27010f7f633587e94
--- /dev/null
+++ b/resources/designs/design_v4rdso2_inner.txt
@@ -0,0 +1,1949 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.10308785065022087 0.4661179057190045 0
+0.09819581976071053 0.4659214724413688 0
+0.09329267907051014 0.4657693551945077 0
+0.08837329881141934 0.46563391136495635 0
+0.08342350190651371 0.46549519868335076 0
+0.07841772580206026 0.4653553216332829 0
+0.07347544397114672 0.46523927433984263 0
+0.06841087147880782 0.4651285361959176 0
+0.06324306221857788 0.4650236355132837 0
+0.05794831601146835 0.46489821751468646 0
+0.05256536505405335 0.4646312038485568 0
+0.0467241973288577 0.4639873975114924 0
+0.04096758653167344 0.46285166867679645 0
+0.035524711878633194 0.46132665785379745 0
+0.030713126740890065 0.45953426090020066 0
+0.02683166748622548 0.4575609731692809 0
+0.0242140491431741 0.45553148742171956 0
+0.022997204287084974 0.45356369579002237 0
+0.023137802429556417 0.4517854335713703 0
+0.024798900737669882 0.45028580472192564 0
+0.02785056543165819 0.44908023559664284 0
+0.03196750213819188 0.4481600300678896 0
+0.036978412466203786 0.44756655729109146 0
+0.04247022518459276 0.4472806736515615 0
+0.04792128223920712 0.44715684084545254 0
+0.05285404140853385 0.4470956879352213 0
+0.05760231125444312 0.44719555236819464 0
+0.062192278914288794 0.4476095981386217 0
+0.06671618467673737 0.4483434972759393 0
+0.07138550690536788 0.44935714664624216 0
+0.07609549932841755 0.4506094917808526 0
+0.08083318175161396 0.45202964006229546 0
+0.0854707278907869 0.45352517439906564 0
+0.09043423284978158 0.4549675138324807 0
+0.09559422299143723 0.45622657845777453 0
+0.10404921200363398 0.4577247105968646 0
+0.10468938029346539 0.4578296608608603 0
+0.1052920205999771 0.4580697747050799 0
+0.10582895413222321 0.45843382467303506 0
+0.10627507447499465 0.4589047881928367 0
+0.1066095215368906 0.45946064353373717 0
+0.10681665694500798 0.4600753995177849 0
+0.10762081806782003 0.46446406308506744 0
+0.1076558872342549 0.46478651874538396 0
+0.1076558872342549 0.46478651874538396 0
+0.10762081806782003 0.4651089744057005 0
+0.10751725036376134 0.46541635239772433 0
+0.10735002683281336 0.4656942800681746 0
+0.10712696666142764 0.46592976182807544 0
+0.10685849989530458 0.466111786812053 0
+0.10655717974204873 0.4662318437341628 0
+0.10623709559713303 0.4662843188661606 0
+0.10591321423942575 0.46626675852919625 0
+
+0.02058118965567092 0.47693754477490063 0
+0.01579758998840053 0.4758946035110815 0
+0.010995353905290689 0.474893375821308 0
+0.0061742296603006785 0.4739057482706263 0
+0.0013237184968938887 0.47290961973398177 0
+-0.003581719225773411 0.4719026238322595 0
+-0.008428765289399343 0.4709301213245089 0
+-0.01339716606865625 0.4699416117578606 0
+-0.01846824888184359 0.46894092409173727 0
+-0.023660777389933996 0.467897988444278 0
+-0.028915582790345187 0.4667002916914877 0
+-0.03455621425556091 0.46505195808838123 0
+-0.040028151957233 0.4629338585521843 0
+-0.04512352176388455 0.4604868708054974 0
+-0.04955076164716445 0.4578861813982614 0
+-0.053030594995672406 0.4552688640156668 0
+-0.05525602933267133 0.45281566606174223 0
+-0.05611268415028847 0.450666466714771 0
+-0.0556654300158406 0.44893963490617733 0
+-0.05376915970661217 0.447751235482733 0
+-0.05055451177472199 0.4470938976743239 0
+-0.04634032857432003 0.4469025706919027 0
+-0.04130248976745903 0.44718824954702185 0
+-0.035844466851269345 0.44786035239298966 0
+-0.030454720260657035 0.44868496700934857 0
+-0.02558628169554133 0.44948130778985707 0
+-0.020927490014695356 0.45040418346351235 0
+-0.0164791525707094 0.4516089784680132 0
+-0.012151415349739972 0.4531172960199586 0
+-0.0077290489836187165 0.4549263650746102 0
+-0.0033080793792057833 0.4569775658737093 0
+0.0011110208413783046 0.4591988288308539 0
+0.005418415421969192 0.46147694407651485 0
+0.01005605397351203 0.4637592747239874 0
+0.014919017992733888 0.465895234213398 0
+0.022985408807721028 0.46883879979317256 0
+0.023597627080691047 0.46905331968376557 0
+0.02414941659534009 0.46939443305017303 0
+0.02461497628723318 0.4698461898105019 0
+0.024972537102609813 0.47038746632073086 0
+0.025205379895143293 0.47099295309282724 0
+0.0253026171946409 0.47163433823827794 0
+0.02533247787220537 0.4760959692582269 0
+0.025311020421409744 0.476419615789353 0
+0.025311020421409744 0.476419615789353 0
+0.025220490196620662 0.47673108292679167 0
+0.025065120290532122 0.4770158068133671 0
+0.024852175627271572 0.477260474076591 0
+0.02459161326262209 0.47745364434716314 0
+0.024295616803160433 0.4775862851979248 0
+0.023978026714354575 0.4776521944901141 0
+0.023653693155781058 0.47764829037848117 0
+0.023337781604167898 0.477574755414947 0
+
+-0.0625508203719821 0.473265677874854 0
+-0.06708064156174078 0.471407917867399 0
+-0.07163605952442348 0.46958800153142105 0
+-0.07621244033473525 0.467778198822973 0
+-0.08081628542942015 0.4659549212928101 0
+-0.08547233552736933 0.4641114036003426 0
+-0.09007687078178804 0.46231199487486974 0
+-0.09479813750441733 0.4604757492484708 0
+-0.0996184115853751 0.45860967998722074 0
+-0.10455095004327428 0.45668091576279657 0
+-0.10951794528365 0.4545889273331154 0
+-0.11478665275611244 0.45198615024640015 0
+-0.11980765530414114 0.44895003739129946 0
+-0.12440070003121043 0.4456554232053722 0
+-0.12830907521646512 0.44232546197612366 0
+-0.13128154968340264 0.4391436408060978 0
+-0.13304718131814353 0.4363412698242619 0
+-0.13351761707414367 0.4340759650966271 0
+-0.13277729653827303 0.43245303260877677 0
+-0.13070347144171648 0.431611971526455 0
+-0.12742351572264457 0.4315228379115991 0
+-0.12324013185243896 0.4320662028490547 0
+-0.11832843674960587 0.4332223531286389 0
+-0.11307004290003106 0.43483202095523027 0
+-0.10790537149623318 0.4365800274962141 0
+-0.10324917857758074 0.43820966555581436 0
+-0.09882142008955823 0.43992751135980523 0
+-0.09464987334370013 0.44188644851182374 0
+-0.09064980076972831 0.4441233550128267 0
+-0.08660876163032556 0.44667287610403456 0
+-0.0826111437688609 0.4494606078692993 0
+-0.07864489787491893 0.4524154935512061 0
+-0.07479853285759455 0.45540697032680033 0
+-0.07062767301413388 0.458459944726522 0
+-0.06620949381829129 0.46140789903181134 0
+-0.05877679440363644 0.465707459301645 0
+-0.058211128089954614 0.46602503074051194 0
+-0.05772695521235188 0.4664567790720806 0
+-0.05734691515646541 0.4669825162242206 0
+-0.057088778172924334 0.46757765931201273 0
+-0.05696461446018029 0.4682143801061258 0
+-0.056980229775443245 0.4688629062498916 0
+-0.05772557684470393 0.47326194032166 0
+-0.05780290893894563 0.4735769438875205 0
+-0.05780290893894563 0.4735769438875205 0
+-0.05794614950701919 0.47386795873072024 0
+-0.05814860077916206 0.4741213773206309 0
+-0.05840079635889721 0.474325350085643 0
+-0.05869094386121147 0.47447033948596395 0
+-0.05900547631137244 0.4745495659783787 0
+-0.05932968652158828 0.47455932502015613 0
+-0.059648414782763046 0.4744991602893489 0
+-0.05994675771564528 0.4743718850219014 0
+
+-0.1437822553748748 0.4552138728365683 0
+-0.14792066176247107 0.4525977411832319 0
+-0.15209084753508323 0.45001443343799624 0
+-0.15628343389555588 0.4474374455112735 0
+-0.16050072741797494 0.4448424183527232 0
+-0.16476591816505481 0.4422183932217313 0
+-0.16898803613656804 0.4396467524021148 0
+-0.1733187155022789 0.4370185641101384 0
+-0.17774171926223353 0.4343438128239881 0
+-0.18226439498488306 0.43158782454755634 0
+-0.1867926604282654 0.4286651084508229 0
+-0.1915293568975184 0.42518697194520993 0
+-0.19594686367023179 0.4213250965239606 0
+-0.19989802597787953 0.41728296108367713 0
+-0.20316878246283834 0.4133249072193249 0
+-0.2055435809156722 0.40967526028803997 0
+-0.20679576202438615 0.4066088649025077 0
+-0.20686568476637518 0.40429628493205894 0
+-0.20585479209394397 0.4028265637473519 0
+-0.20366642433621202 0.4023583962215415 0
+-0.20042082062474467 0.40284017508002257 0
+-0.19639534608673725 0.4041017220686862 0
+-0.19175903405819406 0.4060932147315305 0
+-0.18686004291147773 0.40859153859636566 0
+-0.18207737262164886 0.4112098247677606 0
+-0.17777490141514565 0.4136232443786484 0
+-0.17371271132105126 0.41608386443749246 0
+-0.16994470561028946 0.4187374224229346 0
+-0.16639383786434098 0.4216349506008914 0
+-0.16285691088104298 0.424847457820419 0
+-0.15940411035835494 0.4282870167328223 0
+-0.1560112311655253 0.43188574243329086 0
+-0.15274276556616417 0.43549968623075225 0
+-0.14916541389657229 0.43923054130046707 0
+-0.14532626366326812 0.44290091832180567 0
+-0.1387530944595325 0.448425833318582 0
+-0.1382511675898391 0.4488368070582519 0
+-0.13784932269716532 0.44934607190040227 0
+-0.13756634960207406 0.44992981518702135 0
+-0.1374154798119898 0.450560741730811 0
+-0.13740376783061706 0.4512093501078081 0
+-0.13753176129718803 0.4518453121111806 0
+-0.13902966911973824 0.4560480868105165 0
+-0.13916052616087435 0.4563448761871622 0
+-0.13916052616087435 0.4563448761871622 0
+-0.13935212478005476 0.45660659639737294 0
+-0.13959550603879314 0.4568210096950005 0
+-0.13987928969992974 0.45697809035255105 0
+-0.14019020635487273 0.4570704934530602 0
+-0.14051371788639594 0.4570938983302467 0
+-0.1408346972548426 0.457047210598066 0
+-0.14113813582168713 0.45693261332298524 0
+-0.14140984513679167 0.45675546494622143 0
+
+-0.22064493930553375 0.4233306246214776 0
+-0.22426618750701516 0.42003561115871996 0
+-0.2279244321050718 0.4167674045028487 0
+-0.23160583440069343 0.41350153183198607 0
+-0.2353084360212214 0.41021360363211384 0
+-0.23905317175487262 0.4068888007383819 0
+-0.24276458552541075 0.4036230658296128 0
+-0.2465730920331055 0.400282791043383 0
+-0.25046443474095875 0.39688062869667273 0
+-0.2544398285151103 0.39338115567741544 0
+-0.2583917751074149 0.38971651716326333 0
+-0.2624525384481243 0.3854687026564537 0
+-0.2661323257375997 0.3808984057995271 0
+-0.2693215515584927 0.3762315673448212 0
+-0.27185530906244276 0.37176568430916185 0
+-0.2735602744518896 0.36775910429181435 0
+-0.27426095814522256 0.36452185537470416 0
+-0.27392824330606774 0.36223226673362163 0
+-0.2726774939593914 0.36096041358654035 0
+-0.2704410759874352 0.360879364650609 0
+-0.2673284403099907 0.36191741737560384 0
+-0.2635831871110304 0.3638588149485986 0
+-0.2593631301516772 0.3666251394978864 0
+-0.2549723950748033 0.36993620909454517 0
+-0.2507170449155519 0.37334521959595013 0
+-0.24689902383165208 0.3764690902244978 0
+-0.2433258297219275 0.37959771984284096 0
+-0.24007585399308054 0.3828652716450842 0
+-0.23708208239479026 0.38633538157252767 0
+-0.23415673530421316 0.3901132645141169 0
+-0.2313536637169823 0.3941001413166061 0
+-0.22863724214265935 0.3982333615762707 0
+-0.2260459866345747 0.4023599645420572 0
+-0.22317083915910482 0.40665534013837557 0
+-0.22002736852547433 0.41093661732727055 0
+-0.21451345195272925 0.4175190153045544 0
+-0.21409051532097273 0.41801090411591 0
+-0.21378320826694844 0.4185822117141138 0
+-0.21360590012695546 0.4192062243908365 0
+-0.21356688163255588 0.41985376400685487 0
+-0.21366797724518194 0.4204945523294125 0
+-0.21390445984634698 0.42109862680873167 0
+-0.21610941525097643 0.4249774429531023 0
+-0.21628982121402895 0.42524700034550644 0
+-0.21628982121402895 0.42524700034550644 0
+-0.21652395625722592 0.4254714736865778 0
+-0.21680087248616997 0.4256403668523721 0
+-0.21710762160576585 0.42574578258616813 0
+-0.2174298603681085 0.4257827917654148 0
+-0.21775252124681335 0.42574966388202307 0
+-0.21806051697780404 0.42564794795900157 0
+-0.21833944602301208 0.4254824001198615 0
+-0.21857626597029095 0.42526076119756795 0
+
+-0.2908034384071207 0.37858468959289543 0
+-0.2937974986283252 0.3747109116374253 0
+-0.29683264814087545 0.3708571088763648 0
+-0.299891008825773 0.367001583349855 0
+-0.30296641686777703 0.36312065614324207 0
+-0.3060769156876603 0.3591960979402646 0
+-0.30916485582787157 0.3553354966450043 0
+-0.31233546993451117 0.35138462792364017 0
+-0.31557691511119923 0.3473584274976975 0
+-0.31888423660867155 0.343221799452486 0
+-0.3221397864524727 0.3389265867077711 0
+-0.32540123242537644 0.33403816189405644 0
+-0.32823149175688543 0.3288983097587684 0
+-0.33056187807828197 0.32374856781455214 0
+-0.33228164966160895 0.31891054920377826 0
+-0.3332649774770645 0.314668774006768 0
+-0.3333928738355576 0.3113590337282994 0
+-0.3326676307872849 0.30916200440885455 0
+-0.33121502815235243 0.3081266639136844 0
+-0.3289985123945678 0.30843519619853754 0
+-0.32611342061113563 0.3099979820832773 0
+-0.3227621863744833 0.31256024185774234 0
+-0.31908660877957823 0.3160173449218712 0
+-0.3153375400360383 0.32004055507614126 0
+-0.3117388066686422 0.32413670884851353 0
+-0.30852124434596817 0.32787611326642757 0
+-0.3055456159155139 0.3315776906164794 0
+-0.30291241903653576 0.33535995332747365 0
+-0.3005667078209962 0.33929720747021863 0
+-0.2983418258141901 0.34352567707239023 0
+-0.29627365307417175 0.3479387325307787 0
+-0.29431622621331566 0.3524808615435599 0
+-0.2924809147838821 0.3569947389347179 0
+-0.29039533140368157 0.36172412224371076 0
+-0.28804305313425466 0.36648621515920826 0
+-0.2837559267573867 0.3739260932853139 0
+-0.28342483107910654 0.37448395137573 0
+-0.28322139923306355 0.3750999428377113 0
+-0.2831551434662802 0.3757452645951211 0
+-0.28322916182477337 0.3763897421198063 0
+-0.2834399932923654 0.37700324035899807 0
+-0.2837777796239541 0.37755707281688616 0
+-0.28662278615645437 0.3809940745405206 0
+-0.28684725949752576 0.38122820958371756 0
+-0.28684725949752576 0.38122820958371756 0
+-0.28711681688992985 0.3814086155467701 0
+-0.2874188541295894 0.38152685684735255 0
+-0.2877392482908682 0.38157740465366563 0
+-0.28806301809887747 0.3815578954064659 0
+-0.28837502443723884 0.3814692413364693 0
+-0.28866067823634073 0.38131558780945723 0
+-0.2889066226420185 0.3811041194935789 0
+-0.28910135756721034 0.3808447244122548 0
+
+-0.35212602218634736 0.32233565034412975 0
+-0.3544019214225213 0.31800081067889774 0
+-0.35672175436748604 0.3136785076594245 0
+-0.35906414669985415 0.30935047746940053 0
+-0.36141891644620944 0.3049944712653758 0
+-0.363800667419671 0.30058940346822816 0
+-0.36617130843096807 0.2962512382032746 0
+-0.3686076926313305 0.29180982069363876 0
+-0.37110075060541015 0.28728191625105015 0
+-0.37363950853608796 0.2826338225298034 0
+-0.3760997433967695 0.2778385434202914 0
+-0.3784627746163522 0.27245804061397405 0
+-0.3803575099922871 0.2669048050065647 0
+-0.3817582492050439 0.2614286318759179 0
+-0.3826117804784348 0.25636547843736235 0
+-0.38284359280181446 0.2520173922536087 0
+-0.38239481575933354 0.24873572539733343 0
+-0.3812990806449739 0.24669801102364722 0
+-0.3796887613177954 0.24593064147742635 0
+-0.3775594954838716 0.24661938038571365 0
+-0.3749896096483643 0.2486594149718982 0
+-0.37213421993049434 0.25176468398115237 0
+-0.36911480226532667 0.25580752323289746 0
+-0.36612131341177284 0.26042063074008376 0
+-0.3632885425285534 0.26507946822380374 0
+-0.36076920297011444 0.2693207865200757 0
+-0.35848155318304925 0.2734828410471434 0
+-0.35654514350864575 0.2776648925283323 0
+-0.354918765924154 0.2819496594115984 0
+-0.35346195091505106 0.2865002357651992 0
+-0.35219151740440474 0.29120538142249763 0
+-0.3510525606816769 0.29601840889677017 0
+-0.3500289583399653 0.30078240883290147 0
+-0.34879630845068543 0.30580209993590846 0
+-0.3473066953303684 0.3109003147945064 0
+-0.34437662131494795 0.31897161613733216 0
+-0.34414742676478643 0.3195784932710212 0
+-0.3440540513004251 0.3202204520079146 0
+-0.3441008610547981 0.32086747507096103 0
+-0.34428566725581633 0.32148930838084694 0
+-0.3445998285709174 0.32205687570312014 0
+-0.3450286551661726 0.3225436382205969 0
+-0.3484272687426964 0.32543439396532925 0
+-0.34868898895290723 0.32562599258450964 0
+-0.34868898895290723 0.32562599258450964 0
+-0.34898577832955285 0.3257568496256458 0
+-0.3493037593312391 0.3258208463589312 0
+-0.34962806351973763 0.32581499036824485 0
+-0.34994352679163254 0.32573955547320277 0
+-0.35023539843494206 0.3255980689256571 0
+-0.35049003085601727 0.3253971464793202 0
+-0.35069551772585217 0.3251461830444735 0
+-0.3508422507067956 0.32485691339240463 0
+
+-0.4027494349658066 0.25629260546936683 0
+-0.40423802117031943 0.2516284160040664 0
+-0.405772050597558 0.24696894371623618 0
+-0.4073273021716854 0.242299913869933 0
+-0.40888988513521995 0.2376011837127604 0
+-0.4104705199641553 0.2328494520773869 0
+-0.41205183111901217 0.22816553579909815 0
+-0.4136799571120393 0.22336851972475513 0
+-0.4153488775785163 0.21847648935077857 0
+-0.41704193306734944 0.21345815992916772 0
+-0.41863209995360845 0.20830851658407284 0
+-0.4200249169120146 0.20259941964025696 0
+-0.4209265577567601 0.1968015328145846 0
+-0.4213550891087057 0.1911653192470047 0
+-0.4213164459563263 0.18603087233581866 0
+-0.4207896992874867 0.18170858956377722 0
+-0.4197778847073755 0.17855470791651967 0
+-0.4183449508839101 0.1767382234087033 0
+-0.416625843602381 0.17626214094678594 0
+-0.4146485243572211 0.17731015949529774 0
+-0.41247192915032577 0.1797654573643332 0
+-0.4101991435229187 0.18331938358087232 0
+-0.40792762926534537 0.1878251193953446 0
+-0.4057806759458146 0.19288795731818642 0
+-0.4037999398566071 0.19796792209379668 0
+-0.40205537192003915 0.202582283958205 0
+-0.4005252098575363 0.20707835374158484 0
+-0.39934442421579364 0.21153312447493264 0
+-0.3984867969222676 0.21603521362516837 0
+-0.3978423134977356 0.22076962977039702 0
+-0.3974082206958119 0.225623902156727 0
+-0.3971223407348924 0.23056158668819454 0
+-0.39694154912008794 0.23543095744194015 0
+-0.39659928616486356 0.24058843556488257 0
+-0.3960175993345367 0.24586786568792374 0
+-0.39453360649683333 0.25432534784044336 0
+-0.39441327703521895 0.25496280436279295 0
+-0.39443279511877366 0.25561122478322457 0
+-0.3945912481036033 0.2562402896835465 0
+-0.3948812269042451 0.25682058468817504 0
+-0.39528917243426914 0.2573249758476453 0
+-0.39579600961409067 0.25772987839193096 0
+-0.399644965080897 0.25998655400725046 0
+-0.3999359799240967 0.2601297945753241 0
+-0.3999359799240967 0.2601297945753241 0
+-0.40025098348995714 0.26020712666956575 0
+-0.40057524656184 0.2602149343271972 0
+-0.40089360695889653 0.2601528524708252 0
+-0.4011911785027927 0.2600237839790547 0
+-0.4014540470788627 0.25983376395111146 0
+-0.40166992124464695 0.25959167751231005 0
+-0.4018287069640804 0.25930884435546914 0
+-0.4019229795934 0.2589984894446561 0
+
+-0.44113550996487755 0.18246223946773332 0
+-0.441791553199166 0.17761041923907372 0
+-0.44249316840078823 0.17275535339054565 0
+-0.4432140236845902 0.16788718999719998 0
+-0.44393694157266217 0.162988504425033 0
+-0.4446684334676339 0.15803448791268226 0
+-0.44541236742679235 0.15314713904699817 0
+-0.4461827654280575 0.14814027931395965 0
+-0.4469768390830726 0.1430327648760215 0
+-0.4477727494957602 0.13779667915412502 0
+-0.44844453199142104 0.13244914088064266 0
+-0.4488248146501688 0.12658491782102366 0
+-0.4487059650629095 0.12071854563441407 0
+-0.44814926784576253 0.11509354512709029 0
+-0.4472196244202433 0.11004381231451471 0
+-0.4459503236901706 0.1058786633290333 0
+-0.4444062150464429 0.1029483959887043 0
+-0.44267962148299816 0.10140833430934225 0
+-0.4409039604519574 0.10123800445642436 0
+-0.439138667640254 0.10261345913188714 0
+-0.4374214978059218 0.10540941730046358 0
+-0.43580037371018127 0.10930401647457147 0
+-0.4343457816714771 0.11413574434906062 0
+-0.4331105979761723 0.11949448091919196 0
+-0.43204208034474667 0.12484122082757187 0
+-0.4311252918440083 0.12968842120984622 0
+-0.4303991107060376 0.1343818954442913 0
+-0.4300098266711737 0.13897402947528797 0
+-0.42994700823994697 0.14355664719183048 0
+-0.4301344387027158 0.14833105028984436 0
+-0.4305498762996396 0.1531869547951276 0
+-0.4311257594184788 0.15809926733789043 0
+-0.4317932717923124 0.16292605554291828 0
+-0.43235179525784456 0.16806461332284045 0
+-0.4326957089774995 0.17336484589755666 0
+-0.43270288768895027 0.18195153254425828 0
+-0.43269507946568453 0.18260019966140534 0
+-0.43282689805006325 0.18323537983901705 0
+-0.4330921797515865 0.18382737275794037 0
+-0.4334785202927306 0.18434849748723933 0
+-0.4339678548191784 0.1847743868137604 0
+-0.43453730259232937 0.18508512662593748 0
+-0.43871965138522445 0.18663915416520566 0
+-0.4390311185226632 0.18672968438999474 0
+-0.4390311185226632 0.18672968438999474 0
+-0.43935476505378923 0.18675114184079036 0
+-0.43967545762651455 0.18670252319104153 0
+-0.4399782010125628 0.1865861017947748 0
+-0.44024883926767727 0.1864073213870865 0
+-0.44047471764784174 0.18617454154113994 0
+-0.4406452743310455 0.18589864678381543 0
+-0.4407525342763419 0.1855925376473304 0
+-0.4407914821279001 0.18527052745469108 0
+
+-0.4661179057190045 0.1030878506502209 0
+-0.4659214724413688 0.09819581976071055 0
+-0.4657693551945077 0.09329267907051017 0
+-0.46563391136495635 0.08837329881141937 0
+-0.46549519868335076 0.08342350190651374 0
+-0.4653553216332829 0.07841772580206029 0
+-0.46523927433984263 0.07347544397114675 0
+-0.4651285361959176 0.06841087147880785 0
+-0.4650236355132837 0.06324306221857791 0
+-0.46489821751468646 0.057948316011468375 0
+-0.4646312038485568 0.052565365054053376 0
+-0.4639873975114924 0.04672419732885773 0
+-0.46285166867679645 0.04096758653167347 0
+-0.46132665785379745 0.03552471187863322 0
+-0.45953426090020066 0.030713126740890093 0
+-0.4575609731692809 0.026831667486225508 0
+-0.45553148742171956 0.024214049143174127 0
+-0.45356369579002237 0.022997204287085002 0
+-0.4517854335713703 0.023137802429556445 0
+-0.45028580472192564 0.02479890073766991 0
+-0.44908023559664284 0.027850565431658217 0
+-0.4481600300678896 0.03196750213819191 0
+-0.44756655729109146 0.036978412466203814 0
+-0.4472806736515615 0.042470225184592786 0
+-0.44715684084545254 0.04792128223920715 0
+-0.4470956879352213 0.05285404140853388 0
+-0.44719555236819464 0.05760231125444315 0
+-0.4476095981386217 0.06219227891428882 0
+-0.4483434972759393 0.0667161846767374 0
+-0.44935714664624216 0.07138550690536791 0
+-0.4506094917808526 0.07609549932841758 0
+-0.45202964006229546 0.08083318175161398 0
+-0.45352517439906564 0.08547072789078693 0
+-0.4549675138324807 0.09043423284978161 0
+-0.45622657845777453 0.09559422299143726 0
+-0.4577247105968646 0.10404921200363401 0
+-0.4578296608608603 0.10468938029346542 0
+-0.4580697747050799 0.10529202059997712 0
+-0.45843382467303506 0.10582895413222324 0
+-0.4589047881928367 0.10627507447499468 0
+-0.45946064353373717 0.10660952153689063 0
+-0.4600753995177849 0.10681665694500801 0
+-0.46446406308506744 0.10762081806782006 0
+-0.46478651874538396 0.10765588723425493 0
+-0.46478651874538396 0.10765588723425493 0
+-0.4651089744057005 0.10762081806782006 0
+-0.46541635239772433 0.10751725036376136 0
+-0.4656942800681746 0.10735002683281339 0
+-0.46592976182807544 0.10712696666142767 0
+-0.466111786812053 0.1068584998953046 0
+-0.4662318437341628 0.10655717974204876 0
+-0.4662843188661606 0.10623709559713305 0
+-0.46626675852919625 0.10591321423942578 0
+
+-0.47693754477490063 0.020581189655670934 0
+-0.4758946035110815 0.015797589988400543 0
+-0.474893375821308 0.010995353905290703 0
+-0.4739057482706263 0.006174229660300692 0
+-0.47290961973398177 0.0013237184968939025 0
+-0.4719026238322595 -0.003581719225773397 0
+-0.4709301213245089 -0.008428765289399343 0
+-0.4699416117578606 -0.013397166068656235 0
+-0.46894092409173727 -0.018468248881843577 0
+-0.467897988444278 -0.023660777389933982 0
+-0.4667002916914877 -0.028915582790345187 0
+-0.46505195808838123 -0.034556214255560894 0
+-0.4629338585521843 -0.040028151957233 0
+-0.4604868708054974 -0.04512352176388454 0
+-0.4578861813982614 -0.04955076164716444 0
+-0.4552688640156668 -0.05303059499567239 0
+-0.45281566606174223 -0.05525602933267132 0
+-0.450666466714771 -0.05611268415028846 0
+-0.44893963490617733 -0.05566543001584059 0
+-0.447751235482733 -0.053769159706612155 0
+-0.4470938976743239 -0.05055451177472198 0
+-0.4469025706919027 -0.046340328574320015 0
+-0.44718824954702185 -0.04130248976745902 0
+-0.44786035239298966 -0.035844466851269345 0
+-0.44868496700934857 -0.03045472026065702 0
+-0.44948130778985707 -0.025586281695541314 0
+-0.45040418346351235 -0.020927490014695342 0
+-0.4516089784680131 -0.016479152570709386 0
+-0.4531172960199586 -0.012151415349739958 0
+-0.4549263650746102 -0.0077290489836187165 0
+-0.45697756587370925 -0.0033080793792057833 0
+-0.4591988288308539 0.0011110208413783185 0
+-0.46147694407651485 0.0054184154219692054 0
+-0.4637592747239874 0.01005605397351203 0
+-0.465895234213398 0.014919017992733902 0
+-0.46883879979317256 0.02298540880772104 0
+-0.46905331968376557 0.02359762708069106 0
+-0.46939443305017303 0.024149416595340104 0
+-0.4698461898105019 0.024614976287233192 0
+-0.47038746632073086 0.024972537102609826 0
+-0.47099295309282724 0.025205379895143307 0
+-0.47163433823827794 0.025302617194640914 0
+-0.4760959692582269 0.025332477872205383 0
+-0.476419615789353 0.025311020421409758 0
+-0.476419615789353 0.025311020421409758 0
+-0.47673108292679167 0.025220490196620676 0
+-0.4770158068133671 0.025065120290532136 0
+-0.477260474076591 0.024852175627271586 0
+-0.4774536443471631 0.024591613262622103 0
+-0.4775862851979248 0.024295616803160447 0
+-0.4776521944901141 0.02397802671435459 0
+-0.47764829037848117 0.023653693155781072 0
+-0.477574755414947 0.023337781604167912 0
+
+-0.473265677874854 -0.0625508203719821 0
+-0.471407917867399 -0.06708064156174078 0
+-0.46958800153142105 -0.07163605952442348 0
+-0.467778198822973 -0.07621244033473525 0
+-0.4659549212928101 -0.08081628542942015 0
+-0.4641114036003426 -0.08547233552736933 0
+-0.46231199487486974 -0.09007687078178804 0
+-0.4604757492484708 -0.09479813750441733 0
+-0.45860967998722074 -0.0996184115853751 0
+-0.45668091576279657 -0.10455095004327428 0
+-0.4545889273331154 -0.10951794528365 0
+-0.45198615024640015 -0.11478665275611244 0
+-0.44895003739129946 -0.11980765530414114 0
+-0.4456554232053722 -0.12440070003121043 0
+-0.44232546197612366 -0.12830907521646512 0
+-0.4391436408060978 -0.13128154968340264 0
+-0.4363412698242619 -0.13304718131814353 0
+-0.4340759650966271 -0.13351761707414367 0
+-0.43245303260877677 -0.13277729653827303 0
+-0.431611971526455 -0.13070347144171648 0
+-0.4315228379115991 -0.12742351572264457 0
+-0.4320662028490547 -0.12324013185243896 0
+-0.4332223531286389 -0.11832843674960587 0
+-0.43483202095523027 -0.11307004290003106 0
+-0.4365800274962141 -0.10790537149623318 0
+-0.43820966555581436 -0.10324917857758074 0
+-0.43992751135980523 -0.09882142008955823 0
+-0.44188644851182374 -0.09464987334370013 0
+-0.4441233550128267 -0.09064980076972831 0
+-0.44667287610403456 -0.08660876163032556 0
+-0.4494606078692993 -0.0826111437688609 0
+-0.4524154935512061 -0.07864489787491893 0
+-0.45540697032680033 -0.07479853285759455 0
+-0.458459944726522 -0.07062767301413388 0
+-0.46140789903181134 -0.06620949381829129 0
+-0.465707459301645 -0.05877679440363644 0
+-0.46602503074051194 -0.058211128089954614 0
+-0.4664567790720806 -0.05772695521235188 0
+-0.4669825162242206 -0.05734691515646541 0
+-0.46757765931201273 -0.057088778172924334 0
+-0.4682143801061258 -0.05696461446018029 0
+-0.4688629062498916 -0.056980229775443245 0
+-0.47326194032166 -0.05772557684470393 0
+-0.4735769438875205 -0.05780290893894563 0
+-0.4735769438875205 -0.05780290893894563 0
+-0.47386795873072024 -0.05794614950701919 0
+-0.4741213773206309 -0.05814860077916206 0
+-0.474325350085643 -0.05840079635889721 0
+-0.47447033948596395 -0.05869094386121147 0
+-0.4745495659783787 -0.05900547631137244 0
+-0.47455932502015613 -0.05932968652158828 0
+-0.4744991602893489 -0.059648414782763046 0
+-0.4743718850219014 -0.05994675771564528 0
+
+-0.4552138728365683 -0.1437822553748747 0
+-0.45259774118323187 -0.14792066176247098 0
+-0.45001443343799624 -0.15209084753508312 0
+-0.4474374455112735 -0.15628343389555577 0
+-0.4448424183527232 -0.16050072741797483 0
+-0.4422183932217313 -0.1647659181650547 0
+-0.4396467524021148 -0.16898803613656796 0
+-0.43701856411013834 -0.1733187155022788 0
+-0.4343438128239881 -0.17774171926223345 0
+-0.43158782454755634 -0.182264394984883 0
+-0.4286651084508229 -0.1867926604282653 0
+-0.42518697194520993 -0.19152935689751832 0
+-0.4213250965239606 -0.19594686367023167 0
+-0.41728296108367713 -0.19989802597787945 0
+-0.4133249072193249 -0.20316878246283826 0
+-0.40967526028803997 -0.20554358091567212 0
+-0.4066088649025077 -0.20679576202438607 0
+-0.40429628493205894 -0.2068656847663751 0
+-0.4028265637473519 -0.20585479209394386 0
+-0.4023583962215415 -0.20366642433621193 0
+-0.40284017508002257 -0.2004208206247446 0
+-0.4041017220686862 -0.19639534608673717 0
+-0.4060932147315305 -0.19175903405819397 0
+-0.40859153859636566 -0.18686004291147765 0
+-0.4112098247677606 -0.18207737262164875 0
+-0.41362324437864834 -0.17777490141514557 0
+-0.41608386443749246 -0.17371271132105118 0
+-0.4187374224229346 -0.16994470561028935 0
+-0.4216349506008914 -0.16639383786434087 0
+-0.424847457820419 -0.16285691088104293 0
+-0.4282870167328223 -0.1594041103583549 0
+-0.43188574243329086 -0.15601123116552523 0
+-0.4354996862307522 -0.15274276556616412 0
+-0.43923054130046707 -0.14916541389657217 0
+-0.44290091832180567 -0.14532626366326806 0
+-0.448425833318582 -0.13875309445953238 0
+-0.44883680705825185 -0.13825116758983902 0
+-0.4493460719004022 -0.13784932269716527 0
+-0.44992981518702135 -0.13756634960207398 0
+-0.450560741730811 -0.1374154798119897 0
+-0.45120935010780805 -0.13740376783061697 0
+-0.4518453121111806 -0.13753176129718794 0
+-0.4560480868105165 -0.13902966911973813 0
+-0.4563448761871622 -0.13916052616087426 0
+-0.4563448761871622 -0.13916052616087426 0
+-0.45660659639737294 -0.13935212478005465 0
+-0.45682100969500045 -0.13959550603879306 0
+-0.45697809035255105 -0.13987928969992966 0
+-0.4570704934530602 -0.14019020635487262 0
+-0.45709389833024666 -0.14051371788639583 0
+-0.457047210598066 -0.14083469725484254 0
+-0.45693261332298524 -0.14113813582168705 0
+-0.4567554649462214 -0.14140984513679156 0
+
+-0.4233306246214776 -0.2206449393055338 0
+-0.42003561115871996 -0.2242661875070152 0
+-0.4167674045028487 -0.22792443210507185 0
+-0.4135015318319861 -0.2316058344006935 0
+-0.4102136036321139 -0.23530843602122145 0
+-0.4068888007383819 -0.23905317175487267 0
+-0.4036230658296128 -0.2427645855254108 0
+-0.400282791043383 -0.24657309203310557 0
+-0.39688062869667273 -0.2504644347409588 0
+-0.39338115567741544 -0.2544398285151104 0
+-0.38971651716326333 -0.25839177510741496 0
+-0.3854687026564537 -0.26245253844812433 0
+-0.3808984057995271 -0.26613232573759976 0
+-0.3762315673448212 -0.26932155155849274 0
+-0.37176568430916185 -0.2718553090624428 0
+-0.36775910429181435 -0.27356027445188963 0
+-0.36452185537470416 -0.2742609581452226 0
+-0.36223226673362163 -0.2739282433060678 0
+-0.36096041358654035 -0.27267749395939145 0
+-0.360879364650609 -0.2704410759874353 0
+-0.36191741737560384 -0.26732844030999076 0
+-0.3638588149485986 -0.26358318711103046 0
+-0.3666251394978864 -0.2593631301516773 0
+-0.36993620909454517 -0.2549723950748033 0
+-0.37334521959595013 -0.2507170449155519 0
+-0.3764690902244978 -0.24689902383165213 0
+-0.37959771984284096 -0.24332582972192757 0
+-0.3828652716450842 -0.2400758539930806 0
+-0.3863353815725277 -0.2370820823947903 0
+-0.3901132645141169 -0.23415673530421321 0
+-0.3941001413166061 -0.23135366371698235 0
+-0.39823336157627076 -0.2286372421426594 0
+-0.4023599645420572 -0.22604598663457476 0
+-0.40665534013837557 -0.22317083915910488 0
+-0.41093661732727055 -0.2200273685254744 0
+-0.4175190153045544 -0.2145134519527293 0
+-0.41801090411591 -0.21409051532097279 0
+-0.4185822117141138 -0.2137832082669485 0
+-0.4192062243908365 -0.21360590012695552 0
+-0.41985376400685487 -0.21356688163255594 0
+-0.4204945523294125 -0.213667977245182 0
+-0.42109862680873167 -0.21390445984634704 0
+-0.4249774429531023 -0.2161094152509765 0
+-0.42524700034550644 -0.216289821214029 0
+-0.42524700034550644 -0.216289821214029 0
+-0.4254714736865778 -0.21652395625722598 0
+-0.4256403668523721 -0.21680087248616997 0
+-0.4257457825861682 -0.2171076216057659 0
+-0.4257827917654148 -0.21742986036810855 0
+-0.42574966388202307 -0.2177525212468134 0
+-0.42564794795900157 -0.2180605169778041 0
+-0.4254824001198615 -0.21833944602301214 0
+-0.42526076119756795 -0.218576265970291 0
+
+-0.3785846895928955 -0.29080343840712064 0
+-0.3747109116374253 -0.29379749862832516 0
+-0.37085710887636486 -0.29683264814087534 0
+-0.36700158334985505 -0.29989100882577296 0
+-0.36312065614324207 -0.302966416867777 0
+-0.35919609794026464 -0.30607691568766027 0
+-0.35533549664500436 -0.30916485582787145 0
+-0.3513846279236402 -0.3123354699345111 0
+-0.3473584274976975 -0.31557691511119923 0
+-0.34322179945248604 -0.3188842366086715 0
+-0.33892658670777115 -0.32213978645247265 0
+-0.3340381618940565 -0.3254012324253764 0
+-0.32889830975876844 -0.3282314917568854 0
+-0.3237485678145522 -0.3305618780782819 0
+-0.3189105492037783 -0.3322816496616089 0
+-0.31466877400676807 -0.33326497747706446 0
+-0.31135903372829943 -0.33339287383555755 0
+-0.3091620044088546 -0.33266763078728484 0
+-0.30812666391368443 -0.3312150281523524 0
+-0.3084351961985376 -0.32899851239456773 0
+-0.30999798208327733 -0.3261134206111356 0
+-0.3125602418577424 -0.3227621863744832 0
+-0.3160173449218713 -0.3190866087795782 0
+-0.32004055507614126 -0.3153375400360383 0
+-0.3241367088485136 -0.3117388066686421 0
+-0.3278761132664276 -0.30852124434596806 0
+-0.33157769061647946 -0.3055456159155138 0
+-0.3353599533274737 -0.3029124190365357 0
+-0.3392972074702187 -0.30056670782099615 0
+-0.3435256770723903 -0.29834182581419005 0
+-0.3479387325307788 -0.2962736530741717 0
+-0.35248086154355995 -0.2943162262133156 0
+-0.3569947389347179 -0.29248091478388205 0
+-0.36172412224371076 -0.29039533140368157 0
+-0.3664862151592083 -0.2880430531342546 0
+-0.3739260932853139 -0.2837559267573866 0
+-0.37448395137573 -0.2834248310791065 0
+-0.37509994283771136 -0.28322139923306344 0
+-0.37574526459512114 -0.2831551434662801 0
+-0.37638974211980636 -0.2832291618247733 0
+-0.3770032403589981 -0.28343999329236536 0
+-0.3775570728168862 -0.28377777962395406 0
+-0.38099407454052064 -0.2866227861564543 0
+-0.3812282095837176 -0.2868472594975257 0
+-0.3812282095837176 -0.2868472594975257 0
+-0.38140861554677014 -0.2871168168899298 0
+-0.3815268568473526 -0.28741885412958934 0
+-0.3815774046536657 -0.28773924829086817 0
+-0.3815578954064659 -0.2880630180988774 0
+-0.38146924133646937 -0.2883750244372387 0
+-0.3813155878094573 -0.2886606782363407 0
+-0.381104119493579 -0.2889066226420184 0
+-0.38084472441225486 -0.2891013575672102 0
+
+-0.3223356503441297 -0.3521260221863474 0
+-0.3180008106788976 -0.35440192142252136 0
+-0.3136785076594244 -0.35672175436748615 0
+-0.3093504774694004 -0.3590641466998542 0
+-0.30499447126537577 -0.3614189164462095 0
+-0.30058940346822804 -0.3638006674196711 0
+-0.29625123820327454 -0.3661713084309681 0
+-0.29180982069363864 -0.36860769263133053 0
+-0.2872819162510501 -0.3711007506054102 0
+-0.28263382252980335 -0.373639508536088 0
+-0.27783854342029135 -0.3760997433967696 0
+-0.27245804061397394 -0.37846277461635225 0
+-0.2669048050065646 -0.3803575099922872 0
+-0.26142863187591786 -0.381758249205044 0
+-0.25636547843736224 -0.3826117804784348 0
+-0.25201739225360864 -0.3828435928018145 0
+-0.24873572539733335 -0.38239481575933365 0
+-0.24669801102364713 -0.381299080644974 0
+-0.24593064147742627 -0.37968876131779544 0
+-0.24661938038571357 -0.37755949548387163 0
+-0.2486594149718981 -0.37498960964836436 0
+-0.2517646839811523 -0.37213421993049434 0
+-0.25580752323289735 -0.36911480226532667 0
+-0.2604206307400837 -0.3661213134117729 0
+-0.2650794682238036 -0.36328854252855347 0
+-0.26932078652007563 -0.3607692029701145 0
+-0.2734828410471433 -0.3584815531830493 0
+-0.2776648925283322 -0.3565451435086458 0
+-0.2819496594115983 -0.35491876592415406 0
+-0.2865002357651991 -0.35346195091505117 0
+-0.2912053814224976 -0.3521915174044048 0
+-0.2960184088967701 -0.35105256068167695 0
+-0.3007824088329014 -0.35002895833996533 0
+-0.30580209993590834 -0.3487963084506855 0
+-0.31090031479450636 -0.3473066953303685 0
+-0.31897161613733205 -0.34437662131494806 0
+-0.31957849327102117 -0.3441474267647865 0
+-0.32022045200791455 -0.34405405130042516 0
+-0.3208674750709609 -0.3441008610547982 0
+-0.3214893083808469 -0.3442856672558164 0
+-0.32205687570312 -0.3445998285709175 0
+-0.32254363822059684 -0.34502865516617265 0
+-0.32543439396532914 -0.3484272687426965 0
+-0.3256259925845095 -0.3486889889529073 0
+-0.3256259925845095 -0.3486889889529073 0
+-0.32575684962564566 -0.34898577832955296 0
+-0.32582084635893116 -0.34930375933123914 0
+-0.3258149903682448 -0.3496280635197377 0
+-0.32573955547320266 -0.3499435267916326 0
+-0.325598068925657 -0.3502353984349421 0
+-0.32539714647932017 -0.3504900308560173 0
+-0.3251461830444734 -0.3506955177258522 0
+-0.3248569133924045 -0.35084225070679564 0
+
+-0.2562926054693669 -0.4027494349658066 0
+-0.2516284160040664 -0.40423802117031943 0
+-0.24696894371623623 -0.405772050597558 0
+-0.242299913869933 -0.40732730217168533 0
+-0.2376011837127604 -0.40888988513521995 0
+-0.23284945207738691 -0.41047051996415523 0
+-0.2281655357990982 -0.41205183111901217 0
+-0.22336851972475516 -0.4136799571120393 0
+-0.2184764893507786 -0.4153488775785163 0
+-0.21345815992916775 -0.41704193306734944 0
+-0.20830851658407284 -0.41863209995360845 0
+-0.20259941964025696 -0.4200249169120146 0
+-0.19680153281458462 -0.42092655775676 0
+-0.19116531924700472 -0.4213550891087057 0
+-0.1860308723358187 -0.4213164459563263 0
+-0.18170858956377728 -0.4207896992874867 0
+-0.1785547079165197 -0.4197778847073755 0
+-0.17673822340870332 -0.4183449508839101 0
+-0.17626214094678597 -0.416625843602381 0
+-0.17731015949529777 -0.4146485243572211 0
+-0.17976545736433322 -0.41247192915032577 0
+-0.18331938358087235 -0.41019914352291864 0
+-0.18782511939534463 -0.40792762926534537 0
+-0.19288795731818642 -0.4057806759458146 0
+-0.1979679220937967 -0.4037999398566071 0
+-0.20258228395820502 -0.40205537192003915 0
+-0.20707835374158487 -0.4005252098575363 0
+-0.21153312447493267 -0.39934442421579364 0
+-0.21603521362516842 -0.3984867969222676 0
+-0.22076962977039705 -0.3978423134977356 0
+-0.22562390215672704 -0.39740822069581183 0
+-0.2305615866881946 -0.3971223407348924 0
+-0.2354309574419402 -0.39694154912008794 0
+-0.24058843556488263 -0.39659928616486356 0
+-0.24586786568792374 -0.3960175993345367 0
+-0.25432534784044336 -0.39453360649683333 0
+-0.25496280436279295 -0.39441327703521895 0
+-0.2556112247832246 -0.39443279511877366 0
+-0.2562402896835465 -0.3945912481036033 0
+-0.25682058468817504 -0.3948812269042451 0
+-0.2573249758476453 -0.39528917243426914 0
+-0.257729878391931 -0.39579600961409067 0
+-0.2599865540072505 -0.399644965080897 0
+-0.26012979457532415 -0.3999359799240967 0
+-0.26012979457532415 -0.3999359799240967 0
+-0.2602071266695658 -0.40025098348995714 0
+-0.2602149343271972 -0.40057524656184 0
+-0.2601528524708252 -0.40089360695889653 0
+-0.2600237839790547 -0.4011911785027927 0
+-0.25983376395111146 -0.4014540470788627 0
+-0.25959167751231005 -0.40166992124464695 0
+-0.2593088443554692 -0.4018287069640804 0
+-0.2589984894446561 -0.4019229795934 0
+
+-0.18246223946773327 -0.44113550996487755 0
+-0.17761041923907367 -0.4417915531991661 0
+-0.17275535339054557 -0.44249316840078823 0
+-0.16788718999719993 -0.44321402368459023 0
+-0.16298850442503293 -0.4439369415726622 0
+-0.1580344879126822 -0.4446684334676339 0
+-0.15314713904699812 -0.4454123674267924 0
+-0.1481402793139596 -0.4461827654280575 0
+-0.14303276487602146 -0.4469768390830726 0
+-0.13779667915412497 -0.44777274949576024 0
+-0.1324491408806426 -0.44844453199142104 0
+-0.1265849178210236 -0.4488248146501688 0
+-0.12071854563441402 -0.4487059650629095 0
+-0.11509354512709023 -0.44814926784576253 0
+-0.11004381231451463 -0.4472196244202433 0
+-0.10587866332903324 -0.4459503236901706 0
+-0.10294839598870424 -0.4444062150464429 0
+-0.1014083343093422 -0.44267962148299816 0
+-0.10123800445642431 -0.4409039604519574 0
+-0.10261345913188709 -0.439138667640254 0
+-0.1054094173004635 -0.4374214978059218 0
+-0.10930401647457141 -0.43580037371018127 0
+-0.11413574434906054 -0.4343457816714771 0
+-0.1194944809191919 -0.4331105979761723 0
+-0.12484122082757179 -0.43204208034474667 0
+-0.12968842120984614 -0.4311252918440083 0
+-0.13438189544429124 -0.4303991107060376 0
+-0.13897402947528792 -0.43000982667117377 0
+-0.14355664719183042 -0.42994700823994697 0
+-0.1483310502898443 -0.4301344387027158 0
+-0.15318695479512753 -0.43054987629963964 0
+-0.15809926733789037 -0.4311257594184788 0
+-0.1629260555429182 -0.4317932717923124 0
+-0.1680646133228404 -0.43235179525784456 0
+-0.17336484589755657 -0.4326957089774995 0
+-0.18195153254425822 -0.43270288768895027 0
+-0.18260019966140528 -0.4326950794656846 0
+-0.183235379839017 -0.43282689805006325 0
+-0.1838273727579403 -0.4330921797515865 0
+-0.18434849748723925 -0.43347852029273065 0
+-0.18477438681376035 -0.4339678548191784 0
+-0.1850851266259374 -0.43453730259232937 0
+-0.1866391541652056 -0.4387196513852245 0
+-0.18672968438999465 -0.4390311185226632 0
+-0.18672968438999465 -0.4390311185226632 0
+-0.18675114184079028 -0.43935476505378923 0
+-0.18670252319104147 -0.4396754576265146 0
+-0.18658610179477475 -0.4399782010125628 0
+-0.18640732138708643 -0.4402488392676773 0
+-0.18617454154113988 -0.44047471764784174 0
+-0.18589864678381535 -0.4406452743310455 0
+-0.18559253764733033 -0.4407525342763419 0
+-0.18527052745469103 -0.4407914821279001 0
+
+-0.10308785065022093 -0.4661179057190045 0
+-0.09819581976071058 -0.4659214724413688 0
+-0.0932926790705102 -0.4657693551945077 0
+-0.08837329881141939 -0.46563391136495635 0
+-0.08342350190651376 -0.46549519868335076 0
+-0.07841772580206031 -0.4653553216332829 0
+-0.07347544397114678 -0.46523927433984263 0
+-0.06841087147880788 -0.4651285361959176 0
+-0.06324306221857794 -0.4650236355132837 0
+-0.0579483160114684 -0.46489821751468646 0
+-0.0525653650540534 -0.4646312038485568 0
+-0.046724197328857756 -0.4639873975114924 0
+-0.0409675865316735 -0.46285166867679645 0
+-0.03552471187863325 -0.46132665785379745 0
+-0.03071312674089012 -0.45953426090020066 0
+-0.026831667486225536 -0.4575609731692809 0
+-0.024214049143174154 -0.45553148742171956 0
+-0.02299720428708503 -0.45356369579002237 0
+-0.023137802429556473 -0.4517854335713703 0
+-0.024798900737669938 -0.45028580472192564 0
+-0.027850565431658245 -0.44908023559664284 0
+-0.03196750213819194 -0.4481600300678896 0
+-0.03697841246620384 -0.44756655729109146 0
+-0.042470225184592814 -0.4472806736515615 0
+-0.04792128223920718 -0.44715684084545254 0
+-0.052854041408533906 -0.4470956879352213 0
+-0.05760231125444318 -0.44719555236819464 0
+-0.06219227891428885 -0.4476095981386217 0
+-0.06671618467673743 -0.4483434972759393 0
+-0.07138550690536793 -0.44935714664624216 0
+-0.07609549932841761 -0.4506094917808526 0
+-0.08083318175161401 -0.45202964006229546 0
+-0.08547072789078695 -0.45352517439906564 0
+-0.09043423284978164 -0.4549675138324807 0
+-0.09559422299143729 -0.45622657845777453 0
+-0.10404921200363404 -0.4577247105968646 0
+-0.10468938029346544 -0.4578296608608603 0
+-0.10529202059997715 -0.4580697747050799 0
+-0.10582895413222326 -0.45843382467303506 0
+-0.10627507447499471 -0.4589047881928367 0
+-0.10660952153689066 -0.45946064353373717 0
+-0.10681665694500804 -0.4600753995177849 0
+-0.10762081806782009 -0.46446406308506744 0
+-0.10765588723425495 -0.46478651874538396 0
+-0.10765588723425495 -0.46478651874538396 0
+-0.10762081806782009 -0.4651089744057005 0
+-0.10751725036376139 -0.46541635239772433 0
+-0.10735002683281342 -0.4656942800681746 0
+-0.1071269666614277 -0.46592976182807544 0
+-0.10685849989530463 -0.466111786812053 0
+-0.10655717974204879 -0.4662318437341628 0
+-0.10623709559713308 -0.4662843188661606 0
+-0.1059132142394258 -0.46626675852919625 0
+
+-0.02058118965567085 -0.47693754477490063 0
+-0.01579758998840046 -0.47589460351108154 0
+-0.010995353905290634 -0.474893375821308 0
+-0.006174229660300623 -0.47390574827062637 0
+-0.0013237184968938193 -0.4729096197339818 0
+0.0035817192257734665 -0.4719026238322595 0
+0.008428765289399412 -0.47093012132450895 0
+0.013397166068656319 -0.46994161175786064 0
+0.01846824888184366 -0.46894092409173727 0
+0.023660777389934065 -0.467897988444278 0
+0.028915582790345257 -0.4667002916914877 0
+0.03455621425556096 -0.46505195808838123 0
+0.04002815195723307 -0.4629338585521843 0
+0.04512352176388461 -0.4604868708054974 0
+0.04955076164716452 -0.4578861813982614 0
+0.05303059499567246 -0.4552688640156668 0
+0.05525602933267139 -0.45281566606174223 0
+0.05611268415028854 -0.450666466714771 0
+0.05566543001584066 -0.44893963490617733 0
+0.05376915970661224 -0.447751235482733 0
+0.05055451177472206 -0.4470938976743239 0
+0.0463403285743201 -0.4469025706919027 0
+0.04130248976745909 -0.44718824954702185 0
+0.035844466851269415 -0.44786035239298966 0
+0.030454720260657105 -0.44868496700934857 0
+0.025586281695541384 -0.44948130778985707 0
+0.02092749001469541 -0.45040418346351235 0
+0.01647915257070947 -0.4516089784680132 0
+0.012151415349740027 -0.4531172960199586 0
+0.007729048983618786 -0.4549263650746102 0
+0.0033080793792058527 -0.4569775658737093 0
+-0.001111020841378249 -0.4591988288308539 0
+-0.005418415421969136 -0.46147694407651485 0
+-0.01005605397351196 -0.4637592747239874 0
+-0.014919017992733832 -0.465895234213398 0
+-0.022985408807720972 -0.46883879979317256 0
+-0.02359762708069099 -0.4690533196837656 0
+-0.02414941659534002 -0.4693944330501731 0
+-0.024614976287233123 -0.4698461898105019 0
+-0.024972537102609743 -0.4703874663207309 0
+-0.025205379895143237 -0.47099295309282724 0
+-0.025302617194640845 -0.47163433823827794 0
+-0.0253324778722053 -0.4760959692582269 0
+-0.025311020421409675 -0.476419615789353 0
+-0.025311020421409675 -0.476419615789353 0
+-0.025220490196620593 -0.47673108292679167 0
+-0.025065120290532053 -0.47701580681336714 0
+-0.024852175627271503 -0.477260474076591 0
+-0.02459161326262202 -0.47745364434716314 0
+-0.024295616803160364 -0.4775862851979248 0
+-0.02397802671435452 -0.4776521944901141 0
+-0.02365369315578099 -0.47764829037848117 0
+-0.02333778160416783 -0.477574755414947 0
+
+0.06255082037198208 -0.473265677874854 0
+0.06708064156174078 -0.471407917867399 0
+0.07163605952442345 -0.46958800153142105 0
+0.07621244033473522 -0.467778198822973 0
+0.08081628542942015 -0.4659549212928101 0
+0.0854723355273693 -0.4641114036003426 0
+0.09007687078178801 -0.46231199487486974 0
+0.09479813750441733 -0.4604757492484708 0
+0.09961841158537507 -0.45860967998722074 0
+0.10455095004327425 -0.45668091576279657 0
+0.10951794528364997 -0.4545889273331154 0
+0.11478665275611241 -0.45198615024640015 0
+0.11980765530414111 -0.44895003739129946 0
+0.1244007000312104 -0.4456554232053722 0
+0.1283090752164651 -0.44232546197612366 0
+0.1312815496834026 -0.4391436408060978 0
+0.1330471813181435 -0.4363412698242619 0
+0.13351761707414364 -0.4340759650966271 0
+0.132777296538273 -0.43245303260877677 0
+0.13070347144171646 -0.431611971526455 0
+0.12742351572264454 -0.4315228379115991 0
+0.12324013185243893 -0.4320662028490547 0
+0.11832843674960584 -0.4332223531286389 0
+0.11307004290003103 -0.43483202095523027 0
+0.10790537149623315 -0.43658002749621405 0
+0.10324917857758072 -0.43820966555581436 0
+0.0988214200895582 -0.43992751135980523 0
+0.09464987334370013 -0.44188644851182374 0
+0.09064980076972828 -0.4441233550128267 0
+0.08660876163032553 -0.4466728761040345 0
+0.08261114376886088 -0.4494606078692993 0
+0.0786448978749189 -0.4524154935512061 0
+0.07479853285759452 -0.45540697032680033 0
+0.07062767301413385 -0.458459944726522 0
+0.06620949381829126 -0.46140789903181134 0
+0.05877679440363641 -0.465707459301645 0
+0.058211128089954586 -0.46602503074051194 0
+0.057726955212351855 -0.4664567790720806 0
+0.05734691515646538 -0.4669825162242206 0
+0.05708877817292431 -0.46757765931201273 0
+0.056964614460180266 -0.4682143801061258 0
+0.05698022977544322 -0.4688629062498916 0
+0.057725576844703905 -0.47326194032166 0
+0.0578029089389456 -0.4735769438875205 0
+0.0578029089389456 -0.4735769438875205 0
+0.057946149507019165 -0.47386795873072024 0
+0.058148600779162035 -0.4741213773206309 0
+0.05840079635889718 -0.474325350085643 0
+0.058690943861211445 -0.47447033948596395 0
+0.059005476311372415 -0.4745495659783787 0
+0.05932968652158825 -0.47455932502015613 0
+0.05964841478276302 -0.4744991602893489 0
+0.059946757715645255 -0.47437188502190136 0
+
+0.14378225537487488 -0.4552138728365682 0
+0.14792066176247115 -0.45259774118323187 0
+0.1520908475350833 -0.45001443343799624 0
+0.15628343389555593 -0.44743744551127346 0
+0.16050072741797503 -0.44484241835272315 0
+0.16476591816505487 -0.4422183932217313 0
+0.16898803613656815 -0.43964675240211476 0
+0.17331871550227898 -0.43701856411013834 0
+0.17774171926223362 -0.43434381282398804 0
+0.18226439498488317 -0.4315878245475563 0
+0.18679266042826548 -0.4286651084508229 0
+0.1915293568975185 -0.4251869719452099 0
+0.19594686367023184 -0.42132509652396055 0
+0.19989802597787962 -0.4172829610836771 0
+0.20316878246283843 -0.4133249072193249 0
+0.2055435809156723 -0.4096752602880399 0
+0.20679576202438624 -0.4066088649025077 0
+0.20686568476637526 -0.4042962849320589 0
+0.20585479209394406 -0.4028265637473518 0
+0.2036664243362121 -0.40235839622154146 0
+0.20042082062474476 -0.4028401750800225 0
+0.19639534608673734 -0.4041017220686862 0
+0.19175903405819414 -0.4060932147315305 0
+0.1868600429114778 -0.4085915385963656 0
+0.18207737262164894 -0.4112098247677605 0
+0.17777490141514574 -0.41362324437864834 0
+0.17371271132105137 -0.4160838644374924 0
+0.16994470561028954 -0.41873742242293455 0
+0.16639383786434106 -0.42163495060089135 0
+0.1628569108810431 -0.424847457820419 0
+0.15940411035835506 -0.42828701673282227 0
+0.1560112311655254 -0.4318857424332908 0
+0.15274276556616428 -0.4354996862307522 0
+0.14916541389657237 -0.439230541300467 0
+0.14532626366326823 -0.44290091832180567 0
+0.13875309445953257 -0.448425833318582 0
+0.13825116758983919 -0.44883680705825185 0
+0.13784932269716543 -0.4493460719004022 0
+0.13756634960207414 -0.44992981518702135 0
+0.13741547981198987 -0.45056074173081107 0
+0.13740376783061714 -0.45120935010780805 0
+0.13753176129718814 -0.45184531211118056 0
+0.13902966911973832 -0.4560480868105165 0
+0.13916052616087443 -0.45634487618716213 0
+0.13916052616087443 -0.45634487618716213 0
+0.13935212478005485 -0.45660659639737294 0
+0.13959550603879323 -0.45682100969500045 0
+0.13987928969992985 -0.456978090352551 0
+0.1401902063548728 -0.45707049345306017 0
+0.14051371788639602 -0.45709389833024666 0
+0.1408346972548427 -0.45704721059806597 0
+0.14113813582168722 -0.4569326133229852 0
+0.14140984513679172 -0.4567554649462214 0
+
+0.22064493930553375 -0.4233306246214776 0
+0.22426618750701516 -0.42003561115871996 0
+0.2279244321050718 -0.4167674045028487 0
+0.23160583440069343 -0.41350153183198607 0
+0.2353084360212214 -0.41021360363211384 0
+0.23905317175487262 -0.4068888007383819 0
+0.24276458552541075 -0.4036230658296128 0
+0.2465730920331055 -0.400282791043383 0
+0.25046443474095875 -0.39688062869667273 0
+0.2544398285151103 -0.39338115567741544 0
+0.2583917751074149 -0.38971651716326333 0
+0.2624525384481243 -0.3854687026564537 0
+0.2661323257375997 -0.3808984057995271 0
+0.2693215515584927 -0.3762315673448212 0
+0.27185530906244276 -0.37176568430916185 0
+0.2735602744518896 -0.36775910429181435 0
+0.27426095814522256 -0.36452185537470416 0
+0.27392824330606774 -0.36223226673362163 0
+0.2726774939593914 -0.36096041358654035 0
+0.2704410759874352 -0.360879364650609 0
+0.2673284403099907 -0.36191741737560384 0
+0.2635831871110304 -0.3638588149485986 0
+0.2593631301516772 -0.3666251394978864 0
+0.2549723950748033 -0.36993620909454517 0
+0.2507170449155519 -0.37334521959595013 0
+0.24689902383165208 -0.3764690902244978 0
+0.2433258297219275 -0.37959771984284096 0
+0.24007585399308054 -0.3828652716450842 0
+0.23708208239479026 -0.38633538157252767 0
+0.23415673530421316 -0.3901132645141169 0
+0.2313536637169823 -0.3941001413166061 0
+0.22863724214265935 -0.3982333615762707 0
+0.2260459866345747 -0.4023599645420572 0
+0.22317083915910482 -0.40665534013837557 0
+0.22002736852547433 -0.41093661732727055 0
+0.21451345195272925 -0.4175190153045544 0
+0.21409051532097273 -0.41801090411591 0
+0.21378320826694844 -0.4185822117141138 0
+0.21360590012695546 -0.4192062243908365 0
+0.21356688163255588 -0.41985376400685487 0
+0.21366797724518194 -0.4204945523294125 0
+0.21390445984634698 -0.42109862680873167 0
+0.21610941525097643 -0.4249774429531023 0
+0.21628982121402895 -0.42524700034550644 0
+0.21628982121402895 -0.42524700034550644 0
+0.21652395625722592 -0.4254714736865778 0
+0.21680087248616997 -0.4256403668523721 0
+0.21710762160576585 -0.42574578258616813 0
+0.2174298603681085 -0.4257827917654148 0
+0.21775252124681335 -0.42574966388202307 0
+0.21806051697780404 -0.42564794795900157 0
+0.21833944602301208 -0.4254824001198615 0
+0.21857626597029095 -0.42526076119756795 0
+
+0.29080343840712064 -0.3785846895928955 0
+0.29379749862832516 -0.3747109116374253 0
+0.29683264814087534 -0.37085710887636486 0
+0.29989100882577296 -0.36700158334985505 0
+0.302966416867777 -0.36312065614324207 0
+0.30607691568766027 -0.35919609794026464 0
+0.30916485582787145 -0.35533549664500436 0
+0.3123354699345111 -0.3513846279236402 0
+0.31557691511119923 -0.3473584274976975 0
+0.3188842366086715 -0.34322179945248604 0
+0.32213978645247265 -0.33892658670777115 0
+0.3254012324253764 -0.3340381618940565 0
+0.3282314917568854 -0.32889830975876844 0
+0.3305618780782819 -0.3237485678145522 0
+0.3322816496616089 -0.3189105492037783 0
+0.33326497747706446 -0.31466877400676807 0
+0.33339287383555755 -0.31135903372829943 0
+0.33266763078728484 -0.3091620044088546 0
+0.3312150281523524 -0.30812666391368443 0
+0.32899851239456773 -0.3084351961985376 0
+0.3261134206111356 -0.30999798208327733 0
+0.3227621863744832 -0.3125602418577424 0
+0.3190866087795782 -0.3160173449218713 0
+0.3153375400360383 -0.32004055507614126 0
+0.3117388066686421 -0.3241367088485136 0
+0.30852124434596806 -0.3278761132664276 0
+0.3055456159155138 -0.33157769061647946 0
+0.3029124190365357 -0.3353599533274737 0
+0.30056670782099615 -0.3392972074702187 0
+0.29834182581419005 -0.3435256770723903 0
+0.2962736530741717 -0.3479387325307788 0
+0.2943162262133156 -0.35248086154355995 0
+0.29248091478388205 -0.3569947389347179 0
+0.29039533140368157 -0.36172412224371076 0
+0.2880430531342546 -0.3664862151592083 0
+0.2837559267573866 -0.3739260932853139 0
+0.2834248310791065 -0.37448395137573 0
+0.28322139923306344 -0.37509994283771136 0
+0.2831551434662801 -0.37574526459512114 0
+0.2832291618247733 -0.37638974211980636 0
+0.28343999329236536 -0.3770032403589981 0
+0.28377777962395406 -0.3775570728168862 0
+0.2866227861564543 -0.38099407454052064 0
+0.2868472594975257 -0.3812282095837176 0
+0.2868472594975257 -0.3812282095837176 0
+0.2871168168899298 -0.38140861554677014 0
+0.28741885412958934 -0.3815268568473526 0
+0.28773924829086817 -0.3815774046536657 0
+0.2880630180988774 -0.3815578954064659 0
+0.2883750244372387 -0.38146924133646937 0
+0.2886606782363407 -0.3813155878094573 0
+0.2889066226420184 -0.381104119493579 0
+0.2891013575672102 -0.38084472441225486 0
+
+0.35212602218634725 -0.32233565034412986 0
+0.35440192142252125 -0.31800081067889785 0
+0.356721754367486 -0.3136785076594246 0
+0.35906414669985404 -0.30935047746940064 0
+0.3614189164462093 -0.304994471265376 0
+0.36380066741967093 -0.30058940346822827 0
+0.36617130843096796 -0.2962512382032747 0
+0.3686076926313304 -0.29180982069363887 0
+0.3711007506054101 -0.2872819162510503 0
+0.37363950853608785 -0.2826338225298035 0
+0.37609974339676944 -0.2778385434202916 0
+0.37846277461635214 -0.27245804061397416 0
+0.38035750999228707 -0.2669048050065648 0
+0.3817582492050438 -0.2614286318759181 0
+0.38261178047843475 -0.25636547843736246 0
+0.3828435928018144 -0.25201739225360886 0
+0.3823948157593335 -0.24873572539733357 0
+0.38129908064497386 -0.24669801102364736 0
+0.37968876131779533 -0.2459306414774265 0
+0.3775594954838715 -0.2466193803857138 0
+0.37498960964836425 -0.2486594149718983 0
+0.3721342199304943 -0.25176468398115254 0
+0.3691148022653266 -0.25580752323289757 0
+0.36612131341177284 -0.2604206307400839 0
+0.36328854252855336 -0.26507946822380385 0
+0.3607692029701144 -0.2693207865200758 0
+0.3584815531830492 -0.27348284104714354 0
+0.35654514350864575 -0.27766489252833243 0
+0.3549187659241539 -0.2819496594115985 0
+0.35346195091505106 -0.28650023576519934 0
+0.35219151740440463 -0.29120538142249774 0
+0.3510525606816768 -0.29601840889677034 0
+0.3500289583399653 -0.30078240883290164 0
+0.3487963084506853 -0.30580209993590857 0
+0.34730669533036834 -0.3109003147945065 0
+0.3443766213149479 -0.31897161613733227 0
+0.3441474267647863 -0.31957849327102134 0
+0.344054051300425 -0.3202204520079147 0
+0.34410086105479804 -0.32086747507096114 0
+0.3442856672558163 -0.32148930838084705 0
+0.3445998285709173 -0.32205687570312025 0
+0.3450286551661725 -0.32254363822059706 0
+0.3484272687426964 -0.32543439396532936 0
+0.3486889889529071 -0.32562599258450975 0
+0.3486889889529071 -0.32562599258450975 0
+0.3489857783295528 -0.3257568496256459 0
+0.34930375933123897 -0.3258208463589313 0
+0.3496280635197376 -0.325814990368245 0
+0.34994352679163243 -0.3257395554732029 0
+0.35023539843494195 -0.32559806892565724 0
+0.35049003085601715 -0.32539714647932033 0
+0.35069551772585206 -0.3251461830444736 0
+0.35084225070679553 -0.32485691339240474 0
+
+0.4027494349658065 -0.2562926054693671 0
+0.4042380211703193 -0.2516284160040666 0
+0.40577205059755794 -0.24696894371623646 0
+0.4073273021716853 -0.24229991386993324 0
+0.40888988513521984 -0.23760118371276068 0
+0.4104705199641552 -0.2328494520773871 0
+0.41205183111901206 -0.2281655357990984 0
+0.4136799571120392 -0.2233685197247554 0
+0.41534887757851624 -0.21847648935077882 0
+0.4170419330673493 -0.213458159929168 0
+0.41863209995360845 -0.20830851658407307 0
+0.42002491691201455 -0.2025994196402572 0
+0.42092655775675997 -0.19680153281458485 0
+0.42135508910870567 -0.19116531924700497 0
+0.4213164459563262 -0.18603087233581891 0
+0.42078969928748666 -0.18170858956377747 0
+0.4197778847073754 -0.17855470791651992 0
+0.41834495088391 -0.17673822340870354 0
+0.4166258436023809 -0.1762621409467862 0
+0.4146485243572211 -0.177310159495298 0
+0.4124719291503257 -0.17976545736433344 0
+0.4101991435229186 -0.18331938358087257 0
+0.4079276292653453 -0.18782511939534485 0
+0.40578067594581446 -0.19288795731818664 0
+0.40379993985660706 -0.19796792209379693 0
+0.40205537192003904 -0.20258228395820524 0
+0.40052520985753626 -0.2070783537415851 0
+0.3993444242157935 -0.2115331244749329 0
+0.39848679692226757 -0.21603521362516862 0
+0.3978423134977355 -0.22076962977039727 0
+0.3974082206958118 -0.22562390215672723 0
+0.39712234073489233 -0.2305615866881948 0
+0.39694154912008783 -0.2354309574419404 0
+0.3965992861648635 -0.24058843556488282 0
+0.39601759933453656 -0.24586786568792396 0
+0.3945336064968332 -0.2543253478404436 0
+0.39441327703521883 -0.25496280436279317 0
+0.39443279511877355 -0.25561122478322484 0
+0.3945912481036032 -0.25624028968354673 0
+0.394881226904245 -0.25682058468817526 0
+0.3952891724342691 -0.2573249758476455 0
+0.39579600961409056 -0.25772987839193123 0
+0.39964496508089686 -0.25998655400725074 0
+0.3999359799240966 -0.2601297945753243 0
+0.3999359799240966 -0.2601297945753243 0
+0.400250983489957 -0.260207126669566 0
+0.4005752465618399 -0.26021493432719744 0
+0.4008936069588964 -0.2601528524708254 0
+0.40119117850279257 -0.2600237839790549 0
+0.40145404707886256 -0.2598337639511117 0
+0.40166992124464684 -0.2595916775123103 0
+0.4018287069640803 -0.2593088443554694 0
+0.4019229795933999 -0.2589984894446563 0
+
+0.44113550996487755 -0.18246223946773327 0
+0.4417915531991661 -0.1776104192390737 0
+0.44249316840078823 -0.1727553533905456 0
+0.44321402368459023 -0.16788718999719995 0
+0.4439369415726622 -0.16298850442503293 0
+0.4446684334676339 -0.15803448791268224 0
+0.4454123674267924 -0.15314713904699812 0
+0.4461827654280575 -0.14814027931395962 0
+0.4469768390830726 -0.14303276487602148 0
+0.4477727494957602 -0.137796679154125 0
+0.44844453199142104 -0.13244914088064264 0
+0.4488248146501688 -0.12658491782102363 0
+0.4487059650629095 -0.12071854563441403 0
+0.44814926784576253 -0.11509354512709026 0
+0.4472196244202433 -0.11004381231451466 0
+0.4459503236901706 -0.10587866332903327 0
+0.4444062150464429 -0.10294839598870427 0
+0.44267962148299816 -0.10140833430934221 0
+0.4409039604519574 -0.10123800445642434 0
+0.439138667640254 -0.1026134591318871 0
+0.4374214978059218 -0.10540941730046353 0
+0.43580037371018127 -0.10930401647457144 0
+0.4343457816714771 -0.11413574434906057 0
+0.4331105979761723 -0.1194944809191919 0
+0.43204208034474667 -0.12484122082757182 0
+0.4311252918440083 -0.12968842120984617 0
+0.4303991107060376 -0.13438189544429127 0
+0.4300098266711737 -0.13897402947528795 0
+0.42994700823994697 -0.14355664719183042 0
+0.4301344387027158 -0.14833105028984434 0
+0.4305498762996396 -0.15318695479512756 0
+0.4311257594184788 -0.15809926733789043 0
+0.4317932717923124 -0.16292605554291822 0
+0.43235179525784456 -0.1680646133228404 0
+0.4326957089774995 -0.17336484589755663 0
+0.43270288768895027 -0.18195153254425828 0
+0.4326950794656846 -0.1826001996614053 0
+0.43282689805006325 -0.18323537983901703 0
+0.4330921797515865 -0.18382737275794037 0
+0.43347852029273065 -0.1843484974872393 0
+0.4339678548191784 -0.18477438681376038 0
+0.43453730259232937 -0.18508512662593746 0
+0.43871965138522445 -0.1866391541652056 0
+0.4390311185226632 -0.1867296843899947 0
+0.4390311185226632 -0.1867296843899947 0
+0.43935476505378923 -0.18675114184079034 0
+0.4396754576265146 -0.1867025231910415 0
+0.4399782010125628 -0.18658610179477475 0
+0.44024883926767727 -0.18640732138708643 0
+0.44047471764784174 -0.18617454154113988 0
+0.4406452743310455 -0.1858986467838154 0
+0.4407525342763419 -0.18559253764733036 0
+0.4407914821279001 -0.18527052745469103 0
+
+0.4661179057190045 -0.10308785065022096 0
+0.4659214724413688 -0.09819581976071061 0
+0.4657693551945077 -0.09329267907051023 0
+0.46563391136495635 -0.08837329881141942 0
+0.46549519868335076 -0.08342350190651379 0
+0.4653553216332829 -0.07841772580206034 0
+0.46523927433984263 -0.0734754439711468 0
+0.4651285361959176 -0.06841087147880791 0
+0.4650236355132837 -0.06324306221857796 0
+0.46489821751468646 -0.05794831601146843 0
+0.4646312038485568 -0.05256536505405343 0
+0.4639873975114924 -0.04672419732885778 0
+0.46285166867679645 -0.040967586531673525 0
+0.46132665785379745 -0.03552471187863328 0
+0.45953426090020066 -0.030713126740890148 0
+0.4575609731692809 -0.026831667486225563 0
+0.45553148742171956 -0.024214049143174182 0
+0.45356369579002237 -0.022997204287085057 0
+0.4517854335713703 -0.0231378024295565 0
+0.45028580472192564 -0.024798900737669965 0
+0.44908023559664284 -0.027850565431658272 0
+0.4481600300678896 -0.03196750213819197 0
+0.44756655729109146 -0.03697841246620387 0
+0.4472806736515615 -0.04247022518459284 0
+0.44715684084545254 -0.047921282239207205 0
+0.4470956879352213 -0.05285404140853393 0
+0.44719555236819464 -0.057602311254443206 0
+0.4476095981386217 -0.06219227891428888 0
+0.4483434972759393 -0.06671618467673746 0
+0.44935714664624216 -0.07138550690536796 0
+0.4506094917808526 -0.07609549932841764 0
+0.45202964006229546 -0.08083318175161404 0
+0.45352517439906564 -0.08547072789078698 0
+0.4549675138324807 -0.09043423284978166 0
+0.45622657845777453 -0.09559422299143731 0
+0.4577247105968646 -0.10404921200363407 0
+0.4578296608608603 -0.10468938029346547 0
+0.4580697747050799 -0.10529202059997718 0
+0.45843382467303506 -0.10582895413222329 0
+0.4589047881928367 -0.10627507447499474 0
+0.45946064353373717 -0.10660952153689068 0
+0.4600753995177849 -0.10681665694500807 0
+0.46446406308506744 -0.10762081806782012 0
+0.46478651874538396 -0.10765588723425498 0
+0.46478651874538396 -0.10765588723425498 0
+0.4651089744057005 -0.10762081806782012 0
+0.46541635239772433 -0.10751725036376142 0
+0.4656942800681746 -0.10735002683281344 0
+0.46592976182807544 -0.10712696666142772 0
+0.466111786812053 -0.10685849989530466 0
+0.4662318437341628 -0.10655717974204881 0
+0.4662843188661606 -0.10623709559713311 0
+0.46626675852919625 -0.10591321423942583 0
+
+0.47693754477490063 -0.0205811896556711 0
+0.47589460351108154 -0.015797589988400695 0
+0.474893375821308 -0.01099535390529087 0
+0.47390574827062637 -0.006174229660300859 0
+0.4729096197339818 -0.001323718496894069 0
+0.4719026238322595 0.0035817192257732305 0
+0.47093012132450895 0.008428765289399162 0
+0.46994161175786064 0.013397166068656069 0
+0.4689409240917373 0.01846824888184341 0
+0.467897988444278 0.023660777389933822 0
+0.4667002916914877 0.028915582790345014 0
+0.4650519580883813 0.034556214255560734 0
+0.4629338585521843 0.040028151957232826 0
+0.4604868708054974 0.045123521763884386 0
+0.4578861813982614 0.04955076164716428 0
+0.45526886401566685 0.05303059499567223 0
+0.4528156660617423 0.05525602933267117 0
+0.45066646671477106 0.05611268415028831 0
+0.44893963490617733 0.05566543001584043 0
+0.447751235482733 0.053769159706612016 0
+0.4470938976743239 0.05055451177472183 0
+0.44690257069190276 0.04634032857431987 0
+0.4471882495470219 0.04130248976745886 0
+0.4478603523929897 0.035844466851269186 0
+0.4486849670093486 0.030454720260656862 0
+0.44948130778985707 0.025586281695541162 0
+0.45040418346351235 0.020927490014695183 0
+0.4516089784680132 0.01647915257070924 0
+0.45311729601995865 0.012151415349739791 0
+0.4549263650746102 0.007729048983618564 0
+0.4569775658737093 0.0033080793792056307 0
+0.4591988288308539 -0.001111020841378485 0
+0.46147694407651485 -0.005418415421969358 0
+0.4637592747239874 -0.010056053973512183 0
+0.465895234213398 -0.014919017992734068 0
+0.46883879979317256 -0.022985408807721208 0
+0.4690533196837656 -0.023597627080691227 0
+0.4693944330501731 -0.02414941659534027 0
+0.4698461898105019 -0.02461497628723336 0
+0.4703874663207309 -0.02497253710260998 0
+0.4709929530928272 -0.02520537989514346 0
+0.47163433823827794 -0.02530261719464108 0
+0.4760959692582269 -0.025332477872205536 0
+0.476419615789353 -0.025311020421409924 0
+0.476419615789353 -0.025311020421409924 0
+0.47673108292679167 -0.02522049019662083 0
+0.47701580681336714 -0.025065120290532303 0
+0.477260474076591 -0.024852175627271753 0
+0.47745364434716314 -0.02459161326262227 0
+0.4775862851979248 -0.024295616803160613 0
+0.4776521944901141 -0.023978026714354755 0
+0.47764829037848117 -0.02365369315578124 0
+0.477574755414947 -0.02333778160416808 0
+
+0.473265677874854 0.06255082037198181 0
+0.471407917867399 0.06708064156174051 0
+0.4695880015314211 0.0716360595244232 0
+0.467778198822973 0.07621244033473498 0
+0.4659549212928101 0.08081628542941989 0
+0.46411140360034264 0.08547233552736906 0
+0.46231199487486974 0.09007687078178778 0
+0.46047574924847084 0.09479813750441707 0
+0.4586096799872208 0.09961841158537484 0
+0.4566809157627966 0.104550950043274 0
+0.4545889273331154 0.10951794528364972 0
+0.45198615024640015 0.11478665275611216 0
+0.4489500373912995 0.11980765530414089 0
+0.44565542320537227 0.12440070003121015 0
+0.4423254619761236 0.12830907521646487 0
+0.43914364080609786 0.1312815496834024 0
+0.43634126982426197 0.13304718131814328 0
+0.43407596509662716 0.1335176170741434 0
+0.4324530326087768 0.13277729653827278 0
+0.431611971526455 0.13070347144171623 0
+0.4315228379115992 0.12742351572264432 0
+0.4320662028490548 0.12324013185243869 0
+0.4332223531286389 0.11832843674960562 0
+0.4348320209552303 0.11307004290003081 0
+0.4365800274962141 0.10790537149623292 0
+0.43820966555581436 0.10324917857758048 0
+0.4399275113598052 0.09882142008955797 0
+0.44188644851182374 0.09464987334369987 0
+0.4441233550128267 0.09064980076972806 0
+0.44667287610403456 0.08660876163032531 0
+0.4494606078692993 0.08261114376886065 0
+0.4524154935512061 0.07864489787491868 0
+0.4554069703268004 0.0747985328575943 0
+0.45845994472652196 0.07062767301413359 0
+0.46140789903181134 0.06620949381829103 0
+0.465707459301645 0.05877679440363619 0
+0.46602503074051194 0.058211128089954364 0
+0.4664567790720806 0.057726955212351605 0
+0.4669825162242206 0.057346915156465145 0
+0.46757765931201273 0.05708877817292404 0
+0.4682143801061258 0.056964614460180044 0
+0.4688629062498916 0.05698022977544295 0
+0.47326194032166 0.05772557684470367 0
+0.4735769438875205 0.057802908938945366 0
+0.4735769438875205 0.057802908938945366 0
+0.4738679587307202 0.05794614950701893 0
+0.4741213773206309 0.0581486007791618 0
+0.474325350085643 0.058400796358896945 0
+0.47447033948596395 0.058690943861211195 0
+0.4745495659783787 0.05900547631137215 0
+0.47455932502015613 0.05932968652158799 0
+0.4744991602893489 0.05964841478276278 0
+0.4743718850219014 0.05994675771564502 0
+
+0.4552138728365682 0.14378225537487488 0
+0.45259774118323187 0.14792066176247115 0
+0.45001443343799624 0.1520908475350833 0
+0.44743744551127346 0.15628343389555593 0
+0.44484241835272315 0.16050072741797503 0
+0.4422183932217313 0.16476591816505487 0
+0.43964675240211476 0.16898803613656815 0
+0.43701856411013834 0.17331871550227898 0
+0.43434381282398804 0.17774171926223362 0
+0.4315878245475563 0.18226439498488317 0
+0.4286651084508229 0.18679266042826548 0
+0.4251869719452099 0.1915293568975185 0
+0.42132509652396055 0.19594686367023184 0
+0.4172829610836771 0.19989802597787962 0
+0.4133249072193249 0.20316878246283843 0
+0.4096752602880399 0.2055435809156723 0
+0.4066088649025077 0.20679576202438624 0
+0.4042962849320589 0.20686568476637526 0
+0.4028265637473518 0.20585479209394406 0
+0.40235839622154146 0.2036664243362121 0
+0.4028401750800225 0.20042082062474476 0
+0.4041017220686862 0.19639534608673734 0
+0.4060932147315305 0.19175903405819414 0
+0.4085915385963656 0.1868600429114778 0
+0.4112098247677605 0.18207737262164894 0
+0.41362324437864834 0.17777490141514574 0
+0.4160838644374924 0.17371271132105137 0
+0.41873742242293455 0.16994470561028954 0
+0.42163495060089135 0.16639383786434106 0
+0.424847457820419 0.1628569108810431 0
+0.42828701673282227 0.15940411035835506 0
+0.4318857424332908 0.1560112311655254 0
+0.4354996862307522 0.15274276556616428 0
+0.439230541300467 0.14916541389657237 0
+0.44290091832180567 0.14532626366326823 0
+0.448425833318582 0.13875309445953257 0
+0.44883680705825185 0.13825116758983919 0
+0.4493460719004022 0.13784932269716543 0
+0.44992981518702135 0.13756634960207414 0
+0.45056074173081107 0.13741547981198987 0
+0.45120935010780805 0.13740376783061714 0
+0.45184531211118056 0.13753176129718814 0
+0.4560480868105165 0.13902966911973832 0
+0.45634487618716213 0.13916052616087443 0
+0.45634487618716213 0.13916052616087443 0
+0.45660659639737294 0.13935212478005485 0
+0.45682100969500045 0.13959550603879323 0
+0.456978090352551 0.13987928969992985 0
+0.45707049345306017 0.1401902063548728 0
+0.45709389833024666 0.14051371788639602 0
+0.45704721059806597 0.1408346972548427 0
+0.4569326133229852 0.14113813582168722 0
+0.4567554649462214 0.14140984513679172 0
+
+0.42333062462147764 0.22064493930553372 0
+0.42003561115872 0.22426618750701516 0
+0.41676740450284877 0.2279244321050718 0
+0.4135015318319861 0.2316058344006934 0
+0.4102136036321139 0.23530843602122137 0
+0.40688880073838196 0.2390531717548726 0
+0.4036230658296129 0.24276458552541072 0
+0.40028279104338305 0.24657309203310548 0
+0.3968806286966728 0.25046443474095875 0
+0.3933811556774155 0.25443982851511027 0
+0.3897165171632634 0.2583917751074149 0
+0.3854687026564538 0.2624525384481243 0
+0.38089840579952716 0.2661323257375997 0
+0.37623156734482127 0.2693215515584927 0
+0.37176568430916185 0.27185530906244276 0
+0.3677591042918144 0.2735602744518896 0
+0.3645218553747042 0.27426095814522256 0
+0.36223226673362163 0.27392824330606774 0
+0.3609604135865404 0.2726774939593914 0
+0.36087936465060905 0.2704410759874352 0
+0.36191741737560384 0.2673284403099907 0
+0.3638588149485987 0.2635831871110304 0
+0.36662513949788644 0.2593631301516772 0
+0.3699362090945452 0.2549723950748033 0
+0.3733452195959502 0.2507170449155519 0
+0.37646909022449787 0.24689902383165208 0
+0.379597719842841 0.2433258297219275 0
+0.38286527164508427 0.2400758539930805 0
+0.3863353815725278 0.23708208239479026 0
+0.39011326451411693 0.23415673530421316 0
+0.39410014131660615 0.2313536637169823 0
+0.39823336157627076 0.22863724214265935 0
+0.4023599645420572 0.2260459866345747 0
+0.4066553401383756 0.22317083915910482 0
+0.4109366173272706 0.22002736852547433 0
+0.4175190153045544 0.21451345195272925 0
+0.41801090411591 0.21409051532097273 0
+0.41858221171411386 0.21378320826694844 0
+0.41920622439083655 0.21360590012695543 0
+0.4198537640068549 0.21356688163255585 0
+0.4204945523294126 0.2136679772451819 0
+0.4210986268087317 0.21390445984634698 0
+0.42497744295310236 0.21610941525097643 0
+0.4252470003455065 0.21628982121402893 0
+0.4252470003455065 0.21628982121402893 0
+0.42547147368657784 0.21652395625722592 0
+0.42564036685237217 0.21680087248616997 0
+0.42574578258616824 0.21710762160576585 0
+0.42578279176541484 0.21742986036810846 0
+0.4257496638820231 0.21775252124681332 0
+0.4256479479590016 0.21806051697780404 0
+0.42548240011986155 0.21833944602301206 0
+0.425260761197568 0.21857626597029095 0
+
+0.37858468959289554 0.2908034384071206 0
+0.37471091163742537 0.29379749862832516 0
+0.3708571088763649 0.29683264814087534 0
+0.3670015833498551 0.2998910088257729 0
+0.3631206561432421 0.3029664168677769 0
+0.3591960979402647 0.3060769156876602 0
+0.3553354966450044 0.3091648558278714 0
+0.3513846279236403 0.31233546993451106 0
+0.3473584274976976 0.3155769151111991 0
+0.34322179945248604 0.31888423660867143 0
+0.3389265867077712 0.3221397864524726 0
+0.33403816189405655 0.3254012324253764 0
+0.3288983097587685 0.3282314917568853 0
+0.32374856781455225 0.33056187807828186 0
+0.31891054920377837 0.33228164966160884 0
+0.3146687740067681 0.3332649774770644 0
+0.3113590337282995 0.3333928738355575 0
+0.30916200440885466 0.3326676307872848 0
+0.3081266639136845 0.3312150281523523 0
+0.30843519619853765 0.32899851239456773 0
+0.30999798208327733 0.32611342061113546 0
+0.3125602418577424 0.3227621863744831 0
+0.3160173449218713 0.3190866087795782 0
+0.3200405550761413 0.3153375400360382 0
+0.32413670884851364 0.3117388066686421 0
+0.3278761132664277 0.308521244345968 0
+0.33157769061647946 0.30554561591551377 0
+0.3353599533274737 0.30291241903653565 0
+0.33929720747021874 0.3005667078209961 0
+0.34352567707239035 0.29834182581419005 0
+0.34793873253077884 0.29627365307417164 0
+0.35248086154356 0.29431622621331555 0
+0.3569947389347179 0.292480914783882 0
+0.3617241222437108 0.29039533140368146 0
+0.3664862151592083 0.28804305313425455 0
+0.37392609328531395 0.28375592675738653 0
+0.37448395137573004 0.28342483107910643 0
+0.3750999428377114 0.2832213992330634 0
+0.37574526459512114 0.28315514346628 0
+0.3763897421198064 0.28322916182477326 0
+0.3770032403589982 0.2834399932923653 0
+0.3775570728168862 0.283777779623954 0
+0.3809940745405207 0.2866227861564543 0
+0.38122820958371767 0.28684725949752565 0
+0.38122820958371767 0.28684725949752565 0
+0.3814086155467702 0.28711681688992974 0
+0.38152685684735266 0.2874188541295893 0
+0.38157740465366574 0.2877392482908681 0
+0.38155789540646595 0.28806301809887735 0
+0.3814692413364694 0.28837502443723867 0
+0.3813155878094573 0.28866067823634056 0
+0.38110411949357903 0.28890662264201833 0
+0.3808447244122549 0.28910135756721017 0
+
+0.32233565034412986 0.3521260221863472 0
+0.31800081067889785 0.3544019214225212 0
+0.3136785076594246 0.35672175436748593 0
+0.30935047746940064 0.359064146699854 0
+0.304994471265376 0.3614189164462093 0
+0.30058940346822827 0.3638006674196709 0
+0.2962512382032747 0.3661713084309679 0
+0.29180982069363887 0.36860769263133036 0
+0.2872819162510503 0.37110075060541003 0
+0.2826338225298035 0.3736395085360878 0
+0.2778385434202915 0.3760997433967694 0
+0.27245804061397416 0.378462774616352 0
+0.2669048050065648 0.380357509992287 0
+0.2614286318759181 0.38175824920504375 0
+0.25636547843736246 0.3826117804784347 0
+0.25201739225360886 0.38284359280181435 0
+0.24873572539733355 0.38239481575933343 0
+0.24669801102364736 0.3812990806449738 0
+0.2459306414774265 0.37968876131779533 0
+0.2466193803857138 0.37755949548387147 0
+0.2486594149718983 0.37498960964836425 0
+0.25176468398115254 0.3721342199304942 0
+0.25580752323289757 0.36911480226532656 0
+0.2604206307400839 0.3661213134117728 0
+0.26507946822380385 0.36328854252855325 0
+0.2693207865200758 0.36076920297011433 0
+0.2734828410471435 0.35848155318304914 0
+0.27766489252833243 0.3565451435086457 0
+0.2819496594115985 0.35491876592415383 0
+0.2865002357651993 0.353461950915051 0
+0.29120538142249774 0.3521915174044046 0
+0.2960184088967703 0.35105256068167673 0
+0.3007824088329016 0.35002895833996517 0
+0.30580209993590857 0.34879630845068527 0
+0.3109003147945065 0.3473066953303683 0
+0.31897161613733227 0.34437662131494784 0
+0.31957849327102134 0.34414742676478627 0
+0.3202204520079147 0.34405405130042493 0
+0.32086747507096114 0.344100861054798 0
+0.32148930838084705 0.3442856672558162 0
+0.32205687570312025 0.34459982857091725 0
+0.32254363822059706 0.3450286551661724 0
+0.32543439396532936 0.34842726874269636 0
+0.32562599258450975 0.34868898895290706 0
+0.32562599258450975 0.34868898895290706 0
+0.3257568496256459 0.34898577832955274 0
+0.3258208463589313 0.3493037593312389 0
+0.32581499036824496 0.3496280635197375 0
+0.3257395554732029 0.3499435267916324 0
+0.32559806892565724 0.3502353984349419 0
+0.32539714647932033 0.3504900308560171 0
+0.3251461830444736 0.350695517725852 0
+0.32485691339240474 0.35084225070679553 0
+
+0.2562926054693668 0.4027494349658067 0
+0.25162841600406627 0.4042380211703195 0
+0.24696894371623612 0.4057720505975581 0
+0.24229991386993288 0.40732730217168545 0
+0.23760118371276032 0.40888988513522007 0
+0.23284945207738678 0.41047051996415534 0
+0.22816553579909804 0.4120518311190122 0
+0.22336851972475508 0.4136799571120393 0
+0.21847648935077846 0.4153488775785164 0
+0.21345815992916764 0.4170419330673495 0
+0.20830851658407273 0.41863209995360856 0
+0.20259941964025685 0.42002491691201466 0
+0.19680153281458448 0.42092655775676013 0
+0.1911653192470046 0.4213550891087058 0
+0.18603087233581855 0.42131644595632634 0
+0.18170858956377714 0.4207896992874868 0
+0.17855470791651956 0.41977788470737554 0
+0.1767382234087032 0.41834495088391016 0
+0.17626214094678583 0.416625843602381 0
+0.17731015949529763 0.41464852435722116 0
+0.1797654573643331 0.4124719291503259 0
+0.1833193835808722 0.41019914352291875 0
+0.18782511939534452 0.4079276292653454 0
+0.19288795731818634 0.40578067594581463 0
+0.1979679220937966 0.4037999398566072 0
+0.20258228395820488 0.4020553719200392 0
+0.20707835374158473 0.40052520985753637 0
+0.21153312447493255 0.3993444242157937 0
+0.21603521362516828 0.3984867969222677 0
+0.22076962977039694 0.3978423134977357 0
+0.2256239021567269 0.39740822069581194 0
+0.23056158668819446 0.39712234073489244 0
+0.23543095744194006 0.39694154912008806 0
+0.24058843556488252 0.3965992861648637 0
+0.24586786568792363 0.39601759933453673 0
+0.25432534784044325 0.3945336064968334 0
+0.25496280436279284 0.394413277035219 0
+0.2556112247832245 0.3944327951187737 0
+0.2562402896835464 0.3945912481036034 0
+0.2568205846881749 0.39488122690424515 0
+0.2573249758476452 0.39528917243426925 0
+0.2577298783919309 0.3957960096140908 0
+0.2599865540072504 0.399644965080897 0
+0.260129794575324 0.3999359799240967 0
+0.260129794575324 0.3999359799240967 0
+0.2602071266695657 0.4002509834899572 0
+0.2602149343271971 0.40057524656184 0
+0.2601528524708251 0.40089360695889664 0
+0.26002378397905457 0.40119117850279273 0
+0.25983376395111135 0.4014540470788627 0
+0.25959167751231 0.401669921244647 0
+0.259308844355469 0.40182870696408046 0
+0.258998489444656 0.4019229795934001 0
+
+0.1824622394677337 0.4411355099648774 0
+0.1776104192390741 0.4417915531991659 0
+0.172755353390546 0.4424931684007881 0
+0.16788718999720037 0.4432140236845901 0
+0.16298850442503338 0.44393694157266206 0
+0.15803448791268265 0.4446684334676338 0
+0.15314713904699856 0.44541236742679224 0
+0.14814027931396007 0.44618276542805735 0
+0.14303276487602193 0.4469768390830725 0
+0.13779667915412544 0.44777274949576007 0
+0.13244914088064308 0.4484445319914209 0
+0.12658491782102405 0.4488248146501687 0
+0.12071854563441448 0.44870596506290944 0
+0.11509354512709069 0.4481492678457625 0
+0.1100438123145151 0.44721962442024327 0
+0.1058786633290337 0.44595032369017057 0
+0.1029483959887047 0.4444062150464428 0
+0.10140833430934264 0.4426796214829981 0
+0.10123800445642474 0.44090396045195734 0
+0.10261345913188753 0.43913866764025394 0
+0.10540941730046396 0.4374214978059217 0
+0.10930401647457186 0.43580037371018115 0
+0.11413574434906099 0.43434578167147697 0
+0.11949448091919233 0.4331105979761722 0
+0.12484122082757226 0.43204208034474656 0
+0.12968842120984658 0.43112529184400816 0
+0.1343818954442917 0.4303991107060375 0
+0.13897402947528836 0.43000982667117366 0
+0.14355664719183087 0.42994700823994686 0
+0.14833105028984472 0.43013443870271567 0
+0.15318695479512795 0.4305498762996395 0
+0.15809926733789081 0.4311257594184787 0
+0.16292605554291864 0.43179327179231225 0
+0.1680646133228408 0.43235179525784445 0
+0.17336484589755702 0.43269570897749937 0
+0.18195153254425867 0.4327028876889501 0
+0.18260019966140573 0.4326950794656844 0
+0.18323537983901744 0.4328268980500631 0
+0.18382737275794075 0.4330921797515863 0
+0.1843484974872397 0.4334785202927305 0
+0.1847743868137608 0.4339678548191782 0
+0.18508512662593787 0.4345373025923292 0
+0.18663915416520604 0.4387196513852244 0
+0.18672968438999513 0.439031118522663 0
+0.18672968438999513 0.439031118522663 0
+0.18675114184079075 0.4393547650537891 0
+0.1867025231910419 0.4396754576265145 0
+0.1865861017947752 0.43997820101256263 0
+0.18640732138708688 0.44024883926767716 0
+0.18617454154114033 0.44047471764784163 0
+0.18589864678381582 0.44064527433104533 0
+0.1855925376473308 0.44075253427634176 0
+0.18527052745469147 0.4407914821278999 0
+
diff --git a/resources/designs/design_v4rdso2_outer_1.txt b/resources/designs/design_v4rdso2_outer_1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f2d05f0d0e7412de5d76172389893daea6254b46
--- /dev/null
+++ b/resources/designs/design_v4rdso2_outer_1.txt
@@ -0,0 +1,1985 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.11759426340922347 0.45891182560775395 0
+0.12313754195083652 0.4589293409002886 0
+0.12863880976270664 0.4586853532565169 0
+0.13394213303045188 0.4582048043621995 0
+0.1391883628498748 0.4574351510546052 0
+0.14433265056760644 0.45640399636461737 0
+0.1493421784475492 0.45515566034553345 0
+0.15419564663068563 0.4537498451804335 0
+0.1587903703688843 0.45226280795579843 0
+0.1635973224795519 0.45074563559663205 0
+0.1663053082148204 0.449951700291209 0
+0.16695307093023495 0.4499165796172802 0
+0.16759323922006636 0.4500215298812759 0
+0.16819587952657805 0.45026164372549554 0
+0.16873281305882418 0.4506256936934507 0
+0.16917893340159562 0.4510966572132523 0
+0.16951338046349157 0.4516525125541528 0
+0.17552743316028427 0.46715154891381383 0
+0.17563100086434297 0.4674589269058377 0
+0.17566607003077783 0.4677813825661542 0
+0.17566607003077783 0.4677813825661542 0
+0.17563100086434297 0.4681038382264707 0
+0.17552743316028427 0.4684112162184946 0
+0.1753602096293363 0.46868914388894484 0
+0.17513714945795059 0.4689246256488457 0
+0.1748686826918275 0.46910665063282325 0
+0.17456736253857166 0.46922670755493306 0
+0.17215580592463958 0.4700392952441131 0
+0.16731269534056573 0.4712221319681888 0
+0.16226452237289327 0.471985694125172 0
+0.15705086472735147 0.47231123826247445 0
+0.15172356604424542 0.4722183034773801 0
+0.14631916726713506 0.47174039717221306 0
+0.1406977261600108 0.4710095820727771 0
+0.1350132029346256 0.47007927336447486 0
+0.12932059457620468 0.46906174086219776 0
+0.12371407043707341 0.46808700610678156 0
+0.11818231749165288 0.46729765171367377 0
+0.11480526690732351 0.466935892443696 0
+0.11428437651035563 0.4667912679368842 0
+0.11380675423529946 0.4665380486327344 0
+0.11339473316889759 0.46618807478447577 0
+0.11306757895828644 0.4657577107802848 0
+0.1128405889707484 0.46526707996268213 0
+0.11272437700581951 0.46473912368340203 0
+0.11229629786976743 0.46096335377794556 0
+0.11229629786976743 0.4605308777042498 0
+0.11238926744171054 0.4601085126808257 0
+0.11257085943174097 0.4597160080267436 0
+0.1128325828002299 0.45937171682339084 0
+0.11316219965335139 0.4590917377447839 0
+0.11354429747339632 0.4588891623014641 0
+0.11396100979097062 0.4587734626960146 0
+0.11439285160124699 0.45875004891339544 0
+
+0.03611854008857246 0.47235995335259906 0
+0.041574562274829266 0.4733397827655348 0
+0.047034621477069674 0.4740547869726982 0
+0.05234082178765327 0.4745024511168956 0
+0.05764099848220389 0.4746554888202099 0
+0.0628861910431606 0.47453329587453347 0
+0.06803638421308895 0.47417382027189897 0
+0.07306023455039591 0.4736321585033725 0
+0.07784337541490398 0.4729655781195553 0
+0.0828407533372237 0.4723061734917421 0
+0.08564546410333472 0.4719945366356487 0
+0.0862894844886134 0.472072432338765 0
+0.08690170276158339 0.472286952229358 0
+0.08745349227623245 0.4726280655957654 0
+0.08791905196812555 0.47307982235609436 0
+0.08827661278350217 0.4736210988663233 0
+0.08850945557603565 0.47422658563841963 0
+0.09174076187941244 0.49053448610082284 0
+0.09178938052916125 0.4908551786735482 0
+0.09176792307836565 0.4911788252046743 0
+0.09176792307836565 0.4911788252046743 0
+0.09167739285357655 0.49149029234211294 0
+0.09152202294748801 0.49177501622868847 0
+0.09130907828422746 0.4920196834919124 0
+0.09104851591957801 0.49221285376248447 0
+0.09075251946011635 0.49234549461324606 0
+0.0904349293713105 0.4924114039054354 0
+0.0879189053496616 0.4927928841503922 0
+0.08294397505615692 0.49311675359964574 0
+0.07783990400195089 0.4929921094953657 0
+0.0726489233848772 0.4924073657366012 0
+0.06741869629521614 0.491390767131507 0
+0.06217939003813597 0.48998165729793447 0
+0.056770255962967 0.48828579191787747 0
+0.05133363983029404 0.48638250959025314 0
+0.045904207648796325 0.48439192462545744 0
+0.0405521201231164 0.4824584355813873 0
+0.03524147688661469 0.48072049443690457 0
+0.03197855012683848 0.4797778124232485 0
+0.031490687007488735 0.4795449334194671 0
+0.031064291958717793 0.4792126228478514 0
+0.030719302739102075 0.4787964191813937 0
+0.030471850661122832 0.4783157836409603 0
+0.03033350630892316 0.47779319021023386 0
+0.030310738510653218 0.4772530747772144 0
+0.030544818421938513 0.47346033213885796 0
+0.030619917104020344 0.4730344263484901 0
+0.030784817175891974 0.4726346219955673 0
+0.031031808093466007 0.4722796134872816 0
+0.03134934083594733 0.47198600062691676 0
+0.03172256792520983 0.4717675124254963 0
+0.032134037677371705 0.4716343651484864 0
+0.032564510224137644 0.47159278461457743 0
+0.032993857147656735 0.4716447150833216 0
+
+-0.04645462679580664 0.4714556629404951 0
+-0.04125163943815505 0.47336803485293744 0
+-0.035998689981481174 0.4750203058700109 0
+-0.03085083883942935 0.47638258100423064 0
+-0.02565775845659618 0.47745365974527926 0
+-0.02047103357418359 0.4782441413147359 0
+-0.015336661127614393 0.4787844486128335 0
+-0.010295075786445035 0.47912339835962303 0
+-0.005468851110409623 0.47929752852428004 0
+-0.0004328901758122172 0.4795159273037612 0
+0.002383325903765221 0.47969605782517416 0
+0.0030040357253913463 0.47988460308381337 0
+0.0035697020390731693 0.4802021745226803 0
+0.004053874916675887 0.48063392285424905 0
+0.004433914972562347 0.481159660006389 0
+0.004692051956103449 0.4817548030941811 0
+0.00481621566884749 0.48239152388829426 0
+0.0051665939719001686 0.4990127811500854 0
+0.005158786314268693 0.49933704422196823 0
+0.005081454220027037 0.4996520477878287 0
+0.005081454220027037 0.4996520477878287 0
+0.0049382136519534325 0.4999430626310284 0
+0.004735762379810604 0.5001964812209392 0
+0.004483566800075445 0.5004004539859512 0
+0.004193419297761181 0.5005454433862722 0
+0.0038788868476002103 0.5006246698786869 0
+0.003554676637384374 0.5006344289204643 0
+0.0010106333247469346 0.5005732106369932 0
+-0.003944955938656652 0.5000282722020948 0
+-0.008949840463198827 0.49901920908458713 0
+-0.013960418732517493 0.49754194457297124 0
+-0.01893465642523684 0.49563257098206914 0
+-0.02384967649288236 0.49333507270934024 0
+-0.028882149734375917 0.4907256850600859 0
+-0.03390566994420585 0.4879072593835571 0
+-0.03890695539937085 0.4850041048731135 0
+-0.043841985840418596 0.4821706096266008 0
+-0.04877015816057552 0.4795368881929776 0
+-0.051819818717323385 0.47804192635160814 0
+-0.05225983108504417 0.47772786876154444 0
+-0.052622043109739294 0.4773265640110241 0
+-0.0528895181597038 0.47685677666416343 0
+-0.05304974939887855 0.4763404734551704 0
+-0.05309524459260388 0.4758017961482678 0
+-0.0530238764361855 0.47526593269562956 0
+-0.0521347498772171 0.47157145789021937 0
+-0.05198683434850675 0.471165063315101 0
+-0.05175501418194692 0.47079996748563224 0
+-0.051450129030876354 0.4704932418770242 0
+-0.05108643498610359 0.47025922863783437 0
+-0.050680937976945326 0.47010886996704015 0
+-0.050252598592872205 0.47004919646897625 0
+-0.04982144550741849 0.4700829984100899 0
+-0.04940763895966775 0.47020869524918274 0
+
+-0.12761629335217056 0.4562264307780207 0
+-0.1228244309611478 0.45901323873711697 0
+-0.1179381994611608 0.4615525731453362 0
+-0.11310511233965363 0.46378806722896954 0
+-0.10817691738814479 0.4657446428221976 0
+-0.10320625619521899 0.46742378052430245 0
+-0.0982437097806802 0.46884745375928805 0
+-0.09333757545507457 0.4700567162048543 0
+-0.08861490936210559 0.4710662660610465 0
+-0.08369338053990905 0.47215583231142266 0
+-0.0809512284473691 0.4728222570355992 0
+-0.08037268914323131 0.4731157229974861 0
+-0.07987076227353793 0.47352669673715597 0
+-0.07946891738086417 0.47403596157930633 0
+-0.07918594428577289 0.4746197048659255 0
+-0.07903507449568861 0.4752506314097152 0
+-0.07902336251431588 0.47589923978671217 0
+-0.08156455827902562 0.4923288253567537 0
+-0.08162855501231109 0.49264680635843994 0
+-0.08175941205344722 0.4929435957350856 0
+-0.08175941205344722 0.4929435957350856 0
+-0.08195101067262761 0.4932053159452963 0
+-0.08219439193136599 0.4934197292429239 0
+-0.08247817559250262 0.4935768099004745 0
+-0.08278909224744557 0.49366921300098365 0
+-0.08311260377896879 0.4936926178781701 0
+-0.08343358314741547 0.49364593014598945 0
+-0.08592834628233506 0.4931438734206558 0
+-0.09071402144351817 0.4917466847801976 0
+-0.09546764855471199 0.48988386252167726 0
+-0.10014558059103737 0.48755896319186337 0
+-0.10471268919160742 0.48481482996552344 0
+-0.10915408267218302 0.4816987515760648 0
+-0.11365698592711278 0.4782551265809219 0
+-0.1181147730945479 0.47460719399347767 0
+-0.12253595029559751 0.47087968081811893 0
+-0.12690397524930774 0.4672322736884112 0
+-0.13129993663094744 0.46378279625868074 0
+-0.13404366859185285 0.4617809782486608 0
+-0.1344224606548085 0.46139528455326806 0
+-0.13470948402634558 0.4609371790656176 0
+-0.13489131781261465 0.46042808228916454 0
+-0.13495945966786344 0.45989179902335514 0
+-0.13491072335467477 0.45935340527766266 0
+-0.13474738772888684 0.4588380757452542 0
+-0.13323023018280983 0.45535412352025806 0
+-0.13301399214596193 0.4549795882539086 0
+-0.13272229562316817 0.4546602941999249 0
+-0.13236878001963703 0.45441117119340135 0
+-0.13196997533208518 0.4542438679492428 0
+-0.13154452922446302 0.45416620738120184 0
+-0.13111233508391354 0.45418182081112646 0
+-0.13069360182809958 0.4542899781723865 0
+-0.1303079089586744 0.4544856221469778 0
+
+-0.20490040341198912 0.4271349893780695 0
+-0.20066526430154707 0.43071155763417535 0
+-0.1962942164298216 0.4340607990425118 0
+-0.19192274423538602 0.437101587719042 0
+-0.18740917542501612 0.43988421060512434 0
+-0.1828056089466482 0.4424009846904836 0
+-0.17816567302577593 0.4446647662715256 0
+-0.1735440601245938 0.44670759858837633 0
+-0.16906844843414182 0.44852189347458027 0
+-0.16441088988719477 0.45044952127668086 0
+-0.16182612068542826 0.45158199122560405 0
+-0.16130733052277998 0.45197146107598773 0
+-0.16088439389102344 0.4524633498873433 0
+-0.16057708683699923 0.45303465748554717 0
+-0.16039977869700617 0.45365867016226985 0
+-0.16036076020260664 0.4543062097782883 0
+-0.1604618558152327 0.4549469981008458 0
+-0.16581741270030123 0.4706857073353634 0
+-0.1659356540008837 0.470987744575023 0
+-0.1661160599639362 0.4712573019674271 0
+-0.1661160599639362 0.4712573019674271 0
+-0.16635019500713324 0.47148177530849844 0
+-0.16662711123607724 0.4716506684742928 0
+-0.16693386035567312 0.4717560842080888 0
+-0.16725609911801576 0.4717930933873355 0
+-0.16757875999672067 0.4717599655039438 0
+-0.16788675572771136 0.4716582495809223 0
+-0.17025643656946954 0.4707306091532723 0
+-0.17472678731032812 0.4685236231770832 0
+-0.17908472045385138 0.46586364268924174 0
+-0.18328786965940758 0.4627617494309105 0
+-0.18730907988406847 0.45926623566861646 0
+-0.19114189728412043 0.4554262576274801 0
+-0.19497841211566425 0.45125302808936774 0
+-0.19873501863337123 0.4468864291767346 0
+-0.20244175234827516 0.4424478159380813 0
+-0.20611005158675672 0.4380973215451377 0
+-0.20984023296776183 0.4339368987454826 0
+-0.21219466942558807 0.43148904879407773 0
+-0.21250073177862372 0.43104343810112006 0
+-0.21270384543709936 0.4305424511797693 0
+-0.21279451303208952 0.43000951362166084 0
+-0.21276849504762213 0.42946954499469425 0
+-0.21262700805573392 0.42894779363173446 0
+-0.2123766678309142 0.42846865604662854 0
+-0.21027757736204733 0.4253010845274382 0
+-0.2099995871003898 0.4249697886344016 0
+-0.20965687727260163 0.42470599794416264 0
+-0.20926547260933565 0.42452204701621465 0
+-0.2088436747576311 0.4244265371915016 0
+-0.20841120651623907 0.4244239344032755 0
+-0.20798828961947297 0.42451436035502116 0
+-0.20759469919138743 0.424693586829736 0
+-0.2072488390829553 0.42495323339665847 0
+
+-0.2759587183987414 0.38506526746659914 0
+-0.272408985127667 0.3893229238030838 0
+-0.26868593296192855 0.3933803072061432 0
+-0.26490890066512074 0.39713399765034724 0
+-0.2609471005002169 0.40065811924096534 0
+-0.2568505057743351 0.4039360588025445 0
+-0.2526741624521641 0.4069711648718317 0
+-0.24847749634475894 0.4097854966337424 0
+-0.24438492825326946 0.4123494101179183 0
+-0.24013285754118266 0.4150565294764032 0
+-0.23778400813442888 0.4166206351237325 0
+-0.2373407302898418 0.4170942750182902 0
+-0.2370096346115617 0.4176521331087063 0
+-0.23680620276551867 0.4182681245706877 0
+-0.2367399469987353 0.4189134463280974 0
+-0.23681396535722854 0.4195579238527827 0
+-0.23702479682482053 0.42017142209197444 0
+-0.2450319889443376 0.4347410422750485 0
+-0.2452008821101319 0.4350179585039925 0
+-0.2454253554512033 0.43525209354718947 0
+-0.2454253554512033 0.43525209354718947 0
+-0.2456949128436074 0.435432499510242 0
+-0.24599695008326694 0.43555074081082445 0
+-0.24631734424454574 0.43560128861713754 0
+-0.246641114052555 0.43558177936993775 0
+-0.24695312039091635 0.4354931252999413 0
+-0.24723877419001827 0.4353394717729291 0
+-0.24941137118535464 0.4340144335279484 0
+-0.2534305681607343 0.43106470836812594 0
+-0.2572603937432416 0.42768839181207136 0
+-0.2608610495563139 0.4239037540822434 0
+-0.2642141789672199 0.41976306920084744 0
+-0.2673219620695468 0.41531586729769066 0
+-0.2703755179159185 0.4105398346843682 0
+-0.2733168011957913 0.40558724634490095 0
+-0.27619646419632 0.40057239806016287 0
+-0.27905357830346056 0.3956510039746566 0
+-0.28200464001013215 0.3909060481465688 0
+-0.28389824260451046 0.3880865429358807 0
+-0.2841222756979041 0.3875945549007737 0
+-0.28423530813758613 0.38706590877981617 0
+-0.2842320546523036 0.38652532347807605 0
+-0.2841126673714123 0.3859980761634454 0
+-0.2838827287114772 0.38550882033436285 0
+-0.28355299034867854 0.3850804330496277 0
+-0.28093574675872734 0.3823254872939851 0
+-0.28060445086569075 0.3820474970323276 0
+-0.280221140797606 0.38184722485247174 0
+-0.27980373970723826 0.3817340352589612 0
+-0.279371764805665 0.3817132208713873 0
+-0.2789454147591782 0.3817857549473794 0
+-0.2785446252220976 0.38194824587416 0
+-0.2781881366677314 0.38219309575658844 0
+-0.27789261810467336 0.38250885568629356 0
+
+-0.3386321673687972 0.3312955322555834 0
+-0.3358756967862804 0.3361049099391408 0
+-0.33291376338262957 0.3407471537953561 0
+-0.3298459341985176 0.34509969202254587 0
+-0.3265562799723227 0.3492582336664604 0
+-0.323091129956696 0.3531977401693984 0
+-0.3195052753117388 0.35691195056485325 0
+-0.3158610695741686 0.36041226972535895 0
+-0.3122758956921622 0.36364789859369284 0
+-0.3085585098318707 0.367052255056723 0
+-0.30651694882077873 0.3690004718438399 0
+-0.30616265206725113 0.3695438904740489 0
+-0.30593345751708956 0.370150767607738 0
+-0.3058400820527283 0.37079272634463134 0
+-0.30588689180710127 0.37143974940767777 0
+-0.3060716980081195 0.37206158271756373 0
+-0.3063858593232206 0.3726291500398369 0
+-0.3168013921964694 0.3855869906347882 0
+-0.3170158054940969 0.3858303718935266 0
+-0.31727752570430773 0.38602197051270704 0
+-0.31727752570430773 0.38602197051270704 0
+-0.3175743150809533 0.3861528275538431 0
+-0.3178922960826396 0.38621682428712856 0
+-0.31821660027113813 0.38621096829644225 0
+-0.318532063543033 0.38613553340140017 0
+-0.31882393518634256 0.38599404685385447 0
+-0.3190785676074177 0.38579312440751756 0
+-0.32098806749601616 0.384110948961778 0
+-0.32443398943963186 0.38050811052467065 0
+-0.3276193401487839 0.37651804557046 0
+-0.33050809846451185 0.37216565767143706 0
+-0.33309126392127797 0.36750561428577266 0
+-0.33537958430892967 0.36258631450003004 0
+-0.33755740042091104 0.35735259614566434 0
+-0.339593991058852 0.351964500269927 0
+-0.34155908624191417 0.34652579056660027 0
+-0.34351820325133775 0.3411830308574738 0
+-0.3456004787670278 0.33599771508272636 0
+-0.34697571134133726 0.33289222385184314 0
+-0.3471109080429124 0.3323688072820757 0
+-0.3471304248303181 0.3318285646063888 0
+-0.3470333491202669 0.3312967569718611 0
+-0.3468242200650687 0.33079825111242134 0
+-0.3465128163069143 0.3303563566080074 0
+-0.34611369873943465 0.3299917359545152 0
+-0.3430578256504906 0.32773312359513573 0
+-0.3426832903841411 0.32751688555828784 0
+-0.3422710267582143 0.3273862170576575 0
+-0.3418403117616604 0.3273472280071066 0
+-0.34141128514901287 0.3274017414913057 0
+-0.3410040077278504 0.32754720852032093 0
+-0.34063752333773006 0.3277768272175506 0
+-0.3403289683814158 0.3280798608679151 0
+-0.3400927705457307 0.32844213995472105 0
+
+-0.39101644928949697 0.26745954994061 0
+-0.38913699535934604 0.2726745184639877 0
+-0.3870261775654421 0.2777605705428766 0
+-0.3847607659313887 0.28257970688150963 0
+-0.38224321212292045 0.28724631339519385 0
+-0.37951479364732305 0.2917276869278853 0
+-0.3766283820584367 0.2960081472461231 0
+-0.37364736403798043 0.3000880983787787 0
+-0.37067851805967633 0.30389712968541355 0
+-0.3676087679394572 0.3078952836045473 0
+-0.3659365271222694 0.3101684159502205 0
+-0.36568197658737434 0.310765101815985 0
+-0.3655616471257599 0.3114025583383346 0
+-0.3655811652093147 0.31205097875876625 0
+-0.3657396181941443 0.3126800436590882 0
+-0.36602959699478604 0.3132603386637167 0
+-0.3664375425248102 0.3137647298231869 0
+-0.378944945455951 0.3247170734005217 0
+-0.3791983640458617 0.3249195246726645 0
+-0.3794893788890614 0.32506276524073807 0
+-0.3794893788890614 0.32506276524073807 0
+-0.3798043824549219 0.3251400973349798 0
+-0.38012864552680475 0.32514790499261126 0
+-0.3804470059238613 0.32508582313623924 0
+-0.3807445774677574 0.3249567546444687 0
+-0.3810074460438274 0.32476673461652544 0
+-0.38122332020961175 0.3245246481777241 0
+-0.38281170380361074 0.3225364475809227 0
+-0.3855796481209262 0.3183899662893176 0
+-0.38802373868729084 0.3139073890415144 0
+-0.39011282604603326 0.3091194960771937 0
+-0.3918475393734003 0.30408168724743856 0
+-0.39324686758934413 0.29883976001381407 0
+-0.3944827721264007 0.2933073798022132 0
+-0.39555278934644056 0.2876474909568819 0
+-0.396543608289285 0.28195017227718233 0
+-0.3975452014220213 0.27634838399463063 0
+-0.3986954218588679 0.2708802614691428 0
+-0.3995104986672392 0.2675831429976605 0
+-0.3995527510936313 0.2670442016408434 0
+-0.39947815922105145 0.26650877741075196 0
+-0.3992902108825588 0.26600190614930413 0
+-0.3989976943335714 0.2655472885933382 0
+-0.3986142873228113 0.26516618215449994 0
+-0.3981579175359753 0.2648764069463002 0
+-0.39475626610549963 0.2631827547768107 0
+-0.39434987153038126 0.26303483924810034 0
+-0.39392118076827065 0.26297774472296565 0
+-0.3934902389227486 0.26301414087794595 0
+-0.39307719635555427 0.2631423258692857 0
+-0.3927013664780657 0.2633563059092573 0
+-0.39238032267764944 0.2636460755290134 0
+-0.39212907660559837 0.26399808542319003 0
+-0.39195937624900173 0.26439587600036635 0
+
+-0.4315198942624058 0.1954969445417537 0
+-0.4305745632412389 0.2009590497252704 0
+-0.4293789971876243 0.2063343729080824 0
+-0.42798483648977653 0.21147368033910985 0
+-0.42631587769756146 0.21650655924506232 0
+-0.4244070923767281 0.2213936355404008 0
+-0.4223078259994461 0.22611028616066936 0
+-0.4200805724201875 0.23064590201486404 0
+-0.4178182612283279 0.23491260027101057 0
+-0.4154894196522154 0.23938306976257853 0
+-0.41423730921996726 0.24191204969074526 0
+-0.41409023929289884 0.2425438727939716 0
+-0.41408243106963316 0.2431925399111186 0
+-0.41421424965401177 0.24382772008873035 0
+-0.41447953135553506 0.2444197130076537 0
+-0.41486587189667923 0.24494083773695263 0
+-0.4153552064231269 0.24536672706347368 0
+-0.4295744483031483 0.25398079220574776 0
+-0.4298591721897238 0.2541361621118363 0
+-0.43017063932716243 0.25422669233662537 0
+-0.43017063932716243 0.25422669233662537 0
+-0.43049428585828853 0.254248149787421 0
+-0.4308149784310139 0.2541995311376722 0
+-0.4311177218170621 0.25408310974140547 0
+-0.4313883600721766 0.25390432933371715 0
+-0.431614238452341 0.2536715494877706 0
+-0.43178479513554474 0.2533956547304461 0
+-0.4330038002032014 0.25116183945163856 0
+-0.4350096643067826 0.24659770404136044 0
+-0.43663823227527016 0.24175881534134552 0
+-0.43786417281476087 0.2366808950166573 0
+-0.4386977256260842 0.23141839201484923 0
+-0.43916554379057293 0.22601311063979346 0
+-0.43942198441874414 0.22035016714416744 0
+-0.43949291628910675 0.2145904581877658 0
+-0.4394793534595337 0.20880764067679347 0
+-0.4394929898150752 0.20311703132314024 0
+-0.4396762063071443 0.19753224818284543 0
+-0.43990636165320396 0.1941436837470977 0
+-0.4398543859858179 0.19360559306364028 0
+-0.43968795188955545 0.19309125587343795 0
+-0.4394148416377799 0.19262472201185982 0
+-0.4390478255623239 0.19222780608375817 0
+-0.43860406492696674 0.1919190674367906 0
+-0.4381043094858132 0.19171294234695108 0
+-0.4344602371712022 0.19063571113149205 0
+-0.43403433138083425 0.19056061244941025 0
+-0.43360223903441864 0.1905788266880262 0
+-0.4331841642898376 0.19068950216978592 0
+-0.43279965585749086 0.19088746383216934 0
+-0.4324666929243247 0.19116345520786193 0
+-0.43220084446703216 0.19150457124687867 0
+-0.43201454126400696 0.19189486174235842 0
+-0.4319164946459614 0.19231607714450932 0
+
+-0.45891182560775395 0.11759426340922349 0
+-0.4589293409002886 0.12313754195083655 0
+-0.4586853532565169 0.12863880976270667 0
+-0.4582048043621995 0.1339421330304519 0
+-0.4574351510546052 0.13918836284987482 0
+-0.45640399636461737 0.14433265056760647 0
+-0.45515566034553345 0.14934217844754924 0
+-0.4537498451804335 0.15419564663068566 0
+-0.45226280795579843 0.15879037036888433 0
+-0.45074563559663205 0.16359732247955192 0
+-0.449951700291209 0.16630530821482042 0
+-0.4499165796172802 0.16695307093023498 0
+-0.4500215298812759 0.1675932392200664 0
+-0.45026164372549554 0.16819587952657808 0
+-0.4506256936934507 0.1687328130588242 0
+-0.4510966572132523 0.16917893340159565 0
+-0.4516525125541528 0.1695133804634916 0
+-0.46715154891381383 0.1755274331602843 0
+-0.4674589269058377 0.175631000864343 0
+-0.4677813825661542 0.17566607003077786 0
+-0.4677813825661542 0.17566607003077786 0
+-0.4681038382264707 0.175631000864343 0
+-0.4684112162184946 0.1755274331602843 0
+-0.46868914388894484 0.17536020962933632 0
+-0.4689246256488457 0.1751371494579506 0
+-0.46910665063282325 0.17486868269182754 0
+-0.46922670755493306 0.1745673625385717 0
+-0.4700392952441131 0.1721558059246396 0
+-0.4712221319681888 0.16731269534056575 0
+-0.471985694125172 0.1622645223728933 0
+-0.47231123826247445 0.1570508647273515 0
+-0.4722183034773801 0.15172356604424544 0
+-0.47174039717221306 0.1463191672671351 0
+-0.4710095820727771 0.14069772616001083 0
+-0.47007927336447486 0.13501320293462563 0
+-0.46906174086219776 0.1293205945762047 0
+-0.46808700610678156 0.12371407043707344 0
+-0.46729765171367377 0.11818231749165291 0
+-0.466935892443696 0.11480526690732354 0
+-0.4667912679368842 0.11428437651035565 0
+-0.4665380486327344 0.11380675423529948 0
+-0.46618807478447577 0.11339473316889762 0
+-0.4657577107802848 0.11306757895828647 0
+-0.46526707996268213 0.11284058897074843 0
+-0.46473912368340203 0.11272437700581954 0
+-0.46096335377794556 0.11229629786976746 0
+-0.4605308777042498 0.11229629786976746 0
+-0.4601085126808257 0.11238926744171057 0
+-0.4597160080267436 0.112570859431741 0
+-0.45937171682339084 0.11283258280022992 0
+-0.4590917377447839 0.11316219965335142 0
+-0.4588891623014641 0.11354429747339635 0
+-0.4587734626960146 0.11396100979097065 0
+-0.45875004891339544 0.11439285160124701 0
+
+-0.47235995335259906 0.03611854008857247 0
+-0.4733397827655348 0.04157456227482928 0
+-0.4740547869726982 0.04703462147706969 0
+-0.4745024511168956 0.052340821787653286 0
+-0.4746554888202099 0.0576409984822039 0
+-0.47453329587453347 0.0628861910431606 0
+-0.47417382027189897 0.06803638421308897 0
+-0.4736321585033725 0.07306023455039592 0
+-0.4729655781195553 0.07784337541490399 0
+-0.4723061734917421 0.08284075333722371 0
+-0.4719945366356487 0.08564546410333473 0
+-0.472072432338765 0.08628948448861341 0
+-0.472286952229358 0.0869017027615834 0
+-0.4726280655957654 0.08745349227623246 0
+-0.47307982235609436 0.08791905196812555 0
+-0.4736210988663233 0.08827661278350218 0
+-0.4742265856384196 0.08850945557603566 0
+-0.49053448610082284 0.09174076187941245 0
+-0.4908551786735482 0.09178938052916126 0
+-0.4911788252046743 0.09176792307836566 0
+-0.4911788252046743 0.09176792307836566 0
+-0.49149029234211294 0.09167739285357657 0
+-0.49177501622868847 0.09152202294748803 0
+-0.4920196834919124 0.09130907828422748 0
+-0.49221285376248447 0.09104851591957802 0
+-0.49234549461324606 0.09075251946011637 0
+-0.4924114039054354 0.09043492937131051 0
+-0.4927928841503922 0.08791890534966161 0
+-0.49311675359964574 0.08294397505615693 0
+-0.4929921094953657 0.0778399040019509 0
+-0.4924073657366012 0.07264892338487722 0
+-0.491390767131507 0.06741869629521616 0
+-0.48998165729793447 0.06217939003813598 0
+-0.48828579191787747 0.05677025596296702 0
+-0.48638250959025314 0.051333639830294056 0
+-0.48439192462545744 0.045904207648796325 0
+-0.4824584355813873 0.04055212012311642 0
+-0.48072049443690457 0.035241476886614706 0
+-0.4797778124232485 0.03197855012683849 0
+-0.4795449334194671 0.03149068700748875 0
+-0.4792126228478514 0.031064291958717807 0
+-0.4787964191813937 0.03071930273910209 0
+-0.4783157836409603 0.030471850661122846 0
+-0.47779319021023386 0.030333506308923175 0
+-0.4772530747772144 0.030310738510653232 0
+-0.47346033213885796 0.030544818421938527 0
+-0.4730344263484901 0.03061991710402036 0
+-0.4726346219955673 0.030784817175891988 0
+-0.4722796134872816 0.03103180809346602 0
+-0.47198600062691676 0.03134934083594734 0
+-0.4717675124254963 0.031722567925209846 0
+-0.4716343651484864 0.03213403767737172 0
+-0.47159278461457743 0.03256451022413766 0
+-0.4716447150833216 0.03299385714765675 0
+
+-0.4714556629404951 -0.04645462679580664 0
+-0.47336803485293744 -0.04125163943815505 0
+-0.4750203058700109 -0.035998689981481174 0
+-0.47638258100423064 -0.03085083883942935 0
+-0.47745365974527926 -0.02565775845659618 0
+-0.4782441413147359 -0.02047103357418359 0
+-0.4787844486128335 -0.015336661127614393 0
+-0.47912339835962303 -0.010295075786445035 0
+-0.47929752852428004 -0.005468851110409623 0
+-0.4795159273037612 -0.0004328901758122172 0
+-0.47969605782517416 0.002383325903765221 0
+-0.47988460308381337 0.0030040357253913463 0
+-0.4802021745226803 0.0035697020390731693 0
+-0.48063392285424905 0.004053874916675887 0
+-0.481159660006389 0.004433914972562347 0
+-0.4817548030941811 0.004692051956103449 0
+-0.48239152388829426 0.00481621566884749 0
+-0.4990127811500854 0.0051665939719001686 0
+-0.49933704422196823 0.005158786314268693 0
+-0.4996520477878287 0.005081454220027037 0
+-0.4996520477878287 0.005081454220027037 0
+-0.4999430626310284 0.0049382136519534325 0
+-0.5001964812209392 0.004735762379810604 0
+-0.5004004539859512 0.004483566800075445 0
+-0.5005454433862722 0.004193419297761181 0
+-0.5006246698786869 0.0038788868476002103 0
+-0.5006344289204643 0.003554676637384374 0
+-0.5005732106369932 0.0010106333247469346 0
+-0.5000282722020948 -0.003944955938656652 0
+-0.49901920908458713 -0.008949840463198827 0
+-0.49754194457297124 -0.013960418732517493 0
+-0.49563257098206914 -0.01893465642523684 0
+-0.49333507270934024 -0.02384967649288236 0
+-0.4907256850600859 -0.028882149734375917 0
+-0.4879072593835571 -0.03390566994420585 0
+-0.4850041048731135 -0.03890695539937085 0
+-0.4821706096266008 -0.043841985840418596 0
+-0.4795368881929776 -0.04877015816057552 0
+-0.47804192635160814 -0.051819818717323385 0
+-0.47772786876154444 -0.05225983108504417 0
+-0.4773265640110241 -0.052622043109739294 0
+-0.47685677666416343 -0.0528895181597038 0
+-0.4763404734551704 -0.05304974939887855 0
+-0.4758017961482678 -0.05309524459260388 0
+-0.47526593269562956 -0.0530238764361855 0
+-0.47157145789021937 -0.0521347498772171 0
+-0.471165063315101 -0.05198683434850675 0
+-0.47079996748563224 -0.05175501418194692 0
+-0.4704932418770242 -0.051450129030876354 0
+-0.47025922863783437 -0.05108643498610359 0
+-0.47010886996704015 -0.050680937976945326 0
+-0.47004919646897625 -0.050252598592872205 0
+-0.4700829984100899 -0.04982144550741849 0
+-0.47020869524918274 -0.04940763895966775 0
+
+-0.4562264307780207 -0.12761629335217045 0
+-0.45901323873711697 -0.12282443096114772 0
+-0.4615525731453362 -0.11793819946116071 0
+-0.4637880672289695 -0.11310511233965355 0
+-0.4657446428221975 -0.10817691738814471 0
+-0.46742378052430245 -0.1032062561952189 0
+-0.46884745375928805 -0.09824370978068012 0
+-0.47005671620485423 -0.09333757545507448 0
+-0.4710662660610465 -0.0886149093621055 0
+-0.47215583231142266 -0.08369338053990896 0
+-0.4728222570355992 -0.08095122844736902 0
+-0.47311572299748605 -0.08037268914323123 0
+-0.47352669673715597 -0.07987076227353784 0
+-0.47403596157930633 -0.07946891738086409 0
+-0.4746197048659254 -0.0791859442857728 0
+-0.47525063140971513 -0.07903507449568853 0
+-0.47589923978671217 -0.0790233625143158 0
+-0.4923288253567537 -0.08156455827902553 0
+-0.49264680635843994 -0.081628555012311 0
+-0.49294359573508556 -0.08175941205344714 0
+-0.49294359573508556 -0.08175941205344714 0
+-0.4932053159452963 -0.08195101067262753 0
+-0.4934197292429239 -0.0821943919313659 0
+-0.4935768099004744 -0.08247817559250253 0
+-0.49366921300098365 -0.08278909224744549 0
+-0.4936926178781701 -0.0831126037789687 0
+-0.49364593014598945 -0.08343358314741539 0
+-0.4931438734206558 -0.08592834628233498 0
+-0.49174668478019756 -0.09071402144351809 0
+-0.48988386252167726 -0.0954676485547119 0
+-0.48755896319186337 -0.10014558059103729 0
+-0.4848148299655234 -0.10471268919160734 0
+-0.4816987515760648 -0.10915408267218293 0
+-0.4782551265809219 -0.1136569859271127 0
+-0.4746071939934776 -0.11811477309454782 0
+-0.4708796808181189 -0.12253595029559743 0
+-0.4672322736884112 -0.1269039752493077 0
+-0.46378279625868074 -0.13129993663094736 0
+-0.4617809782486608 -0.1340436685918528 0
+-0.46139528455326806 -0.13442246065480845 0
+-0.4609371790656176 -0.1347094840263455 0
+-0.46042808228916454 -0.13489131781261454 0
+-0.4598917990233551 -0.13495945966786335 0
+-0.45935340527766266 -0.1349107233546747 0
+-0.4588380757452542 -0.13474738772888678 0
+-0.45535412352025806 -0.13323023018280972 0
+-0.45497958825390855 -0.13301399214596182 0
+-0.4546602941999249 -0.1327222956231681 0
+-0.45441117119340135 -0.13236878001963692 0
+-0.45424386794924276 -0.1319699753320851 0
+-0.45416620738120184 -0.1315445292244629 0
+-0.4541818208111264 -0.13111233508391346 0
+-0.4542899781723865 -0.13069360182809947 0
+-0.45448562214697774 -0.1303079089586743 0
+
+-0.4271349893780695 -0.20490040341198917 0
+-0.43071155763417535 -0.20066526430154713 0
+-0.4340607990425118 -0.19629421642982164 0
+-0.43710158771904206 -0.19192274423538608 0
+-0.43988421060512434 -0.18740917542501617 0
+-0.4424009846904836 -0.18280560894664827 0
+-0.4446647662715256 -0.178165673025776 0
+-0.4467075985883764 -0.17354406012459386 0
+-0.4485218934745803 -0.16906844843414187 0
+-0.4504495212766809 -0.16441088988719482 0
+-0.45158199122560405 -0.16182612068542832 0
+-0.45197146107598773 -0.16130733052278004 0
+-0.4524633498873434 -0.1608843938910235 0
+-0.45303465748554717 -0.16057708683699928 0
+-0.45365867016226985 -0.16039977869700622 0
+-0.4543062097782883 -0.1603607602026067 0
+-0.4549469981008459 -0.16046185581523276 0
+-0.47068570733536347 -0.1658174127003013 0
+-0.470987744575023 -0.16593565400088375 0
+-0.47125730196742716 -0.16611605996393625 0
+-0.47125730196742716 -0.16611605996393625 0
+-0.4714817753084985 -0.16635019500713324 0
+-0.4716506684742928 -0.1666271112360773 0
+-0.4717560842080888 -0.16693386035567317 0
+-0.4717930933873355 -0.1672560991180158 0
+-0.47175996550394383 -0.16757875999672073 0
+-0.4716582495809223 -0.16788675572771136 0
+-0.47073060915327236 -0.1702564365694696 0
+-0.4685236231770832 -0.17472678731032817 0
+-0.46586364268924174 -0.17908472045385143 0
+-0.4627617494309105 -0.18328786965940763 0
+-0.45926623566861646 -0.18730907988406847 0
+-0.4554262576274802 -0.19114189728412048 0
+-0.45125302808936774 -0.1949784121156643 0
+-0.44688642917673466 -0.19873501863337129 0
+-0.4424478159380813 -0.20244175234827522 0
+-0.4380973215451377 -0.20611005158675677 0
+-0.4339368987454826 -0.20984023296776189 0
+-0.4314890487940778 -0.21219466942558812 0
+-0.43104343810112006 -0.21250073177862377 0
+-0.4305424511797693 -0.21270384543709941 0
+-0.43000951362166084 -0.21279451303208957 0
+-0.42946954499469425 -0.21276849504762219 0
+-0.42894779363173446 -0.21262700805573398 0
+-0.42846865604662854 -0.21237666783091425 0
+-0.4253010845274382 -0.21027757736204733 0
+-0.4249697886344016 -0.20999958710038985 0
+-0.4247059979441627 -0.20965687727260168 0
+-0.42452204701621465 -0.2092654726093357 0
+-0.42442653719150164 -0.20884367475763116 0
+-0.4244239344032755 -0.20841120651623907 0
+-0.42451436035502116 -0.20798828961947302 0
+-0.42469358682973607 -0.20759469919138748 0
+-0.42495323339665847 -0.2072488390829553 0
+
+-0.3850652674665992 -0.27595871839874136 0
+-0.38932292380308386 -0.272408985127667 0
+-0.39338030720614325 -0.26868593296192844 0
+-0.39713399765034724 -0.2649089006651207 0
+-0.4006581192409654 -0.2609471005002168 0
+-0.4039360588025446 -0.256850505774335 0
+-0.4069711648718317 -0.252674162452164 0
+-0.4097854966337425 -0.24847749634475885 0
+-0.41234941011791837 -0.2443849282532694 0
+-0.41505652947640326 -0.24013285754118258 0
+-0.41662063512373254 -0.23778400813442885 0
+-0.4170942750182902 -0.2373407302898417 0
+-0.4176521331087063 -0.2370096346115616 0
+-0.41826812457068774 -0.23680620276551861 0
+-0.41891344632809746 -0.2367399469987352 0
+-0.4195579238527827 -0.23681396535722846 0
+-0.42017142209197444 -0.23702479682482047 0
+-0.4347410422750485 -0.24503198894433753 0
+-0.4350179585039925 -0.24520088211013186 0
+-0.4352520935471895 -0.24542535545120325 0
+-0.4352520935471895 -0.24542535545120325 0
+-0.435432499510242 -0.24569491284360734 0
+-0.4355507408108245 -0.24599695008326689 0
+-0.43560128861713754 -0.2463173442445457 0
+-0.4355817793699378 -0.24664111405255493 0
+-0.4354931252999412 -0.24695312039091627 0
+-0.43533947177292914 -0.2472387741900182 0
+-0.43401443352794844 -0.24941137118535456 0
+-0.431064708368126 -0.2534305681607342 0
+-0.4276883918120714 -0.25726039374324156 0
+-0.42390375408224346 -0.26086104955631384 0
+-0.41976306920084744 -0.26421417896721977 0
+-0.41531586729769066 -0.2673219620695467 0
+-0.4105398346843683 -0.2703755179159184 0
+-0.405587246344901 -0.27331680119579127 0
+-0.4005723980601629 -0.27619646419631994 0
+-0.39565100397465663 -0.27905357830346045 0
+-0.3909060481465689 -0.28200464001013203 0
+-0.38808654293588074 -0.2838982426045104 0
+-0.38759455490077377 -0.2841222756979041 0
+-0.38706590877981617 -0.2842353081375861 0
+-0.3865253234780761 -0.28423205465230356 0
+-0.38599807616344545 -0.2841126673714122 0
+-0.3855088203343629 -0.28388272871147713 0
+-0.38508043304962775 -0.2835529903486784 0
+-0.38232548729398513 -0.2809357467587273 0
+-0.3820474970323276 -0.2806044508656907 0
+-0.3818472248524718 -0.28022114079760596 0
+-0.38173403525896127 -0.27980373970723815 0
+-0.38171322087138737 -0.27937176480566495 0
+-0.38178575494737943 -0.2789454147591781 0
+-0.38194824587416 -0.27854462522209755 0
+-0.3821930957565885 -0.27818813666773134 0
+-0.3825088556862936 -0.27789261810467325 0
+
+-0.33129553225558334 -0.3386321673687973 0
+-0.3361049099391407 -0.3358756967862805 0
+-0.34074715379535603 -0.3329137633826296 0
+-0.3450996920225458 -0.32984593419851765 0
+-0.34925823366646036 -0.3265562799723228 0
+-0.3531977401693983 -0.3230911299566961 0
+-0.3569119505648532 -0.3195052753117389 0
+-0.3604122697253589 -0.31586106957416865 0
+-0.3636478985936928 -0.3122758956921623 0
+-0.36705225505672295 -0.30855850983187083 0
+-0.3690004718438399 -0.30651694882077885 0
+-0.36954389047404884 -0.3061626520672512 0
+-0.3701507676077379 -0.30593345751708967 0
+-0.37079272634463134 -0.30584008205272833 0
+-0.37143974940767777 -0.3058868918071013 0
+-0.3720615827175636 -0.30607169800811956 0
+-0.3726291500398369 -0.30638585932322066 0
+-0.3855869906347882 -0.3168013921964695 0
+-0.38583037189352654 -0.317015805494097 0
+-0.3860219705127069 -0.3172775257043078 0
+-0.3860219705127069 -0.3172775257043078 0
+-0.38615282755384306 -0.3175743150809534 0
+-0.38621682428712856 -0.3178922960826397 0
+-0.3862109682964422 -0.3182166002711382 0
+-0.38613553340140006 -0.3185320635430331 0
+-0.3859940468538544 -0.31882393518634267 0
+-0.38579312440751756 -0.3190785676074178 0
+-0.384110948961778 -0.32098806749601627 0
+-0.3805081105246706 -0.3244339894396319 0
+-0.37651804557046 -0.327619340148784 0
+-0.37216565767143706 -0.33050809846451196 0
+-0.3675056142857726 -0.333091263921278 0
+-0.36258631450003 -0.3353795843089298 0
+-0.3573525961456643 -0.33755740042091115 0
+-0.35196450026992687 -0.3395939910588521 0
+-0.3465257905666002 -0.3415590862419142 0
+-0.34118303085747376 -0.3435182032513378 0
+-0.33599771508272624 -0.3456004787670279 0
+-0.3328922238518431 -0.3469757113413373 0
+-0.33236880728207563 -0.34711090804291245 0
+-0.33182856460638877 -0.3471304248303182 0
+-0.33129675697186106 -0.34703334912026695 0
+-0.3307982511124213 -0.3468242200650687 0
+-0.33035635660800733 -0.34651281630691433 0
+-0.32999173595451514 -0.3461136987394347 0
+-0.3277331235951357 -0.3430578256504907 0
+-0.3275168855582878 -0.34268329038414114 0
+-0.32738621705765747 -0.34227102675821436 0
+-0.3273472280071065 -0.3418403117616604 0
+-0.32740174149130563 -0.3414112851490129 0
+-0.3275472085203208 -0.34100400772785044 0
+-0.3277768272175505 -0.3406375233377301 0
+-0.32807986086791496 -0.3403289683814159 0
+-0.328442139954721 -0.3400927705457308 0
+
+-0.26745954994061 -0.39101644928949697 0
+-0.27267451846398777 -0.38913699535934604 0
+-0.2777605705428767 -0.3870261775654421 0
+-0.2825797068815097 -0.3847607659313887 0
+-0.2872463133951939 -0.38224321212292045 0
+-0.2917276869278853 -0.379514793647323 0
+-0.2960081472461231 -0.3766283820584367 0
+-0.3000880983787787 -0.37364736403798043 0
+-0.3038971296854136 -0.37067851805967633 0
+-0.3078952836045473 -0.3676087679394572 0
+-0.31016841595022054 -0.3659365271222694 0
+-0.31076510181598505 -0.3656819765873743 0
+-0.31140255833833463 -0.3655616471257599 0
+-0.3120509787587663 -0.3655811652093147 0
+-0.3126800436590882 -0.3657396181941443 0
+-0.3132603386637167 -0.36602959699478604 0
+-0.313764729823187 -0.3664375425248102 0
+-0.3247170734005217 -0.378944945455951 0
+-0.32491952467266455 -0.3791983640458617 0
+-0.3250627652407381 -0.3794893788890614 0
+-0.3250627652407381 -0.3794893788890614 0
+-0.32514009733497984 -0.3798043824549219 0
+-0.32514790499261126 -0.38012864552680475 0
+-0.32508582313623924 -0.3804470059238613 0
+-0.3249567546444687 -0.3807445774677574 0
+-0.3247667346165255 -0.3810074460438274 0
+-0.3245246481777241 -0.38122332020961175 0
+-0.3225364475809227 -0.38281170380361074 0
+-0.3183899662893176 -0.3855796481209262 0
+-0.3139073890415144 -0.38802373868729084 0
+-0.3091194960771937 -0.39011282604603326 0
+-0.30408168724743856 -0.3918475393734003 0
+-0.2988397600138141 -0.39324686758934413 0
+-0.2933073798022132 -0.39448277212640065 0
+-0.28764749095688197 -0.39555278934644056 0
+-0.28195017227718233 -0.396543608289285 0
+-0.27634838399463063 -0.39754520142202127 0
+-0.2708802614691428 -0.3986954218588679 0
+-0.26758314299766056 -0.3995104986672392 0
+-0.2670442016408434 -0.3995527510936313 0
+-0.266508777410752 -0.39947815922105145 0
+-0.2660019061493042 -0.3992902108825587 0
+-0.2655472885933382 -0.3989976943335714 0
+-0.2651661821545 -0.3986142873228113 0
+-0.2648764069463002 -0.3981579175359753 0
+-0.26318275477681075 -0.39475626610549963 0
+-0.26303483924810034 -0.39434987153038126 0
+-0.2629777447229657 -0.39392118076827065 0
+-0.26301414087794595 -0.3934902389227486 0
+-0.26314232586928576 -0.39307719635555427 0
+-0.26335630590925735 -0.3927013664780657 0
+-0.2636460755290135 -0.39238032267764944 0
+-0.2639980854231901 -0.39212907660559837 0
+-0.2643958760003664 -0.39195937624900173 0
+
+-0.19549694454175365 -0.4315198942624058 0
+-0.20095904972527034 -0.4305745632412389 0
+-0.20633437290808232 -0.42937899718762434 0
+-0.2114736803391098 -0.4279848364897766 0
+-0.21650655924506226 -0.4263158776975615 0
+-0.22139363554040076 -0.4244070923767281 0
+-0.2261102861606693 -0.4223078259994461 0
+-0.23064590201486396 -0.4200805724201875 0
+-0.23491260027101052 -0.41781826122832794 0
+-0.23938306976257845 -0.4154894196522154 0
+-0.2419120496907452 -0.41423730921996726 0
+-0.24254387279397155 -0.4140902392928989 0
+-0.24319253991111855 -0.41408243106963316 0
+-0.2438277200887303 -0.41421424965401177 0
+-0.24441971300765364 -0.41447953135553506 0
+-0.24494083773695258 -0.41486587189667923 0
+-0.24536672706347362 -0.41535520642312695 0
+-0.25398079220574765 -0.4295744483031483 0
+-0.2541361621118362 -0.4298591721897238 0
+-0.2542266923366253 -0.43017063932716243 0
+-0.2542266923366253 -0.43017063932716243 0
+-0.25424814978742094 -0.43049428585828853 0
+-0.25419953113767213 -0.4308149784310139 0
+-0.25408310974140536 -0.4311177218170621 0
+-0.2539043293337171 -0.4313883600721766 0
+-0.25367154948777054 -0.43161423845234104 0
+-0.253395654730446 -0.43178479513554474 0
+-0.2511618394516385 -0.43300380020320145 0
+-0.24659770404136036 -0.4350096643067827 0
+-0.24175881534134547 -0.43663823227527016 0
+-0.23668089501665723 -0.4378641728147609 0
+-0.23141839201484915 -0.4386977256260842 0
+-0.2260131106397934 -0.439165543790573 0
+-0.22035016714416739 -0.43942198441874414 0
+-0.2145904581877657 -0.43949291628910675 0
+-0.20880764067679342 -0.4394793534595337 0
+-0.20311703132314018 -0.4394929898150752 0
+-0.19753224818284537 -0.4396762063071443 0
+-0.19414368374709765 -0.439906361653204 0
+-0.19360559306364022 -0.4398543859858179 0
+-0.19309125587343787 -0.43968795188955545 0
+-0.19262472201185976 -0.43941484163777994 0
+-0.1922278060837581 -0.4390478255623239 0
+-0.19191906743679055 -0.43860406492696674 0
+-0.191712942346951 -0.43810430948581325 0
+-0.190635711131492 -0.4344602371712022 0
+-0.19056061244941017 -0.4340343313808343 0
+-0.19057882668802612 -0.43360223903441864 0
+-0.19068950216978586 -0.4331841642898376 0
+-0.19088746383216926 -0.4327996558574909 0
+-0.19116345520786185 -0.4324666929243247 0
+-0.19150457124687859 -0.43220084446703216 0
+-0.19189486174235837 -0.43201454126400696 0
+-0.19231607714450924 -0.4319164946459614 0
+
+-0.11759426340922352 -0.45891182560775395 0
+-0.12313754195083658 -0.4589293409002886 0
+-0.1286388097627067 -0.4586853532565169 0
+-0.13394213303045194 -0.4582048043621995 0
+-0.13918836284987485 -0.4574351510546052 0
+-0.1443326505676065 -0.45640399636461737 0
+-0.14934217844754927 -0.45515566034553345 0
+-0.1541956466306857 -0.4537498451804335 0
+-0.15879037036888435 -0.45226280795579843 0
+-0.16359732247955194 -0.45074563559663205 0
+-0.16630530821482045 -0.449951700291209 0
+-0.166953070930235 -0.4499165796172802 0
+-0.16759323922006641 -0.4500215298812759 0
+-0.1681958795265781 -0.45026164372549554 0
+-0.16873281305882423 -0.4506256936934507 0
+-0.16917893340159568 -0.4510966572132523 0
+-0.16951338046349163 -0.4516525125541528 0
+-0.17552743316028432 -0.46715154891381383 0
+-0.17563100086434302 -0.4674589269058377 0
+-0.1756660700307779 -0.4677813825661542 0
+-0.1756660700307779 -0.4677813825661542 0
+-0.17563100086434302 -0.4681038382264707 0
+-0.17552743316028432 -0.4684112162184946 0
+-0.17536020962933635 -0.46868914388894484 0
+-0.17513714945795064 -0.4689246256488457 0
+-0.17486868269182756 -0.46910665063282325 0
+-0.17456736253857172 -0.46922670755493306 0
+-0.17215580592463964 -0.4700392952441131 0
+-0.16731269534056578 -0.4712221319681888 0
+-0.16226452237289332 -0.471985694125172 0
+-0.15705086472735152 -0.47231123826247445 0
+-0.15172356604424547 -0.4722183034773801 0
+-0.14631916726713512 -0.47174039717221306 0
+-0.14069772616001086 -0.4710095820727771 0
+-0.13501320293462565 -0.47007927336447486 0
+-0.12932059457620473 -0.46906174086219776 0
+-0.12371407043707347 -0.46808700610678156 0
+-0.11818231749165294 -0.46729765171367377 0
+-0.11480526690732357 -0.466935892443696 0
+-0.11428437651035568 -0.4667912679368842 0
+-0.11380675423529951 -0.4665380486327344 0
+-0.11339473316889764 -0.46618807478447577 0
+-0.1130675789582865 -0.4657577107802848 0
+-0.11284058897074846 -0.46526707996268213 0
+-0.11272437700581957 -0.46473912368340203 0
+-0.11229629786976748 -0.46096335377794556 0
+-0.11229629786976748 -0.4605308777042498 0
+-0.1123892674417106 -0.4601085126808257 0
+-0.11257085943174103 -0.4597160080267436 0
+-0.11283258280022995 -0.45937171682339084 0
+-0.11316219965335145 -0.4590917377447839 0
+-0.11354429747339638 -0.4588891623014641 0
+-0.11396100979097068 -0.4587734626960146 0
+-0.11439285160124704 -0.45875004891339544 0
+
+-0.03611854008857239 -0.47235995335259906 0
+-0.041574562274829197 -0.4733397827655348 0
+-0.047034621477069605 -0.4740547869726982 0
+-0.052340821787653216 -0.47450245111689565 0
+-0.05764099848220383 -0.47465548882020997 0
+-0.06288619104316052 -0.47453329587453347 0
+-0.0680363842130889 -0.474173820271899 0
+-0.07306023455039584 -0.4736321585033725 0
+-0.07784337541490391 -0.4729655781195553 0
+-0.08284075333722363 -0.4723061734917421 0
+-0.08564546410333465 -0.4719945366356488 0
+-0.08628948448861333 -0.472072432338765 0
+-0.08690170276158334 -0.47228695222935807 0
+-0.08745349227623239 -0.4726280655957655 0
+-0.08791905196812548 -0.47307982235609436 0
+-0.08827661278350211 -0.47362109886632336 0
+-0.08850945557603558 -0.47422658563841963 0
+-0.09174076187941237 -0.49053448610082284 0
+-0.09178938052916119 -0.4908551786735483 0
+-0.09176792307836558 -0.4911788252046743 0
+-0.09176792307836558 -0.4911788252046743 0
+-0.09167739285357648 -0.491490292342113 0
+-0.09152202294748794 -0.49177501622868847 0
+-0.09130907828422741 -0.4920196834919124 0
+-0.09104851591957794 -0.4922128537624845 0
+-0.09075251946011628 -0.4923454946132461 0
+-0.09043492937131042 -0.4924114039054354 0
+-0.08791890534966153 -0.49279288415039224 0
+-0.08294397505615685 -0.49311675359964574 0
+-0.07783990400195082 -0.4929921094953657 0
+-0.07264892338487713 -0.49240736573660127 0
+-0.06741869629521607 -0.491390767131507 0
+-0.0621793900381359 -0.4899816572979345 0
+-0.05677025596296695 -0.48828579191787747 0
+-0.05133363983029399 -0.48638250959025314 0
+-0.045904207648796255 -0.48439192462545744 0
+-0.040552120123116334 -0.4824584355813873 0
+-0.03524147688661462 -0.48072049443690457 0
+-0.03197855012683842 -0.4797778124232486 0
+-0.03149068700748868 -0.4795449334194671 0
+-0.031064291958717738 -0.4792126228478514 0
+-0.030719302739102006 -0.4787964191813937 0
+-0.030471850661122776 -0.4783157836409603 0
+-0.030333506308923106 -0.4777931902102339 0
+-0.03031073851065315 -0.4772530747772144 0
+-0.030544818421938458 -0.473460332138858 0
+-0.030619917104020275 -0.47303442634849013 0
+-0.030784817175891918 -0.4726346219955673 0
+-0.031031808093465937 -0.4722796134872816 0
+-0.03134934083594727 -0.4719860006269168 0
+-0.03172256792520978 -0.4717675124254963 0
+-0.032134037677371635 -0.4716343651484864 0
+-0.032564510224137574 -0.4715927846145775 0
+-0.032993857147656666 -0.4716447150833216 0
+
+0.046454626795806614 -0.4714556629404951 0
+0.04125163943815505 -0.47336803485293744 0
+0.03599868998148115 -0.4750203058700109 0
+0.030850838839429323 -0.47638258100423064 0
+0.025657758456596153 -0.4774536597452792 0
+0.02047103357418356 -0.4782441413147359 0
+0.015336661127614365 -0.4787844486128334 0
+0.010295075786445007 -0.47912339835962303 0
+0.005468851110409595 -0.47929752852428004 0
+0.00043289017581218947 -0.4795159273037612 0
+-0.0023833259037652488 -0.47969605782517416 0
+-0.003004035725391374 -0.47988460308381337 0
+-0.003569702039073197 -0.4802021745226803 0
+-0.004053874916675915 -0.48063392285424905 0
+-0.004433914972562375 -0.481159660006389 0
+-0.004692051956103477 -0.4817548030941811 0
+-0.004816215668847518 -0.48239152388829426 0
+-0.005166593971900196 -0.49901278115008535 0
+-0.005158786314268721 -0.49933704422196823 0
+-0.005081454220027065 -0.4996520477878287 0
+-0.005081454220027065 -0.4996520477878287 0
+-0.00493821365195346 -0.4999430626310284 0
+-0.004735762379810604 -0.5001964812209392 0
+-0.0044835668000754725 -0.5004004539859512 0
+-0.004193419297761208 -0.5005454433862722 0
+-0.003878886847600238 -0.5006246698786869 0
+-0.003554676637384402 -0.5006344289204643 0
+-0.0010106333247469346 -0.5005732106369932 0
+0.003944955938656625 -0.5000282722020948 0
+0.0089498404631988 -0.49901920908458713 0
+0.013960418732517466 -0.49754194457297124 0
+0.018934656425236812 -0.4956325709820691 0
+0.023849676492882332 -0.49333507270934024 0
+0.02888214973437589 -0.4907256850600859 0
+0.033905669944205824 -0.4879072593835571 0
+0.03890695539937082 -0.4850041048731135 0
+0.04384198584041857 -0.4821706096266008 0
+0.04877015816057549 -0.4795368881929776 0
+0.05181981871732336 -0.47804192635160814 0
+0.052259831085044145 -0.4777278687615444 0
+0.05262204310973927 -0.4773265640110241 0
+0.0528895181597038 -0.47685677666416343 0
+0.05304974939887852 -0.4763404734551704 0
+0.053095244592603855 -0.4758017961482678 0
+0.0530238764361855 -0.47526593269562956 0
+0.05213474987721707 -0.47157145789021937 0
+0.05198683434850672 -0.47116506331510094 0
+0.05175501418194689 -0.47079996748563224 0
+0.051450129030876326 -0.4704932418770242 0
+0.05108643498610356 -0.47025922863783437 0
+0.0506809379769453 -0.47010886996704015 0
+0.05025259859287218 -0.47004919646897625 0
+0.04982144550741846 -0.4700829984100898 0
+0.049407638959667724 -0.4702086952491827 0
+
+0.12761629335217065 -0.4562264307780207 0
+0.1228244309611479 -0.45901323873711697 0
+0.1179381994611609 -0.46155257314533626 0
+0.11310511233965373 -0.4637880672289695 0
+0.10817691738814489 -0.4657446428221975 0
+0.10320625619521909 -0.46742378052430245 0
+0.09824370978068028 -0.46884745375928805 0
+0.09333757545507465 -0.47005671620485423 0
+0.0886149093621057 -0.4710662660610465 0
+0.08369338053990916 -0.47215583231142266 0
+0.08095122844736921 -0.4728222570355992 0
+0.08037268914323142 -0.47311572299748605 0
+0.07987076227353804 -0.47352669673715597 0
+0.07946891738086428 -0.4740359615793064 0
+0.079185944285773 -0.4746197048659254 0
+0.07903507449568872 -0.47525063140971513 0
+0.07902336251431599 -0.4758992397867122 0
+0.08156455827902573 -0.4923288253567537 0
+0.0816285550123112 -0.49264680635843994 0
+0.0817594120534473 -0.49294359573508556 0
+0.0817594120534473 -0.49294359573508556 0
+0.08195101067262772 -0.4932053159452963 0
+0.0821943919313661 -0.4934197292429239 0
+0.0824781755925027 -0.4935768099004744 0
+0.08278909224744566 -0.49366921300098365 0
+0.0831126037789689 -0.4936926178781701 0
+0.08343358314741559 -0.49364593014598945 0
+0.08592834628233517 -0.4931438734206558 0
+0.09071402144351826 -0.49174668478019756 0
+0.0954676485547121 -0.48988386252167726 0
+0.10014558059103748 -0.48755896319186337 0
+0.10471268919160753 -0.4848148299655234 0
+0.10915408267218313 -0.4816987515760648 0
+0.11365698592711287 -0.4782551265809219 0
+0.118114773094548 -0.4746071939934776 0
+0.1225359502955976 -0.4708796808181189 0
+0.12690397524930785 -0.46723227368841125 0
+0.13129993663094752 -0.4637827962586807 0
+0.13404366859185296 -0.46178097824866077 0
+0.13442246065480862 -0.461395284553268 0
+0.1347094840263457 -0.4609371790656176 0
+0.13489131781261474 -0.4604280822891645 0
+0.13495945966786355 -0.45989179902335514 0
+0.13491072335467486 -0.4593534052776627 0
+0.13474738772888695 -0.45883807574525415 0
+0.1332302301828099 -0.45535412352025806 0
+0.13301399214596202 -0.45497958825390855 0
+0.13272229562316828 -0.4546602941999248 0
+0.13236878001963712 -0.45441117119340135 0
+0.13196997533208527 -0.45424386794924276 0
+0.1315445292244631 -0.4541662073812018 0
+0.13111233508391362 -0.4541818208111264 0
+0.13069360182809966 -0.4542899781723865 0
+0.1303079089586745 -0.45448562214697774 0
+
+0.20490040341198912 -0.4271349893780695 0
+0.20066526430154707 -0.43071155763417535 0
+0.1962942164298216 -0.4340607990425118 0
+0.19192274423538602 -0.437101587719042 0
+0.18740917542501612 -0.43988421060512434 0
+0.1828056089466482 -0.4424009846904836 0
+0.17816567302577593 -0.4446647662715256 0
+0.1735440601245938 -0.44670759858837633 0
+0.16906844843414182 -0.44852189347458027 0
+0.16441088988719477 -0.45044952127668086 0
+0.16182612068542826 -0.45158199122560405 0
+0.16130733052277998 -0.45197146107598773 0
+0.16088439389102344 -0.4524633498873433 0
+0.16057708683699923 -0.45303465748554717 0
+0.16039977869700617 -0.45365867016226985 0
+0.16036076020260664 -0.4543062097782883 0
+0.1604618558152327 -0.4549469981008458 0
+0.16581741270030123 -0.4706857073353634 0
+0.1659356540008837 -0.470987744575023 0
+0.1661160599639362 -0.4712573019674271 0
+0.1661160599639362 -0.4712573019674271 0
+0.16635019500713324 -0.47148177530849844 0
+0.16662711123607724 -0.4716506684742928 0
+0.16693386035567312 -0.4717560842080888 0
+0.16725609911801576 -0.4717930933873355 0
+0.16757875999672067 -0.4717599655039438 0
+0.16788675572771136 -0.4716582495809223 0
+0.17025643656946954 -0.4707306091532723 0
+0.17472678731032812 -0.4685236231770832 0
+0.17908472045385138 -0.46586364268924174 0
+0.18328786965940758 -0.4627617494309105 0
+0.18730907988406847 -0.45926623566861646 0
+0.19114189728412043 -0.4554262576274801 0
+0.19497841211566425 -0.45125302808936774 0
+0.19873501863337123 -0.4468864291767346 0
+0.20244175234827516 -0.4424478159380813 0
+0.20611005158675672 -0.4380973215451377 0
+0.20984023296776183 -0.4339368987454826 0
+0.21219466942558807 -0.43148904879407773 0
+0.21250073177862372 -0.43104343810112006 0
+0.21270384543709936 -0.4305424511797693 0
+0.21279451303208952 -0.43000951362166084 0
+0.21276849504762213 -0.42946954499469425 0
+0.21262700805573392 -0.42894779363173446 0
+0.2123766678309142 -0.42846865604662854 0
+0.21027757736204733 -0.4253010845274382 0
+0.2099995871003898 -0.4249697886344016 0
+0.20965687727260163 -0.42470599794416264 0
+0.20926547260933565 -0.42452204701621465 0
+0.2088436747576311 -0.4244265371915016 0
+0.20841120651623907 -0.4244239344032755 0
+0.20798828961947297 -0.42451436035502116 0
+0.20759469919138743 -0.424693586829736 0
+0.2072488390829553 -0.42495323339665847 0
+
+0.27595871839874136 -0.3850652674665992 0
+0.272408985127667 -0.38932292380308386 0
+0.26868593296192844 -0.39338030720614325 0
+0.2649089006651207 -0.39713399765034724 0
+0.2609471005002168 -0.4006581192409654 0
+0.256850505774335 -0.4039360588025446 0
+0.252674162452164 -0.4069711648718317 0
+0.24847749634475885 -0.4097854966337425 0
+0.2443849282532694 -0.41234941011791837 0
+0.24013285754118258 -0.41505652947640326 0
+0.23778400813442885 -0.41662063512373254 0
+0.2373407302898417 -0.4170942750182902 0
+0.2370096346115616 -0.4176521331087063 0
+0.23680620276551861 -0.41826812457068774 0
+0.2367399469987352 -0.41891344632809746 0
+0.23681396535722846 -0.4195579238527827 0
+0.23702479682482047 -0.42017142209197444 0
+0.24503198894433753 -0.4347410422750485 0
+0.24520088211013186 -0.4350179585039925 0
+0.24542535545120325 -0.4352520935471895 0
+0.24542535545120325 -0.4352520935471895 0
+0.24569491284360734 -0.435432499510242 0
+0.24599695008326689 -0.4355507408108245 0
+0.2463173442445457 -0.43560128861713754 0
+0.24664111405255493 -0.4355817793699378 0
+0.24695312039091627 -0.4354931252999412 0
+0.2472387741900182 -0.43533947177292914 0
+0.24941137118535456 -0.43401443352794844 0
+0.2534305681607342 -0.431064708368126 0
+0.25726039374324156 -0.4276883918120714 0
+0.26086104955631384 -0.42390375408224346 0
+0.26421417896721977 -0.41976306920084744 0
+0.2673219620695467 -0.41531586729769066 0
+0.2703755179159184 -0.4105398346843683 0
+0.27331680119579127 -0.405587246344901 0
+0.27619646419631994 -0.4005723980601629 0
+0.27905357830346045 -0.39565100397465663 0
+0.28200464001013203 -0.3909060481465689 0
+0.2838982426045104 -0.38808654293588074 0
+0.2841222756979041 -0.38759455490077377 0
+0.2842353081375861 -0.38706590877981617 0
+0.28423205465230356 -0.3865253234780761 0
+0.2841126673714122 -0.38599807616344545 0
+0.28388272871147713 -0.3855088203343629 0
+0.2835529903486784 -0.38508043304962775 0
+0.2809357467587273 -0.38232548729398513 0
+0.2806044508656907 -0.3820474970323276 0
+0.28022114079760596 -0.3818472248524718 0
+0.27980373970723815 -0.38173403525896127 0
+0.27937176480566495 -0.38171322087138737 0
+0.2789454147591781 -0.38178575494737943 0
+0.27854462522209755 -0.38194824587416 0
+0.27818813666773134 -0.3821930957565885 0
+0.27789261810467325 -0.3825088556862936 0
+
+0.3386321673687972 -0.33129553225558356 0
+0.3358756967862803 -0.33610490993914094 0
+0.33291376338262946 -0.34074715379535625 0
+0.3298459341985175 -0.34509969202254603 0
+0.3265562799723226 -0.3492582336664605 0
+0.32309112995669587 -0.35319774016939853 0
+0.31950527531173867 -0.35691195056485336 0
+0.3158610695741685 -0.36041226972535906 0
+0.3122758956921621 -0.36364789859369295 0
+0.3085585098318706 -0.3670522550567231 0
+0.3065169488207786 -0.36900047184384 0
+0.306162652067251 -0.369543890474049 0
+0.30593345751708945 -0.37015076760773813 0
+0.30584008205272817 -0.37079272634463145 0
+0.30588689180710116 -0.3714397494076779 0
+0.3060716980081194 -0.37206158271756384 0
+0.3063858593232205 -0.372629150039837 0
+0.3168013921964693 -0.3855869906347883 0
+0.3170158054940968 -0.38583037189352676 0
+0.31727752570430756 -0.38602197051270715 0
+0.31727752570430756 -0.38602197051270715 0
+0.31757431508095324 -0.3861528275538433 0
+0.31789229608263947 -0.38621682428712867 0
+0.31821660027113796 -0.38621096829644236 0
+0.3185320635430329 -0.3861355334014003 0
+0.31882393518634244 -0.38599404685385463 0
+0.3190785676074176 -0.38579312440751773 0
+0.32098806749601605 -0.3841109489617782 0
+0.32443398943963175 -0.3805081105246708 0
+0.3276193401487838 -0.3765180455704602 0
+0.33050809846451173 -0.3721656576714372 0
+0.33309126392127786 -0.36750561428577283 0
+0.33537958430892956 -0.3625863145000302 0
+0.3375574004209109 -0.3573525961456645 0
+0.3395939910588519 -0.3519645002699271 0
+0.34155908624191406 -0.34652579056660043 0
+0.3435182032513377 -0.3411830308574739 0
+0.34560047876702776 -0.33599771508272647 0
+0.34697571134133715 -0.33289222385184325 0
+0.3471109080429123 -0.33236880728207585 0
+0.34713042483031803 -0.331828564606389 0
+0.3470333491202668 -0.3312967569718613 0
+0.3468242200650686 -0.33079825111242145 0
+0.3465128163069142 -0.3303563566080075 0
+0.34611369873943454 -0.3299917359545153 0
+0.3430578256504905 -0.3277331235951359 0
+0.342683290384141 -0.327516885558288 0
+0.3422710267582142 -0.3273862170576577 0
+0.3418403117616603 -0.32734722800710675 0
+0.34141128514901276 -0.3274017414913058 0
+0.3410040077278503 -0.32754720852032104 0
+0.34063752333772995 -0.3277768272175507 0
+0.34032896838141574 -0.3280798608679152 0
+0.3400927705457306 -0.32844213995472116 0
+
+0.39101644928949686 -0.2674595499406102 0
+0.3891369953593459 -0.27267451846398794 0
+0.38702617756544205 -0.27776057054287684 0
+0.3847607659313886 -0.28257970688150985 0
+0.38224321212292034 -0.2872463133951941 0
+0.3795147936473229 -0.29172768692788553 0
+0.3766283820584366 -0.29600814724612334 0
+0.37364736403798027 -0.3000880983787789 0
+0.37067851805967617 -0.30389712968541377 0
+0.36760876793945707 -0.30789528360454754 0
+0.3659365271222692 -0.3101684159502207 0
+0.36568197658737417 -0.3107651018159852 0
+0.3655616471257598 -0.3114025583383348 0
+0.36558116520931455 -0.3120509787587665 0
+0.36573961819414413 -0.3126800436590884 0
+0.36602959699478593 -0.31326033866371694 0
+0.36643754252481003 -0.31376472982318715 0
+0.3789449454559508 -0.3247170734005219 0
+0.3791983640458616 -0.3249195246726648 0
+0.3794893788890613 -0.32506276524073835 0
+0.3794893788890613 -0.32506276524073835 0
+0.37980438245492176 -0.32514009733498006 0
+0.3801286455268046 -0.3251479049926115 0
+0.38044700592386116 -0.32508582313623946 0
+0.38074457746775725 -0.32495675464446894 0
+0.38100744604382725 -0.3247667346165257 0
+0.38122332020961164 -0.3245246481777243 0
+0.38281170380361057 -0.3225364475809229 0
+0.38557964812092604 -0.3183899662893178 0
+0.3880237386872907 -0.3139073890415146 0
+0.3901128260460331 -0.3091194960771939 0
+0.39184753937340017 -0.3040816872474388 0
+0.39324686758934396 -0.2988397600138143 0
+0.39448277212640054 -0.29330737980221344 0
+0.39555278934644045 -0.28764749095688225 0
+0.39654360828928487 -0.28195017227718255 0
+0.39754520142202115 -0.2763483839946309 0
+0.39869542185886775 -0.270880261469143 0
+0.3995104986672391 -0.2675831429976608 0
+0.3995527510936312 -0.26704420164084364 0
+0.39947815922105134 -0.26650877741075224 0
+0.3992902108825586 -0.2660019061493044 0
+0.3989976943335713 -0.2655472885933384 0
+0.3986142873228112 -0.2651661821545003 0
+0.39815791753597524 -0.26487640694630044 0
+0.3947562661054995 -0.26318275477681097 0
+0.39434987153038115 -0.26303483924810056 0
+0.39392118076827054 -0.26297774472296587 0
+0.3934902389227485 -0.26301414087794617 0
+0.39307719635555416 -0.263142325869286 0
+0.3927013664780656 -0.26335630590925757 0
+0.39238032267764933 -0.26364607552901365 0
+0.39212907660559826 -0.26399808542319025 0
+0.3919593762490016 -0.2643958760003666 0
+
+0.4315198942624058 -0.19549694454175368 0
+0.4305745632412389 -0.20095904972527034 0
+0.4293789971876243 -0.20633437290808238 0
+0.4279848364897766 -0.21147368033910985 0
+0.4263158776975615 -0.2165065592450623 0
+0.4244070923767281 -0.22139363554040078 0
+0.4223078259994461 -0.22611028616066936 0
+0.4200805724201875 -0.230645902014864 0
+0.4178182612283279 -0.23491260027101052 0
+0.4154894196522154 -0.2393830697625785 0
+0.41423730921996726 -0.2419120496907452 0
+0.41409023929289884 -0.24254387279397155 0
+0.41408243106963316 -0.2431925399111186 0
+0.41421424965401177 -0.24382772008873033 0
+0.41447953135553506 -0.24441971300765364 0
+0.41486587189667923 -0.24494083773695258 0
+0.4153552064231269 -0.24536672706347365 0
+0.4295744483031483 -0.2539807922057477 0
+0.4298591721897238 -0.25413616211183626 0
+0.43017063932716243 -0.2542266923366253 0
+0.43017063932716243 -0.2542266923366253 0
+0.43049428585828853 -0.25424814978742094 0
+0.4308149784310139 -0.25419953113767213 0
+0.4311177218170621 -0.2540831097414054 0
+0.4313883600721766 -0.2539043293337171 0
+0.43161423845234104 -0.25367154948777054 0
+0.43178479513554474 -0.25339565473044606 0
+0.43300380020320145 -0.2511618394516385 0
+0.4350096643067826 -0.2465977040413604 0
+0.43663823227527016 -0.24175881534134547 0
+0.4378641728147609 -0.23668089501665723 0
+0.4386977256260842 -0.2314183920148492 0
+0.439165543790573 -0.22601311063979343 0
+0.43942198441874414 -0.2203501671441674 0
+0.43949291628910675 -0.21459045818776573 0
+0.4394793534595337 -0.20880764067679342 0
+0.4394929898150752 -0.2031170313231402 0
+0.4396762063071443 -0.1975322481828454 0
+0.439906361653204 -0.19414368374709767 0
+0.4398543859858179 -0.19360559306364022 0
+0.43968795188955545 -0.1930912558734379 0
+0.4394148416377799 -0.19262472201185976 0
+0.4390478255623239 -0.1922278060837581 0
+0.43860406492696674 -0.1919190674367906 0
+0.4381043094858132 -0.19171294234695102 0
+0.4344602371712022 -0.19063571113149202 0
+0.4340343313808343 -0.1905606124494102 0
+0.43360223903441864 -0.19057882668802617 0
+0.4331841642898376 -0.1906895021697859 0
+0.4327996558574909 -0.1908874638321693 0
+0.4324666929243247 -0.19116345520786188 0
+0.43220084446703216 -0.19150457124687864 0
+0.43201454126400696 -0.1918948617423584 0
+0.4319164946459614 -0.19231607714450927 0
+
+0.45891182560775395 -0.11759426340922355 0
+0.4589293409002886 -0.12313754195083661 0
+0.4586853532565169 -0.12863880976270672 0
+0.4582048043621995 -0.13394213303045197 0
+0.4574351510546052 -0.13918836284987487 0
+0.45640399636461737 -0.14433265056760652 0
+0.45515566034553345 -0.1493421784475493 0
+0.45374984518043343 -0.15419564663068572 0
+0.4522628079557984 -0.15879037036888438 0
+0.450745635596632 -0.16359732247955197 0
+0.44995170029120896 -0.16630530821482048 0
+0.44991657961728015 -0.16695307093023504 0
+0.45002152988127586 -0.16759323922006644 0
+0.4502616437254955 -0.16819587952657813 0
+0.4506256936934506 -0.16873281305882426 0
+0.45109665721325226 -0.1691789334015957 0
+0.45165251255415273 -0.16951338046349165 0
+0.4671515489138138 -0.17552743316028435 0
+0.4674589269058376 -0.17563100086434305 0
+0.46778138256615415 -0.17566607003077792 0
+0.46778138256615415 -0.17566607003077792 0
+0.46810383822647067 -0.17563100086434305 0
+0.4684112162184945 -0.17552743316028435 0
+0.4686891438889448 -0.17536020962933638 0
+0.4689246256488456 -0.17513714945795067 0
+0.4691066506328232 -0.1748686826918276 0
+0.469226707554933 -0.17456736253857175 0
+0.47003929524411303 -0.17215580592463967 0
+0.47122213196818874 -0.1673126953405658 0
+0.47198569412517194 -0.16226452237289335 0
+0.4723112382624744 -0.15705086472735155 0
+0.47221830347738003 -0.1517235660442455 0
+0.47174039717221306 -0.14631916726713515 0
+0.4710095820727771 -0.1406977261600109 0
+0.47007927336447486 -0.13501320293462568 0
+0.46906174086219776 -0.12932059457620476 0
+0.46808700610678156 -0.1237140704370735 0
+0.46729765171367377 -0.11818231749165296 0
+0.466935892443696 -0.1148052669073236 0
+0.4667912679368842 -0.11428437651035571 0
+0.4665380486327344 -0.11380675423529954 0
+0.46618807478447577 -0.11339473316889767 0
+0.4657577107802848 -0.11306757895828652 0
+0.46526707996268213 -0.11284058897074849 0
+0.46473912368340203 -0.1127243770058196 0
+0.46096335377794556 -0.11229629786976751 0
+0.4605308777042498 -0.11229629786976751 0
+0.4601085126808257 -0.11238926744171063 0
+0.4597160080267436 -0.11257085943174105 0
+0.45937171682339084 -0.11283258280022998 0
+0.4590917377447839 -0.11316219965335148 0
+0.4588891623014641 -0.11354429747339641 0
+0.4587734626960146 -0.11396100979097071 0
+0.45875004891339544 -0.11439285160124707 0
+
+0.47235995335259906 -0.03611854008857264 0
+0.4733397827655348 -0.041574562274829446 0
+0.4740547869726982 -0.04703462147706984 0
+0.4745024511168956 -0.052340821787653466 0
+0.47465548882020997 -0.05764099848220405 0
+0.47453329587453347 -0.06288619104316077 0
+0.47417382027189897 -0.06803638421308912 0
+0.4736321585033725 -0.0730602345503961 0
+0.4729655781195553 -0.07784337541490415 0
+0.4723061734917421 -0.08284075333722386 0
+0.4719945366356487 -0.0856454641033349 0
+0.472072432338765 -0.08628948448861358 0
+0.47228695222935796 -0.08690170276158359 0
+0.4726280655957654 -0.08745349227623261 0
+0.4730798223560943 -0.0879190519681257 0
+0.4736210988663233 -0.08827661278350234 0
+0.4742265856384196 -0.08850945557603583 0
+0.49053448610082284 -0.09174076187941263 0
+0.4908551786735482 -0.09178938052916145 0
+0.4911788252046743 -0.09176792307836584 0
+0.4911788252046743 -0.09176792307836584 0
+0.49149029234211294 -0.09167739285357675 0
+0.49177501622868847 -0.09152202294748821 0
+0.49201968349191233 -0.09130907828422767 0
+0.49221285376248447 -0.0910485159195782 0
+0.49234549461324606 -0.09075251946011652 0
+0.4924114039054354 -0.09043492937131066 0
+0.4927928841503922 -0.08791890534966179 0
+0.49311675359964574 -0.08294397505615711 0
+0.4929921094953657 -0.07783990400195105 0
+0.4924073657366012 -0.0726489233848774 0
+0.491390767131507 -0.06741869629521634 0
+0.4899816572979345 -0.06217939003813616 0
+0.48828579191787747 -0.056770255962967184 0
+0.48638250959025314 -0.05133363983029421 0
+0.48439192462545744 -0.04590420764879649 0
+0.4824584355813873 -0.04055212012311658 0
+0.48072049443690457 -0.03524147688661487 0
+0.4797778124232486 -0.03197855012683866 0
+0.4795449334194671 -0.03149068700748893 0
+0.4792126228478514 -0.031064291958717974 0
+0.4787964191813937 -0.030719302739102256 0
+0.4783157836409603 -0.030471850661123012 0
+0.4777931902102339 -0.030333506308923355 0
+0.4772530747772144 -0.0303107385106534 0
+0.473460332138858 -0.03054481842193868 0
+0.47303442634849013 -0.03061991710402051 0
+0.4726346219955673 -0.030784817175892154 0
+0.4722796134872816 -0.031031808093466187 0
+0.4719860006269168 -0.03134934083594751 0
+0.4717675124254963 -0.03172256792521001 0
+0.4716343651484864 -0.032134037677371885 0
+0.4715927846145775 -0.032564510224137824 0
+0.4716447150833216 -0.032993857147656916 0
+
+0.47145566294049507 0.04645462679580638 0
+0.4733680348529374 0.04125163943815478 0
+0.4750203058700109 0.03599868998148091 0
+0.47638258100423064 0.030850838839429073 0
+0.47745365974527915 0.025657758456595903 0
+0.4782441413147359 0.02047103357418331 0
+0.4787844486128334 0.015336661127614143 0
+0.479123398359623 0.010295075786444785 0
+0.47929752852428 0.005468851110409345 0
+0.47951592730376114 0.00043289017581193967 0
+0.4796960578251741 -0.002383325903765471 0
+0.4798846030838133 -0.003004035725391596 0
+0.4802021745226803 -0.003569702039073419 0
+0.48063392285424894 -0.004053874916676137 0
+0.48115966000638893 -0.004433914972562625 0
+0.4817548030941811 -0.004692051956103699 0
+0.4823915238882942 -0.00481621566884774 0
+0.49901278115008535 -0.005166593971900418 0
+0.49933704422196823 -0.0051587863142689705 0
+0.4996520477878287 -0.005081454220027287 0
+0.4996520477878287 -0.005081454220027287 0
+0.4999430626310284 -0.00493821365195371 0
+0.5001964812209391 -0.004735762379810854 0
+0.5004004539859512 -0.004483566800075722 0
+0.500545443386272 -0.004193419297761458 0
+0.5006246698786869 -0.003878886847600488 0
+0.5006344289204643 -0.0035546766373846517 0
+0.5005732106369932 -0.0010106333247472121 0
+0.5000282722020947 0.003944955938656375 0
+0.4990192090845871 0.008949840463198522 0
+0.49754194457297113 0.013960418732517216 0
+0.4956325709820691 0.018934656425236535 0
+0.49333507270934024 0.023849676492882055 0
+0.4907256850600859 0.028882149734375667 0
+0.48790725938355706 0.033905669944205574 0
+0.4850041048731134 0.038906955399370585 0
+0.4821706096266008 0.04384198584041833 0
+0.4795368881929776 0.048770158160575255 0
+0.47804192635160814 0.05181981871732311 0
+0.4777278687615444 0.05225983108504388 0
+0.4773265640110241 0.05262204310973903 0
+0.4768567766641634 0.05288951815970354 0
+0.4763404734551704 0.05304974939887826 0
+0.4758017961482678 0.05309524459260359 0
+0.47526593269562956 0.05302387643618524 0
+0.47157145789021937 0.052134749877216835 0
+0.47116506331510094 0.05198683434850648 0
+0.47079996748563224 0.051755014181946654 0
+0.4704932418770242 0.05145012903087606 0
+0.4702592286378343 0.051086434986103324 0
+0.47010886996704015 0.050680937976945034 0
+0.47004919646897625 0.05025259859287194 0
+0.4700829984100898 0.049821445507418224 0
+0.47020869524918263 0.04940763895966749 0
+
+0.4562264307780207 0.12761629335217065 0
+0.45901323873711697 0.1228244309611479 0
+0.46155257314533626 0.1179381994611609 0
+0.4637880672289695 0.11310511233965373 0
+0.4657446428221975 0.10817691738814489 0
+0.46742378052430245 0.10320625619521909 0
+0.46884745375928805 0.09824370978068028 0
+0.47005671620485423 0.09333757545507465 0
+0.4710662660610465 0.0886149093621057 0
+0.47215583231142266 0.08369338053990916 0
+0.4728222570355992 0.08095122844736921 0
+0.47311572299748605 0.08037268914323142 0
+0.47352669673715597 0.07987076227353804 0
+0.4740359615793064 0.07946891738086428 0
+0.4746197048659254 0.079185944285773 0
+0.47525063140971513 0.07903507449568872 0
+0.4758992397867122 0.07902336251431599 0
+0.4923288253567537 0.08156455827902573 0
+0.49264680635843994 0.0816285550123112 0
+0.49294359573508556 0.0817594120534473 0
+0.49294359573508556 0.0817594120534473 0
+0.4932053159452963 0.08195101067262772 0
+0.4934197292429239 0.0821943919313661 0
+0.4935768099004744 0.0824781755925027 0
+0.49366921300098365 0.08278909224744566 0
+0.4936926178781701 0.0831126037789689 0
+0.49364593014598945 0.08343358314741559 0
+0.4931438734206558 0.08592834628233517 0
+0.49174668478019756 0.09071402144351826 0
+0.48988386252167726 0.0954676485547121 0
+0.48755896319186337 0.10014558059103748 0
+0.4848148299655234 0.10471268919160753 0
+0.4816987515760648 0.10915408267218313 0
+0.4782551265809219 0.11365698592711287 0
+0.4746071939934776 0.118114773094548 0
+0.4708796808181189 0.1225359502955976 0
+0.46723227368841125 0.12690397524930785 0
+0.4637827962586807 0.13129993663094752 0
+0.46178097824866077 0.13404366859185296 0
+0.461395284553268 0.13442246065480862 0
+0.4609371790656176 0.1347094840263457 0
+0.4604280822891645 0.13489131781261474 0
+0.45989179902335514 0.13495945966786355 0
+0.4593534052776627 0.13491072335467486 0
+0.45883807574525415 0.13474738772888695 0
+0.45535412352025806 0.1332302301828099 0
+0.45497958825390855 0.13301399214596202 0
+0.4546602941999248 0.13272229562316828 0
+0.45441117119340135 0.13236878001963712 0
+0.45424386794924276 0.13196997533208527 0
+0.4541662073812018 0.1315445292244631 0
+0.4541818208111264 0.13111233508391362 0
+0.4542899781723865 0.13069360182809966 0
+0.45448562214697774 0.1303079089586745 0
+
+0.42713498937806954 0.2049004034119891 0
+0.43071155763417535 0.20066526430154705 0
+0.4340607990425119 0.1962942164298216 0
+0.43710158771904206 0.19192274423538602 0
+0.4398842106051244 0.18740917542501612 0
+0.44240098469048367 0.1828056089466482 0
+0.4446647662715257 0.1781656730257759 0
+0.4467075985883764 0.17354406012459378 0
+0.4485218934745804 0.16906844843414176 0
+0.4504495212766809 0.16441088988719474 0
+0.4515819912256041 0.16182612068542826 0
+0.45197146107598773 0.16130733052277996 0
+0.4524633498873434 0.16088439389102344 0
+0.4530346574855472 0.1605770868369992 0
+0.4536586701622699 0.16039977869700614 0
+0.4543062097782883 0.16036076020260662 0
+0.45494699810084593 0.16046185581523267 0
+0.4706857073353635 0.1658174127003012 0
+0.470987744575023 0.16593565400088367 0
+0.4712573019674271 0.1661160599639362 0
+0.4712573019674271 0.1661160599639362 0
+0.47148177530849855 0.16635019500713322 0
+0.4716506684742928 0.1666271112360772 0
+0.47175608420808884 0.1669338603556731 0
+0.4717930933873355 0.16725609911801573 0
+0.47175996550394383 0.16757875999672064 0
+0.4716582495809223 0.16788675572771133 0
+0.47073060915327236 0.17025643656946954 0
+0.4685236231770832 0.1747267873103281 0
+0.46586364268924174 0.17908472045385135 0
+0.46276174943091053 0.18328786965940752 0
+0.4592662356686165 0.18730907988406847 0
+0.4554262576274802 0.1911418972841204 0
+0.4512530280893678 0.19497841211566425 0
+0.4468864291767347 0.19873501863337123 0
+0.44244781593808136 0.20244175234827513 0
+0.43809732154513775 0.2061100515867567 0
+0.43393689874548264 0.2098402329677618 0
+0.4314890487940778 0.21219466942558807 0
+0.4310434381011201 0.2125007317786237 0
+0.4305424511797693 0.21270384543709936 0
+0.4300095136216609 0.2127945130320895 0
+0.4294695449946943 0.21276849504762213 0
+0.4289477936317345 0.2126270080557339 0
+0.4284686560466286 0.21237666783091416 0
+0.42530108452743826 0.21027757736204733 0
+0.42496978863440166 0.2099995871003898 0
+0.42470599794416275 0.2096568772726016 0
+0.4245220470162147 0.20926547260933562 0
+0.4244265371915017 0.20884367475763108 0
+0.4244239344032756 0.20841120651623904 0
+0.4245143603550212 0.20798828961947297 0
+0.4246935868297361 0.2075946991913874 0
+0.4249532333966585 0.20724883908295527 0
+
+0.38506526746659925 0.2759587183987413 0
+0.3893229238030839 0.2724089851276669 0
+0.3933803072061432 0.2686859329619284 0
+0.3971339976503473 0.26490890066512063 0
+0.4006581192409654 0.26094710050021674 0
+0.4039360588025446 0.256850505774335 0
+0.40697116487183177 0.25267416245216395 0
+0.40978549663374253 0.2484774963447588 0
+0.41234941011791837 0.24438492825326932 0
+0.41505652947640326 0.24013285754118258 0
+0.4166206351237326 0.2377840081344288 0
+0.4170942750182903 0.23734073028984165 0
+0.41765213310870636 0.23700963461156155 0
+0.41826812457068774 0.2368062027655185 0
+0.41891344632809746 0.23673994699873513 0
+0.4195579238527827 0.23681396535722837 0
+0.42017142209197444 0.2370247968248204 0
+0.43474104227504856 0.24503198894433745 0
+0.4350179585039925 0.24520088211013177 0
+0.4352520935471895 0.24542535545120317 0
+0.4352520935471895 0.24542535545120317 0
+0.435432499510242 0.24569491284360725 0
+0.43555074081082457 0.2459969500832668 0
+0.4356012886171376 0.24631734424454566 0
+0.4355817793699378 0.24664111405255484 0
+0.43549312529994133 0.24695312039091621 0
+0.4353394717729292 0.2472387741900181 0
+0.43401443352794844 0.2494113711853545 0
+0.43106470836812605 0.25343056816073417 0
+0.4276883918120714 0.2572603937432415 0
+0.4239037540822435 0.26086104955631373 0
+0.4197630692008475 0.2642141789672197 0
+0.4153158672976907 0.26732196206954667 0
+0.4105398346843683 0.27037551791591835 0
+0.40558724634490106 0.2733168011957912 0
+0.400572398060163 0.2761964641963198 0
+0.3956510039746567 0.2790535783034604 0
+0.39090604814656893 0.282004640010132 0
+0.38808654293588074 0.28389824260451035 0
+0.3875945549007738 0.28412227569790405 0
+0.3870659087798162 0.284235308137586 0
+0.38652532347807617 0.2842320546523035 0
+0.3859980761634455 0.28411266737141216 0
+0.38550882033436296 0.28388272871147713 0
+0.3850804330496278 0.2835529903486784 0
+0.3823254872939852 0.28093574675872723 0
+0.38204749703232765 0.28060445086569064 0
+0.38184722485247186 0.2802211407976059 0
+0.3817340352589613 0.27980373970723815 0
+0.3817132208713874 0.2793717648056649 0
+0.3817857549473795 0.27894541475917806 0
+0.38194824587416004 0.27854462522209744 0
+0.38219309575658855 0.2781881366677313 0
+0.38250885568629367 0.2778926181046732 0
+
+0.3312955322555835 0.3386321673687971 0
+0.3361049099391409 0.3358756967862803 0
+0.3407471537953562 0.33291376338262946 0
+0.345099692022546 0.32984593419851743 0
+0.3492582336664605 0.32655627997232256 0
+0.3531977401693985 0.3230911299566958 0
+0.35691195056485336 0.3195052753117386 0
+0.360412269725359 0.31586106957416843 0
+0.36364789859369295 0.312275895692162 0
+0.3670522550567231 0.30855850983187055 0
+0.36900047184384 0.3065169488207786 0
+0.369543890474049 0.306162652067251 0
+0.37015076760773813 0.3059334575170894 0
+0.37079272634463145 0.3058400820527281 0
+0.3714397494076779 0.30588689180710116 0
+0.37206158271756384 0.30607169800811934 0
+0.372629150039837 0.30638585932322043 0
+0.3855869906347883 0.31680139219646924 0
+0.3858303718935267 0.31701580549409675 0
+0.3860219705127071 0.31727752570430756 0
+0.3860219705127071 0.31727752570430756 0
+0.3861528275538432 0.3175743150809532 0
+0.38621682428712867 0.3178922960826394 0
+0.3862109682964423 0.31821660027113796 0
+0.3861355334014003 0.3185320635430328 0
+0.38599404685385463 0.3188239351863424 0
+0.38579312440751773 0.31907856760741754 0
+0.38411094896177816 0.320988067496016 0
+0.38050811052467076 0.32443398943963164 0
+0.37651804557046015 0.3276193401487838 0
+0.3721656576714372 0.3305080984645117 0
+0.3675056142857728 0.3330912639212778 0
+0.3625863145000302 0.3353795843089295 0
+0.35735259614566445 0.33755740042091087 0
+0.3519645002699271 0.33959399105885185 0
+0.3465257905666004 0.341559086241914 0
+0.3411830308574739 0.34351820325133764 0
+0.33599771508272647 0.3456004787670277 0
+0.33289222385184325 0.3469757113413371 0
+0.3323688072820758 0.3471109080429122 0
+0.33182856460638893 0.34713042483031803 0
+0.33129675697186123 0.34703334912026673 0
+0.33079825111242145 0.3468242200650685 0
+0.3303563566080075 0.3465128163069141 0
+0.3299917359545153 0.3461136987394345 0
+0.32773312359513584 0.3430578256504905 0
+0.32751688555828795 0.3426832903841409 0
+0.32738621705765764 0.34227102675821414 0
+0.32734722800710675 0.34184031176166024 0
+0.3274017414913058 0.34141128514901276 0
+0.32754720852032104 0.3410040077278502 0
+0.3277768272175507 0.3406375233377299 0
+0.3280798608679152 0.3403289683814157 0
+0.32844213995472116 0.34009277054573056 0
+
+0.2674595499406099 0.3910164492894971 0
+0.27267451846398766 0.38913699535934615 0
+0.2777605705428765 0.3870261775654422 0
+0.2825797068815095 0.3847607659313888 0
+0.28724631339519374 0.38224321212292056 0
+0.2917276869278852 0.3795147936473231 0
+0.296008147246123 0.37662838205843674 0
+0.3000880983787786 0.3736473640379805 0
+0.30389712968541344 0.3706785180596764 0
+0.3078952836045472 0.36760876793945724 0
+0.31016841595022043 0.36593652712226943 0
+0.31076510181598493 0.3656819765873744 0
+0.3114025583383345 0.36556164712576 0
+0.3120509787587662 0.36558116520931483 0
+0.3126800436590881 0.36573961819414436 0
+0.3132603386637166 0.36602959699478615 0
+0.31376472982318687 0.36643754252481026 0
+0.3247170734005216 0.3789449454559511 0
+0.32491952467266444 0.3791983640458618 0
+0.32506276524073807 0.37948937888906153 0
+0.32506276524073807 0.37948937888906153 0
+0.3251400973349797 0.379804382454922 0
+0.32514790499261115 0.38012864552680486 0
+0.3250858231362391 0.38044700592386144 0
+0.3249567546444686 0.38074457746775753 0
+0.3247667346165254 0.3810074460438275 0
+0.324524648177724 0.3812233202096118 0
+0.3225364475809226 0.38281170380361085 0
+0.3183899662893175 0.3855796481209263 0
+0.3139073890415143 0.3880237386872909 0
+0.3091194960771936 0.3901128260460333 0
+0.30408168724743845 0.3918475393734004 0
+0.29883976001381396 0.3932468675893442 0
+0.2933073798022131 0.39448277212640076 0
+0.2876474909568819 0.3955527893464406 0
+0.2819501722771822 0.3965436082892851 0
+0.2763483839946305 0.3975452014220214 0
+0.2708802614691427 0.39869542185886797 0
+0.26758314299766045 0.3995104986672393 0
+0.2670442016408433 0.3995527510936314 0
+0.2665087774107519 0.3994781592210515 0
+0.2660019061493041 0.39929021088255884 0
+0.2655472885933381 0.39899769433357146 0
+0.2651661821544999 0.39861428732281134 0
+0.2648764069463001 0.3981579175359754 0
+0.2631827547768106 0.39475626610549974 0
+0.2630348392481002 0.3943498715303813 0
+0.26297774472296553 0.39392118076827076 0
+0.26301414087794583 0.3934902389227487 0
+0.2631423258692856 0.3930771963555543 0
+0.26335630590925724 0.3927013664780658 0
+0.2636460755290133 0.39238032267764955 0
+0.2639980854231899 0.3921290766055985 0
+0.2643958760003663 0.39195937624900185 0
+
+0.1954969445417541 0.4315198942624056 0
+0.2009590497252708 0.4305745632412387 0
+0.20633437290808276 0.4293789971876241 0
+0.21147368033911026 0.42798483648977637 0
+0.21650655924506268 0.4263158776975613 0
+0.2213936355404012 0.4244070923767279 0
+0.22611028616066975 0.4223078259994459 0
+0.23064590201486443 0.42008057242018726 0
+0.23491260027101094 0.4178182612283277 0
+0.2393830697625789 0.4154894196522152 0
+0.24191204969074565 0.41423730921996704 0
+0.24254387279397194 0.4140902392928987 0
+0.243192539911119 0.41408243106963294 0
+0.24382772008873072 0.41421424965401155 0
+0.24441971300765403 0.41447953135553484 0
+0.244940837736953 0.414865871896679 0
+0.24536672706347407 0.41535520642312673 0
+0.25398079220574815 0.42957444830314806 0
+0.2541361621118367 0.4298591721897236 0
+0.25422669233662576 0.4301706393271622 0
+0.25422669233662576 0.4301706393271622 0
+0.2542481497874214 0.43049428585828836 0
+0.2541995311376726 0.4308149784310137 0
+0.2540831097414058 0.43111772181706187 0
+0.25390432933371754 0.4313883600721764 0
+0.253671549487771 0.4316142384523408 0
+0.25339565473044645 0.4317847951355445 0
+0.25116183945163895 0.4330038002032013 0
+0.24659770404136083 0.43500966430678245 0
+0.2417588153413459 0.43663823227527 0
+0.23668089501665768 0.4378641728147607 0
+0.23141839201484965 0.43869772562608406 0
+0.22601311063979385 0.43916554379057277 0
+0.22035016714416783 0.43942198441874397 0
+0.21459045818776615 0.43949291628910664 0
+0.20880764067679383 0.43947935345953354 0
+0.20311703132314063 0.439492989815075 0
+0.19753224818284582 0.43967620630714416 0
+0.1941436837470981 0.43990636165320385 0
+0.19360559306364067 0.4398543859858177 0
+0.1930912558734383 0.4396879518895553 0
+0.1926247220118602 0.4394148416377798 0
+0.19222780608375856 0.43904782556232375 0
+0.191919067436791 0.4386040649269666 0
+0.19171294234695146 0.438104309485813 0
+0.19063571113149244 0.434460237171202 0
+0.19056061244941064 0.43403433138083414 0
+0.19057882668802656 0.43360223903441847 0
+0.1906895021697863 0.4331841642898374 0
+0.1908874638321697 0.43279965585749075 0
+0.1911634552078623 0.43246669292432455 0
+0.19150457124687903 0.432200844467032 0
+0.1918948617423588 0.4320145412640068 0
+0.1923160771445097 0.4319164946459612 0
+
diff --git a/resources/designs/design_v4rdso2_outer_2.txt b/resources/designs/design_v4rdso2_outer_2.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3b1694781e5bc449418d435ed56dd20199e1c6a5
--- /dev/null
+++ b/resources/designs/design_v4rdso2_outer_2.txt
@@ -0,0 +1,1229 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.17862841362191353 0.4466147410052318 0
+0.18433949150513332 0.4454691615798391 0
+0.19048444371526638 0.44462584722012366 0
+0.19643992016352538 0.44429312197716647 0
+0.2017209578492061 0.444491688317236 0
+0.20594718477767693 0.44520637152729425 0
+0.2090460485799926 0.44633687969047203 0
+0.2107385832438895 0.4478708467433733 0
+0.21096808365683925 0.44975275029332273 0
+0.20985601165966195 0.4518598699326194 0
+0.2073114080618421 0.45415911879898346 0
+0.20375484593148496 0.4565096064138949 0
+0.1993583589420156 0.4588082375031357 0
+0.19450707937761202 0.46095281880941374 0
+0.18965720604039044 0.46291876033358514 0
+0.1851842557204474 0.4647881206648992 0
+0.183112031006689 0.46574519903748846 0
+0.18271027080234786 0.4659052749336348 0
+0.18228349194246027 0.4659752417762986 0
+0.18185165013218388 0.46595182799367946 0
+0.1814349378146096 0.46583612838822996 0
+0.18105283999456465 0.46563355294491016 0
+0.18072322314144315 0.4653535738663032 0
+0.18046149977295425 0.46500928266295044 0
+0.18027990778292383 0.46461677800886836 0
+0.1743096166088078 0.44990944295181856 0
+0.17421664703686468 0.4494870779283945 0
+0.17421664703686468 0.4490546018546987 0
+0.1743096166088078 0.4486322368312746 0
+0.17449120859883824 0.44823973217719254 0
+0.17475293196732714 0.44789544097383976 0
+0.17508254882044863 0.4476154618952328 0
+0.17546464664049358 0.447412886451913 0
+
+0.0983608107483854 0.4708481580564715 0
+0.10418405230542895 0.4707117008235886 0
+0.11038208888562244 0.47094825805705426 0
+0.11630486539685281 0.47165474529054563 0
+0.12147119157056176 0.4727673375320422 0
+0.12550910917867303 0.4742050397027911 0
+0.128364583594349 0.4758564849588423 0
+0.12976503427025915 0.4776610531654285 0
+0.12966425893425793 0.47955421870032244 0
+0.12820318432403988 0.48143621718188184 0
+0.12529797859691727 0.4832586695139356 0
+0.12138729074591388 0.4849558574077638 0
+0.11665844317289191 0.4864561251719053 0
+0.11150846281014386 0.48772570961358147 0
+0.10639088778344873 0.48881961240163013 0
+0.10166128061459484 0.48988385327722894 0
+0.09945434273521753 0.49046655343353457 0
+0.0990308892834764 0.490554432489787 0
+0.09859844453871171 0.4905492270076098 0
+0.09817722913656078 0.4904511803895642 0
+0.09778693864108105 0.490264877186539 0
+0.09744582260206427 0.48999902872924644 0
+0.0971698312263717 0.48966606579608024 0
+0.09697186956398832 0.4892815573637336 0
+0.0968611940822286 0.4888634826191525 0
+0.09353550697721243 0.4733428548462954 0
+0.09351729273859646 0.4729107624998798 0
+0.09359239142067828 0.4724848567095119 0
+0.09375729149254994 0.4720850523565891 0
+0.09400428241012396 0.47173004384830336 0
+0.09432181515260525 0.4714364309879386 0
+0.09469504224186776 0.47121794278651813 0
+0.09510651199402963 0.4710847955095082 0
+
+0.015104564413239402 0.4807750920858297 0
+0.02086303339609838 0.48165190322942697 0
+0.026925830141220936 0.48296114438423865 0
+0.03263594614819848 0.4846853778370887 0
+0.037530584603434725 0.48667819042775334 0
+0.041257502807948876 0.48879522770624706 0
+0.043782825691804556 0.49091743172673813 0
+0.04484864039460271 0.4929377701952078 0
+0.04442065131724013 0.4947846748382565 0
+0.04265496810667338 0.4963843685905536 0
+0.03947743345616156 0.49767465009639295 0
+0.03533144415596118 0.49866697007380245 0
+0.030413919639980552 0.49932328963600336 0
+0.025121718026194284 0.4996793015322581 0
+0.019891936237593832 0.49986792790151063 0
+0.015049378940358016 0.5000947129009209 0
+0.01277478458606221 0.5002853297915542 0
+0.012342504305774465 0.5002983418472573 0
+0.011917533290874721 0.500218122206181 0
+0.011519742713698378 0.5000484218495844 0
+0.01116773281952177 0.4997971757775333 0
+0.010877963199765667 0.49947613197711704 0
+0.010663983159794083 0.49910030209962847 0
+0.010535798168454291 0.4986872595324341 0
+0.010499402013474018 0.4982563176869121 0
+0.009919368297364783 0.48239398361930935 0
+0.009976462822499449 0.48196529285719875 0
+0.0101243783512098 0.48155889828208037 0
+0.010356198517769644 0.4811938024526116 0
+0.010661083668840193 0.48088707684400356 0
+0.011024777713612904 0.48065306360481375 0
+0.011430274722771194 0.4805027049340195 0
+0.011858614106844328 0.4804430314359556 0
+
+-0.06861062646832447 0.47609391822609515 0
+-0.06309189822576836 0.4779573562832622 0
+-0.05734855632689406 0.48029950072943894 0
+-0.05202459980958324 0.48298909044068716 0
+-0.04755037018547553 0.4858015727783642 0
+-0.04424769190829103 0.4885336200581683 0
+-0.04212925121420652 0.49106210074782375 0
+-0.04143045672493667 0.4932368225161531 0
+-0.04217265531211789 0.4949813490043563 0
+-0.044189297732159044 0.49625013214221164 0
+-0.04754261352361436 0.49696903827119554 0
+-0.051797930486097044 0.497226339191811 0
+-0.056754715451005716 0.49701876861428756 0
+-0.062028337447778525 0.49645039072380376 0
+-0.06721142172503494 0.49572800935748007 0
+-0.07201979049762838 0.49511044773325347 0
+-0.07429292892838771 0.4949031895604492 0
+-0.07472090141964993 0.4948409392508749 0
+-0.07512548617544265 0.49468814288410057 0
+-0.07548776526224868 0.4944519450484155 0
+-0.07579079891261314 0.4941433900921013 0
+-0.07602041760984282 0.49377690570198096 0
+-0.07616588463885807 0.49336962828081843 0
+-0.07622039812305709 0.49294060166817094 0
+-0.07618140907250617 0.49250988667161705 0
+-0.07399816536875575 0.4767878153031845 0
+-0.07386749686812544 0.47637555167725765 0
+-0.07365125883127754 0.47600101641090814 0
+-0.07335956230848378 0.4756817223569244 0
+-0.07300604670495264 0.47543259935040094 0
+-0.07260724201740082 0.47526529610624235 0
+-0.07218179590977866 0.47518763553820137 0
+-0.07174960176922918 0.475203248968126 0
+
+-0.15024111818330055 0.4569468715762076 0
+-0.1451298144460861 0.45974031692452266 0
+-0.1398804359307861 0.4630441997882496 0
+-0.13510440462786855 0.46661742393551775 0
+-0.13118653103794845 0.4701641201675617 0
+-0.12840844289630998 0.4734281655745619 0
+-0.1267612521405037 0.4762860963270995 0
+-0.12645071038171155 0.47854912357482005 0
+-0.12748456715021048 0.48013826535360676 0
+-0.12969089412026347 0.4810375865434119 0
+-0.13311810224919854 0.4811632736965953 0
+-0.13735345122135273 0.4806777376021442 0
+-0.14219888723228494 0.47961258381185873 0
+-0.14729369327625383 0.47813708600922566 0
+-0.152272594649169 0.4765256460995989 0
+-0.1569006750451168 0.4750825021491863 0
+-0.15910328939138454 0.4744836663476475 0
+-0.15951395036603877 0.4743480451169521 0
+-0.1598858557596495 0.47412731466476543 0
+-0.1602016156893547 0.47383179610170734 0
+-0.16044646557178313 0.4734753075473412 0
+-0.16060895649856372 0.47307451801026057 0
+-0.1606814905745558 0.47264816796377374 0
+-0.16066067618698188 0.47221619306220053 0
+-0.16054748659347134 0.4717987919718327 0
+-0.15566730222502512 0.4566946904853481 0
+-0.15546703004516935 0.4563113804172634 0
+-0.1551890397835118 0.4559800845242268 0
+-0.15484632995572367 0.4557162938339879 0
+-0.15445492529245763 0.45553234290603983 0
+-0.15403312744075312 0.4554368330813268 0
+-0.15360065919936106 0.4554342302931007 0
+-0.15317774230259498 0.4555246562448464 0
+
+-0.2273066095479511 0.42391572545975104 0
+-0.22275803469368916 0.427554300675857 0
+-0.2181621192718372 0.4317195351481653 0
+-0.21407913047766355 0.4360678231238772 0
+-0.21083665552842107 0.4402409686799923 0
+-0.20866756832473196 0.4439378358461836 0
+-0.20754167656480033 0.4470383798818703 0
+-0.20762882319068504 0.449320951671207 0
+-0.20892292492574763 0.45070642347177337 0
+-0.21125189831728264 0.45120895729425453 0
+-0.21464886479895082 0.45073760653108863 0
+-0.2187355568454476 0.4495239861901079 0
+-0.22332241778112008 0.4476336133459843 0
+-0.2280836047687353 0.4452958278852972 0
+-0.23270704183853883 0.44284429221859334 0
+-0.23701421197693187 0.44061941514066194 0
+-0.23907937691637332 0.43964719703319277 0
+-0.23946024864850918 0.4394423256638433 0
+-0.23978817452274626 0.439160367909339 0
+-0.2400478210896687 0.4388145078009068 0
+-0.24022704756438357 0.4384209173728212 0
+-0.2403174735161292 0.4379980004760552 0
+-0.2403148707279031 0.4375655322346631 0
+-0.24021936090319007 0.43714373438295856 0
+-0.24003540997524206 0.4367523297196926 0
+-0.2326065668746428 0.42272512859577865 0
+-0.23234277618440388 0.42238241876799054 0
+-0.23201148029136728 0.422104428506333 0
+-0.23162817022328255 0.4219041563264772 0
+-0.23121076913291477 0.4217909667329666 0
+-0.23077879423134157 0.4217701523453927 0
+-0.23035244418485473 0.42184268642138484 0
+-0.22995165464777412 0.42200517734816534 0
+
+-0.29746550460418153 0.3780041145369073 0
+-0.2936178647781288 0.3823772633540708 0
+-0.2898150570141725 0.3872772908932296 0
+-0.2865491702771617 0.39226852216758323 0
+-0.28408061492915804 0.3969413181317605 0
+-0.2825864352804913 0.4009586796190032 0
+-0.2820160521678311 0.4042076284762655 0
+-0.2824982392722635 0.4064403900184366 0
+-0.284013265347517 0.40758009498120484 0
+-0.28639412048254964 0.4076705722004603 0
+-0.2896576302093534 0.4066165052753691 0
+-0.29347149326032596 0.40471167592779783 0
+-0.2976604096722719 0.40205352205213 0
+-0.3019433113461917 0.3989244813616352 0
+-0.3060708033170896 0.39570733860855023 0
+-0.309926192012806 0.39276833016727086 0
+-0.31179115855376016 0.3914522701091008 0
+-0.312130668448527 0.3911843735139849 0
+-0.31240465094164027 0.390849755600856 0
+-0.31260029491623154 0.39046406273143075 0
+-0.3127084522774916 0.3900453294756168 0
+-0.31272406570741623 0.38961313533506736 0
+-0.31264640513937525 0.3891876892274452 0
+-0.31247910189521666 0.38878888453989335 0
+-0.3122299788886932 0.3884353689363622 0
+-0.3024781986943766 0.3759112775830628 0
+-0.3021589046403929 0.37561958106026905 0
+-0.3017843693740434 0.37540334302342115 0
+-0.30137210574811657 0.37527267452279084 0
+-0.3009413907515627 0.3752336854722399 0
+-0.30051236413891513 0.37528819895643895 0
+-0.3001050867177527 0.37543366598545413 0
+-0.2997386023276324 0.37566328468268384 0
+
+-0.35858606082782224 0.320607039873171 0
+-0.3555562646190937 0.3255818863775025 0
+-0.35266211090262717 0.3310678221262682 0
+-0.3503125585386649 0.3365503406626771 0
+-0.34869292859699996 0.34158080649409384 0
+-0.3479190563958889 0.3457965968064811 0
+-0.3479215127327505 0.34909523281833854 0
+-0.3487840893045609 0.351210342783717 0
+-0.3504740064193488 0.352069651550112 0
+-0.352834402219372 0.35174532306161843 0
+-0.355865295099678 0.3501405672647371 0
+-0.35929044685623035 0.34760240618641103 0
+-0.3629541406389668 0.34425723793962043 0
+-0.36662862319908185 0.34043201633732767 0
+-0.37013475831615017 0.3365470177524612 0
+-0.3734212215345914 0.3329831782321121 0
+-0.37502932361242997 0.33136326404215005 0
+-0.3753171558334757 0.3310404821237482 0
+-0.3755288701260536 0.3306633712479603 0
+-0.37565456696514654 0.3302495647002096 0
+-0.3756883689062601 0.3298184116147559 0
+-0.3756286954081962 0.32939007223068273 0
+-0.375478336737402 0.32898457522152447 0
+-0.3752443234982122 0.3286208811767517 0
+-0.3749375978896041 0.3283159960256812 0
+-0.3631591835081357 0.31767555262127034 0
+-0.3627940876786669 0.31744373245471047 0
+-0.3623876931035485 0.3172958169260001 0
+-0.36195900234143796 0.3172387224008655 0
+-0.36152806049591585 0.3172751185558457 0
+-0.3611150179287215 0.3174033035471855 0
+-0.36073918805123295 0.31761728358715713 0
+-0.3604181442508167 0.3179070532069132 0
+
+-0.4088111610465116 0.25346848253787857 0
+-0.4066912672797586 0.2588938685357378 0
+-0.4047937050069443 0.2647990251124014 0
+-0.4034318769756787 0.2706062473594252 0
+-0.40271038407655757 0.2758415348993322 0
+-0.40268033303823475 0.28012765938151507 0
+-0.4032555541900657 0.2833757551619378 0
+-0.40447231127660427 0.2853089470045228 0
+-0.40628577215453315 0.2858617499125089 0
+-0.40855398918758107 0.28513247027327093 0
+-0.41126017307492707 0.2830257852974421 0
+-0.4141925420341468 0.2799314132283548 0
+-0.4172196937060037 0.2760008718548833 0
+-0.42017410985910286 0.27159569676352274 0
+-0.42295235598099945 0.26716088606297184 0
+-0.42557003620030387 0.26308050092398905 0
+-0.4268724124471306 0.26120595287518084 0
+-0.42709982135806884 0.2608380931987481 0
+-0.4272428346184642 0.26042994768343475 0
+-0.4272947650872084 0.26000060075991566 0
+-0.4272531845532994 0.25957012821314973 0
+-0.4271200372762895 0.25915865846098785 0
+-0.426901549074869 0.2587854313717254 0
+-0.4266079362145042 0.258467898629244 0
+-0.42625292770621853 0.25822090771167006 0
+-0.4128057602984138 0.24978741674466656 0
+-0.41240595594549107 0.2496225166727949 0
+-0.4119800501551232 0.2495474179907131 0
+-0.4115479578087075 0.24956563222932904 0
+-0.4111298830641264 0.24967630771108879 0
+-0.41074537463177974 0.24987426937347215 0
+-0.4104124116986136 0.25015026074916474 0
+-0.41014656324132104 0.2504913767881815 0
+
+-0.4466147410052318 0.17862841362191356 0
+-0.4454691615798391 0.18433949150513335 0
+-0.44462584722012366 0.1904844437152664 0
+-0.44429312197716647 0.1964399201635254 0
+-0.444491688317236 0.20172095784920613 0
+-0.44520637152729425 0.20594718477767696 0
+-0.44633687969047203 0.20904604857999262 0
+-0.4478708467433733 0.21073858324388953 0
+-0.44975275029332273 0.21096808365683928 0
+-0.4518598699326194 0.20985601165966197 0
+-0.45415911879898346 0.20731140806184212 0
+-0.4565096064138949 0.203754845931485 0
+-0.4588082375031357 0.19935835894201562 0
+-0.46095281880941374 0.19450707937761205 0
+-0.46291876033358514 0.18965720604039046 0
+-0.4647881206648992 0.18518425572044742 0
+-0.46574519903748846 0.18311203100668902 0
+-0.4659052749336348 0.1827102708023479 0
+-0.4659752417762986 0.1822834919424603 0
+-0.46595182799367946 0.1818516501321839 0
+-0.46583612838822996 0.18143493781460962 0
+-0.46563355294491016 0.18105283999456467 0
+-0.4653535738663032 0.18072322314144318 0
+-0.46500928266295044 0.18046149977295428 0
+-0.46461677800886836 0.18027990778292385 0
+-0.44990944295181856 0.17430961660880784 0
+-0.4494870779283945 0.1742166470368647 0
+-0.4490546018546987 0.1742166470368647 0
+-0.4486322368312746 0.17430961660880784 0
+-0.44823973217719254 0.17449120859883827 0
+-0.44789544097383976 0.17475293196732716 0
+-0.4476154618952328 0.17508254882044866 0
+-0.447412886451913 0.1754646466404936 0
+
+-0.4708481580564715 0.09836081074838542 0
+-0.47071170082358854 0.10418405230542896 0
+-0.4709482580570542 0.11038208888562245 0
+-0.47165474529054563 0.11630486539685282 0
+-0.4727673375320422 0.12147119157056177 0
+-0.4742050397027911 0.12550910917867303 0
+-0.4758564849588423 0.12836458359434902 0
+-0.4776610531654285 0.12976503427025918 0
+-0.47955421870032244 0.12966425893425793 0
+-0.48143621718188184 0.12820318432403988 0
+-0.4832586695139356 0.12529797859691727 0
+-0.4849558574077638 0.1213872907459139 0
+-0.4864561251719053 0.11665844317289192 0
+-0.48772570961358147 0.11150846281014387 0
+-0.48881961240163013 0.10639088778344874 0
+-0.4898838532772289 0.10166128061459485 0
+-0.49046655343353457 0.09945434273521754 0
+-0.490554432489787 0.09903088928347642 0
+-0.4905492270076098 0.09859844453871171 0
+-0.4904511803895642 0.0981772291365608 0
+-0.490264877186539 0.09778693864108105 0
+-0.48999902872924644 0.09744582260206429 0
+-0.48966606579608024 0.09716983122637171 0
+-0.4892815573637336 0.09697186956398832 0
+-0.48886348261915247 0.09686119408222861 0
+-0.47334285484629535 0.09353550697721244 0
+-0.4729107624998798 0.09351729273859648 0
+-0.4724848567095119 0.0935923914206783 0
+-0.47208505235658904 0.09375729149254995 0
+-0.47173004384830336 0.09400428241012397 0
+-0.4714364309879386 0.09432181515260527 0
+-0.47121794278651813 0.09469504224186776 0
+-0.4710847955095082 0.09510651199402964 0
+
+-0.4807750920858297 0.015104564413239402 0
+-0.48165190322942697 0.02086303339609838 0
+-0.48296114438423865 0.026925830141220936 0
+-0.4846853778370887 0.03263594614819848 0
+-0.48667819042775334 0.037530584603434725 0
+-0.48879522770624706 0.041257502807948876 0
+-0.49091743172673813 0.043782825691804556 0
+-0.4929377701952078 0.04484864039460271 0
+-0.4947846748382565 0.04442065131724013 0
+-0.4963843685905536 0.04265496810667338 0
+-0.49767465009639295 0.03947743345616156 0
+-0.49866697007380245 0.03533144415596118 0
+-0.49932328963600336 0.030413919639980552 0
+-0.4996793015322581 0.025121718026194284 0
+-0.49986792790151063 0.019891936237593832 0
+-0.5000947129009209 0.015049378940358016 0
+-0.5002853297915542 0.01277478458606221 0
+-0.5002983418472573 0.012342504305774465 0
+-0.500218122206181 0.011917533290874721 0
+-0.5000484218495844 0.011519742713698378 0
+-0.4997971757775333 0.01116773281952177 0
+-0.49947613197711704 0.010877963199765667 0
+-0.49910030209962847 0.010663983159794083 0
+-0.4986872595324341 0.010535798168454291 0
+-0.4982563176869121 0.010499402013474018 0
+-0.48239398361930935 0.009919368297364783 0
+-0.48196529285719875 0.009976462822499449 0
+-0.48155889828208037 0.0101243783512098 0
+-0.4811938024526116 0.010356198517769644 0
+-0.48088707684400356 0.010661083668840193 0
+-0.48065306360481375 0.011024777713612904 0
+-0.4805027049340195 0.011430274722771194 0
+-0.4804430314359556 0.011858614106844328 0
+
+-0.47609391822609515 -0.06861062646832439 0
+-0.4779573562832622 -0.06309189822576827 0
+-0.4802995007294389 -0.05734855632689398 0
+-0.4829890904406871 -0.052024599809583155 0
+-0.4858015727783642 -0.04755037018547545 0
+-0.48853362005816825 -0.04424769190829095 0
+-0.49106210074782375 -0.04212925121420644 0
+-0.49323682251615303 -0.04143045672493659 0
+-0.49498134900435625 -0.04217265531211781 0
+-0.4962501321422116 -0.04418929773215896 0
+-0.49696903827119554 -0.047542613523614274 0
+-0.4972263391918109 -0.05179793048609696 0
+-0.4970187686142875 -0.05675471545100563 0
+-0.4964503907238037 -0.06202833744777844 0
+-0.49572800935748007 -0.06721142172503486 0
+-0.4951104477332534 -0.0720197904976283 0
+-0.4949031895604492 -0.07429292892838762 0
+-0.4948409392508749 -0.07472090141964985 0
+-0.49468814288410057 -0.07512548617544257 0
+-0.4944519450484155 -0.0754877652622486 0
+-0.49414339009210123 -0.07579079891261306 0
+-0.4937769057019809 -0.07602041760984274 0
+-0.49336962828081843 -0.07616588463885798 0
+-0.4929406016681709 -0.076220398123057 0
+-0.492509886671617 -0.07618140907250609 0
+-0.4767878153031844 -0.07399816536875567 0
+-0.4763755516772576 -0.07386749686812535 0
+-0.4760010164109081 -0.07365125883127746 0
+-0.4756817223569244 -0.0733595623084837 0
+-0.4754325993504009 -0.07300604670495256 0
+-0.47526529610624235 -0.07260724201740074 0
+-0.4751876355382013 -0.07218179590977858 0
+-0.47520324896812594 -0.0717496017692291 0
+
+-0.4569468715762076 -0.1502411181833006 0
+-0.45974031692452266 -0.14512981444608616 0
+-0.4630441997882497 -0.13988043593078617 0
+-0.46661742393551775 -0.1351044046278686 0
+-0.47016412016756176 -0.1311865310379485 0
+-0.4734281655745619 -0.12840844289631004 0
+-0.47628609632709956 -0.12676125214050377 0
+-0.4785491235748201 -0.1264507103817116 0
+-0.4801382653536068 -0.12748456715021053 0
+-0.4810375865434119 -0.12969089412026352 0
+-0.4811632736965953 -0.1331181022491986 0
+-0.4806777376021442 -0.13735345122135278 0
+-0.4796125838118588 -0.142198887232285 0
+-0.4781370860092257 -0.14729369327625388 0
+-0.4765256460995989 -0.15227259464916906 0
+-0.47508250214918635 -0.15690067504511684 0
+-0.47448366634764755 -0.1591032893913846 0
+-0.4743480451169521 -0.15951395036603883 0
+-0.47412731466476543 -0.15988585575964956 0
+-0.47383179610170734 -0.16020161568935476 0
+-0.4734753075473412 -0.1604464655717832 0
+-0.47307451801026057 -0.16060895649856377 0
+-0.47264816796377374 -0.16068149057455586 0
+-0.47221619306220053 -0.16066067618698193 0
+-0.4717987919718327 -0.1605474865934714 0
+-0.45669469048534816 -0.15566730222502517 0
+-0.4563113804172634 -0.1554670300451694 0
+-0.4559800845242268 -0.15518903978351187 0
+-0.45571629383398793 -0.15484632995572373 0
+-0.4555323429060399 -0.1544549252924577 0
+-0.4554368330813268 -0.15403312744075318 0
+-0.45543423029310076 -0.1536006591993611 0
+-0.4555246562448464 -0.15317774230259504 0
+
+-0.4239157254597511 -0.227306609547951 0
+-0.4275543006758571 -0.22275803469368904 0
+-0.4317195351481653 -0.21816211927183715 0
+-0.43606782312387726 -0.21407913047766347 0
+-0.4402409686799924 -0.21083665552842099 0
+-0.4439378358461836 -0.20866756832473188 0
+-0.44703837988187034 -0.20754167656480024 0
+-0.44932095167120706 -0.20762882319068496 0
+-0.45070642347177337 -0.20892292492574757 0
+-0.4512089572942545 -0.21125189831728255 0
+-0.4507376065310887 -0.21464886479895073 0
+-0.4495239861901079 -0.21873555684544757 0
+-0.44763361334598434 -0.22332241778112 0
+-0.4452958278852972 -0.2280836047687352 0
+-0.44284429221859334 -0.23270704183853874 0
+-0.44061941514066194 -0.2370142119769318 0
+-0.4396471970331928 -0.23907937691637327 0
+-0.43944232566384334 -0.23946024864850907 0
+-0.439160367909339 -0.23978817452274617 0
+-0.4388145078009068 -0.24004782108966863 0
+-0.43842091737282124 -0.24022704756438348 0
+-0.4379980004760552 -0.24031747351612914 0
+-0.4375655322346631 -0.24031487072790303 0
+-0.4371437343829586 -0.24021936090319 0
+-0.4367523297196926 -0.24003540997524198 0
+-0.4227251285957787 -0.2326065668746427 0
+-0.42238241876799054 -0.2323427761844038 0
+-0.422104428506333 -0.2320114802913672 0
+-0.42190415632647715 -0.23162817022328247 0
+-0.4217909667329667 -0.23121076913291472 0
+-0.4217701523453927 -0.23077879423134146 0
+-0.4218426864213848 -0.23035244418485468 0
+-0.4220051773481654 -0.22995165464777406 0
+
+-0.3780041145369073 -0.29746550460418164 0
+-0.38237726335407074 -0.2936178647781289 0
+-0.38727729089322954 -0.28981505701417254 0
+-0.3922685221675832 -0.28654917027716176 0
+-0.3969413181317604 -0.28408061492915815 0
+-0.40095867961900317 -0.2825864352804914 0
+-0.40420762847626546 -0.2820160521678312 0
+-0.40644039001843657 -0.2824982392722636 0
+-0.4075800949812048 -0.28401326534751703 0
+-0.4076705722004603 -0.2863941204825497 0
+-0.4066165052753691 -0.28965763020935353 0
+-0.4047116759277978 -0.293471493260326 0
+-0.40205352205212996 -0.297660409672272 0
+-0.39892448136163516 -0.30194331134619173 0
+-0.3957073386085501 -0.3060708033170897 0
+-0.39276833016727075 -0.3099261920128061 0
+-0.39145227010910066 -0.3117911585537603 0
+-0.39118437351398483 -0.3121306684485271 0
+-0.3908497556008559 -0.3124046509416404 0
+-0.39046406273143075 -0.31260029491623165 0
+-0.39004532947561676 -0.31270845227749167 0
+-0.38961313533506725 -0.3127240657074163 0
+-0.38918768922744507 -0.31264640513937536 0
+-0.3887888845398933 -0.3124791018952167 0
+-0.3884353689363621 -0.31222997888869325 0
+-0.37591127758306275 -0.30247819869437664 0
+-0.375619581060269 -0.30215890464039297 0
+-0.3754033430234211 -0.30178436937404346 0
+-0.3752726745227908 -0.3013721057481167 0
+-0.37523368547223984 -0.3009413907515627 0
+-0.3752881989564389 -0.30051236413891524 0
+-0.37543366598545413 -0.30010508671775277 0
+-0.3756632846826838 -0.29973860232763244 0
+
+-0.3206070398731711 -0.3585860608278222 0
+-0.3255818863775025 -0.3555562646190937 0
+-0.3310678221262682 -0.35266211090262717 0
+-0.3365503406626771 -0.3503125585386649 0
+-0.34158080649409384 -0.34869292859699996 0
+-0.3457965968064811 -0.3479190563958889 0
+-0.3490952328183386 -0.3479215127327505 0
+-0.35121034278371704 -0.3487840893045609 0
+-0.35206965155011205 -0.3504740064193488 0
+-0.35174532306161843 -0.35283440221937196 0
+-0.3501405672647371 -0.355865295099678 0
+-0.3476024061864111 -0.35929044685623035 0
+-0.3442572379396205 -0.3629541406389668 0
+-0.3404320163373277 -0.36662862319908185 0
+-0.3365470177524612 -0.37013475831615017 0
+-0.33298317823211215 -0.3734212215345914 0
+-0.3313632640421501 -0.3750293236124299 0
+-0.33104048212374826 -0.37531715583347564 0
+-0.33066337124796036 -0.3755288701260536 0
+-0.3302495647002096 -0.3756545669651465 0
+-0.3298184116147559 -0.3756883689062601 0
+-0.3293900722306828 -0.3756286954081962 0
+-0.32898457522152447 -0.375478336737402 0
+-0.32862088117675176 -0.3752443234982122 0
+-0.3283159960256812 -0.3749375978896041 0
+-0.31767555262127034 -0.36315918350813564 0
+-0.31744373245471047 -0.3627940876786669 0
+-0.3172958169260002 -0.3623876931035485 0
+-0.3172387224008655 -0.3619590023414379 0
+-0.3172751185558458 -0.36152806049591585 0
+-0.3174033035471855 -0.3611150179287215 0
+-0.31761728358715713 -0.36073918805123295 0
+-0.31790705320691326 -0.3604181442508167 0
+
+-0.2534684825378785 -0.4088111610465116 0
+-0.2588938685357377 -0.40669126727975863 0
+-0.26479902511240133 -0.40479370500694434 0
+-0.27060624735942507 -0.4034318769756787 0
+-0.27584153489933216 -0.4027103840765576 0
+-0.28012765938151496 -0.40268033303823475 0
+-0.28337575516193775 -0.4032555541900657 0
+-0.28530894700452275 -0.4044723112766043 0
+-0.2858617499125088 -0.4062857721545332 0
+-0.28513247027327093 -0.40855398918758107 0
+-0.28302578529744205 -0.4112601730749271 0
+-0.27993141322835474 -0.4141925420341468 0
+-0.27600087185488326 -0.41721969370600376 0
+-0.2715956967635227 -0.4201741098591029 0
+-0.2671608860629718 -0.4229523559809995 0
+-0.26308050092398894 -0.4255700362003039 0
+-0.2612059528751808 -0.42687241244713064 0
+-0.26083809319874807 -0.42709982135806884 0
+-0.26042994768343475 -0.4272428346184642 0
+-0.2600006007599156 -0.4272947650872084 0
+-0.2595701282131497 -0.4272531845532994 0
+-0.2591586584609878 -0.4271200372762895 0
+-0.25878543137172527 -0.42690154907486905 0
+-0.25846789862924396 -0.4266079362145042 0
+-0.25822090771166994 -0.4262529277062186 0
+-0.24978741674466648 -0.41280576029841387 0
+-0.24962251667279484 -0.41240595594549107 0
+-0.249547417990713 -0.4119800501551232 0
+-0.24956563222932898 -0.41154795780870757 0
+-0.24967630771108873 -0.4111298830641264 0
+-0.2498742693734721 -0.4107453746317798 0
+-0.2501502607491647 -0.4104124116986136 0
+-0.25049137678818145 -0.41014656324132104 0
+
+-0.1786284136219136 -0.4466147410052318 0
+-0.18433949150513337 -0.4454691615798391 0
+-0.19048444371526643 -0.44462584722012366 0
+-0.19643992016352543 -0.44429312197716647 0
+-0.20172095784920616 -0.444491688317236 0
+-0.20594718477767698 -0.44520637152729425 0
+-0.20904604857999265 -0.44633687969047203 0
+-0.21073858324388955 -0.4478708467433733 0
+-0.2109680836568393 -0.44975275029332273 0
+-0.209856011659662 -0.4518598699326194 0
+-0.20731140806184215 -0.45415911879898346 0
+-0.20375484593148502 -0.4565096064138949 0
+-0.19935835894201565 -0.4588082375031357 0
+-0.19450707937761208 -0.46095281880941374 0
+-0.1896572060403905 -0.46291876033358514 0
+-0.18518425572044744 -0.4647881206648992 0
+-0.18311203100668905 -0.46574519903748846 0
+-0.18271027080234792 -0.4659052749336348 0
+-0.18228349194246032 -0.4659752417762986 0
+-0.18185165013218393 -0.46595182799367946 0
+-0.18143493781460965 -0.46583612838822996 0
+-0.1810528399945647 -0.46563355294491016 0
+-0.1807232231414432 -0.4653535738663032 0
+-0.1804614997729543 -0.46500928266295044 0
+-0.18027990778292388 -0.46461677800886836 0
+-0.17430961660880787 -0.44990944295181856 0
+-0.17421664703686474 -0.4494870779283945 0
+-0.17421664703686474 -0.4490546018546987 0
+-0.17430961660880787 -0.4486322368312746 0
+-0.1744912085988383 -0.44823973217719254 0
+-0.1747529319673272 -0.44789544097383976 0
+-0.17508254882044869 -0.4476154618952328 0
+-0.17546464664049363 -0.447412886451913 0
+
+-0.09836081074838535 -0.47084815805647157 0
+-0.10418405230542889 -0.4707117008235886 0
+-0.11038208888562237 -0.47094825805705426 0
+-0.11630486539685275 -0.4716547452905457 0
+-0.1214711915705617 -0.47276733753204225 0
+-0.12550910917867297 -0.47420503970279115 0
+-0.12836458359434894 -0.47585648495884236 0
+-0.1297650342702591 -0.47766105316542856 0
+-0.12966425893425787 -0.4795542187003225 0
+-0.12820318432403982 -0.48143621718188184 0
+-0.12529797859691721 -0.48325866951393565 0
+-0.12138729074591381 -0.48495585740776387 0
+-0.11665844317289185 -0.48645612517190534 0
+-0.11150846281014379 -0.4877257096135815 0
+-0.10639088778344866 -0.4888196124016302 0
+-0.10166128061459478 -0.48988385327722894 0
+-0.09945434273521746 -0.4904665534335346 0
+-0.09903088928347634 -0.490554432489787 0
+-0.09859844453871164 -0.49054922700760983 0
+-0.09817722913656073 -0.49045118038956426 0
+-0.09778693864108098 -0.490264877186539 0
+-0.0974458226020642 -0.48999902872924644 0
+-0.09716983122637163 -0.4896660657960803 0
+-0.09697186956398825 -0.4892815573637336 0
+-0.09686119408222853 -0.4888634826191525 0
+-0.09353550697721237 -0.4733428548462954 0
+-0.0935172927385964 -0.47291076249987984 0
+-0.09359239142067823 -0.47248485670951196 0
+-0.09375729149254987 -0.4720850523565891 0
+-0.0940042824101239 -0.47173004384830336 0
+-0.09432181515260518 -0.47143643098793864 0
+-0.09469504224186769 -0.47121794278651813 0
+-0.09510651199402957 -0.4710847955095082 0
+
+-0.01510456441323943 -0.4807750920858297 0
+-0.020863033396098407 -0.4816519032294269 0
+-0.026925830141220963 -0.4829611443842386 0
+-0.03263594614819851 -0.4846853778370887 0
+-0.03753058460343475 -0.4866781904277533 0
+-0.041257502807948904 -0.48879522770624706 0
+-0.04378282569180458 -0.49091743172673813 0
+-0.044848640394602735 -0.4929377701952078 0
+-0.04442065131724013 -0.4947846748382565 0
+-0.04265496810667341 -0.4963843685905536 0
+-0.03947743345616159 -0.4976746500963929 0
+-0.03533144415596118 -0.49866697007380245 0
+-0.03041391963998058 -0.49932328963600336 0
+-0.025121718026194312 -0.4996793015322581 0
+-0.01989193623759386 -0.49986792790151063 0
+-0.015049378940358044 -0.5000947129009209 0
+-0.012774784586062238 -0.5002853297915542 0
+-0.012342504305774493 -0.5002983418472573 0
+-0.011917533290874749 -0.500218122206181 0
+-0.011519742713698405 -0.5000484218495843 0
+-0.011167732819521797 -0.4997971757775333 0
+-0.010877963199765694 -0.49947613197711704 0
+-0.01066398315979411 -0.49910030209962847 0
+-0.010535798168454319 -0.4986872595324341 0
+-0.010499402013474046 -0.4982563176869121 0
+-0.009919368297364811 -0.48239398361930935 0
+-0.009976462822499477 -0.48196529285719875 0
+-0.010124378351209828 -0.48155889828208037 0
+-0.010356198517769671 -0.4811938024526116 0
+-0.010661083668840221 -0.48088707684400356 0
+-0.011024777713612932 -0.48065306360481375 0
+-0.011430274722771222 -0.4805027049340195 0
+-0.011858614106844356 -0.4804430314359556 0
+
+0.06861062646832458 -0.47609391822609515 0
+0.06309189822576844 -0.4779573562832622 0
+0.057348556326894146 -0.4802995007294389 0
+0.05202459980958335 -0.4829890904406871 0
+0.04755037018547564 -0.4858015727783642 0
+0.04424769190829114 -0.48853362005816825 0
+0.04212925121420663 -0.49106210074782375 0
+0.04143045672493678 -0.4932368225161531 0
+0.042172655312118 -0.49498134900435625 0
+0.044189297732159155 -0.4962501321422116 0
+0.04754261352361447 -0.49696903827119554 0
+0.051797930486097155 -0.4972263391918109 0
+0.0567547154510058 -0.4970187686142875 0
+0.062028337447778636 -0.4964503907238037 0
+0.06721142172503503 -0.49572800935748007 0
+0.0720197904976285 -0.4951104477332534 0
+0.07429292892838782 -0.4949031895604492 0
+0.07472090141965004 -0.4948409392508749 0
+0.07512548617544276 -0.49468814288410057 0
+0.07548776526224879 -0.4944519450484155 0
+0.07579079891261326 -0.49414339009210123 0
+0.07602041760984293 -0.4937769057019809 0
+0.07616588463885815 -0.49336962828081843 0
+0.0762203981230572 -0.4929406016681709 0
+0.07618140907250628 -0.492509886671617 0
+0.07399816536875586 -0.4767878153031844 0
+0.07386749686812555 -0.4763755516772576 0
+0.07365125883127766 -0.4760010164109081 0
+0.0733595623084839 -0.4756817223569244 0
+0.07300604670495273 -0.47543259935040094 0
+0.07260724201740093 -0.47526529610624235 0
+0.07218179590977877 -0.4751876355382013 0
+0.07174960176922929 -0.47520324896812594 0
+
+0.15024111818330055 -0.4569468715762076 0
+0.1451298144460861 -0.45974031692452266 0
+0.1398804359307861 -0.4630441997882496 0
+0.13510440462786855 -0.46661742393551775 0
+0.13118653103794845 -0.4701641201675617 0
+0.12840844289630998 -0.4734281655745619 0
+0.1267612521405037 -0.4762860963270995 0
+0.12645071038171155 -0.47854912357482005 0
+0.12748456715021048 -0.48013826535360676 0
+0.12969089412026347 -0.4810375865434119 0
+0.13311810224919854 -0.4811632736965953 0
+0.13735345122135273 -0.4806777376021442 0
+0.14219888723228494 -0.47961258381185873 0
+0.14729369327625383 -0.47813708600922566 0
+0.152272594649169 -0.4765256460995989 0
+0.1569006750451168 -0.4750825021491863 0
+0.15910328939138454 -0.4744836663476475 0
+0.15951395036603877 -0.4743480451169521 0
+0.1598858557596495 -0.47412731466476543 0
+0.1602016156893547 -0.47383179610170734 0
+0.16044646557178313 -0.4734753075473412 0
+0.16060895649856372 -0.47307451801026057 0
+0.1606814905745558 -0.47264816796377374 0
+0.16066067618698188 -0.47221619306220053 0
+0.16054748659347134 -0.4717987919718327 0
+0.15566730222502512 -0.4566946904853481 0
+0.15546703004516935 -0.4563113804172634 0
+0.1551890397835118 -0.4559800845242268 0
+0.15484632995572367 -0.4557162938339879 0
+0.15445492529245763 -0.45553234290603983 0
+0.15403312744075312 -0.4554368330813268 0
+0.15360065919936106 -0.4554342302931007 0
+0.15317774230259498 -0.4555246562448464 0
+
+0.227306609547951 -0.4239157254597511 0
+0.22275803469368904 -0.4275543006758571 0
+0.21816211927183715 -0.4317195351481653 0
+0.21407913047766347 -0.43606782312387726 0
+0.21083665552842099 -0.4402409686799924 0
+0.20866756832473188 -0.4439378358461836 0
+0.20754167656480024 -0.44703837988187034 0
+0.20762882319068496 -0.44932095167120706 0
+0.20892292492574757 -0.45070642347177337 0
+0.21125189831728255 -0.4512089572942545 0
+0.21464886479895073 -0.4507376065310887 0
+0.21873555684544757 -0.4495239861901079 0
+0.22332241778112 -0.44763361334598434 0
+0.2280836047687352 -0.4452958278852972 0
+0.23270704183853874 -0.44284429221859334 0
+0.2370142119769318 -0.44061941514066194 0
+0.23907937691637327 -0.4396471970331928 0
+0.23946024864850907 -0.43944232566384334 0
+0.23978817452274617 -0.439160367909339 0
+0.24004782108966863 -0.4388145078009068 0
+0.24022704756438348 -0.43842091737282124 0
+0.24031747351612914 -0.4379980004760552 0
+0.24031487072790303 -0.4375655322346631 0
+0.24021936090319 -0.4371437343829586 0
+0.24003540997524198 -0.4367523297196926 0
+0.2326065668746427 -0.4227251285957787 0
+0.2323427761844038 -0.42238241876799054 0
+0.2320114802913672 -0.422104428506333 0
+0.23162817022328247 -0.42190415632647715 0
+0.23121076913291472 -0.4217909667329667 0
+0.23077879423134146 -0.4217701523453927 0
+0.23035244418485468 -0.4218426864213848 0
+0.22995165464777406 -0.4220051773481654 0
+
+0.2974655046041814 -0.37800411453690747 0
+0.2936178647781287 -0.3823772633540709 0
+0.2898150570141724 -0.3872772908932297 0
+0.2865491702771616 -0.39226852216758334 0
+0.2840806149291579 -0.3969413181317606 0
+0.28258643528049116 -0.40095867961900333 0
+0.282016052167831 -0.4042076284762657 0
+0.28249823927226336 -0.40644039001843674 0
+0.2840132653475168 -0.40758009498120495 0
+0.2863941204825495 -0.40767057220046043 0
+0.2896576302093533 -0.4066165052753692 0
+0.2934714932603258 -0.40471167592779794 0
+0.2976604096722718 -0.40205352205213013 0
+0.30194331134619157 -0.3989244813616354 0
+0.30607080331708947 -0.39570733860855034 0
+0.3099261920128059 -0.392768330167271 0
+0.31179115855376005 -0.3914522701091009 0
+0.3121306684485269 -0.39118437351398505 0
+0.31240465094164016 -0.3908497556008561 0
+0.3126002949162314 -0.39046406273143086 0
+0.3127084522774915 -0.39004532947561693 0
+0.3127240657074161 -0.3896131353350675 0
+0.31264640513937514 -0.3891876892274453 0
+0.31247910189521655 -0.38878888453989346 0
+0.312229978888693 -0.3884353689363623 0
+0.3024781986943765 -0.3759112775830629 0
+0.30215890464039274 -0.37561958106026916 0
+0.3017843693740433 -0.37540334302342127 0
+0.30137210574811646 -0.37527267452279095 0
+0.30094139075156257 -0.37523368547224 0
+0.3005123641389151 -0.37528819895643906 0
+0.30010508671775254 -0.3754336659854543 0
+0.2997386023276322 -0.37566328468268395 0
+
+0.3585860608278221 -0.3206070398731713 0
+0.3555562646190935 -0.32558188637750274 0
+0.352662110902627 -0.3310678221262684 0
+0.3503125585386647 -0.3365503406626773 0
+0.3486929285969998 -0.34158080649409406 0
+0.3479190563958887 -0.34579659680648134 0
+0.3479215127327504 -0.3490952328183388 0
+0.34878408930456073 -0.3512103427837172 0
+0.3504740064193486 -0.3520696515501122 0
+0.3528344022193718 -0.35174532306161865 0
+0.35586529509967785 -0.3501405672647373 0
+0.3592904468562302 -0.34760240618641125 0
+0.3629541406389666 -0.34425723793962065 0
+0.3666286231990817 -0.3404320163373279 0
+0.37013475831615006 -0.33654701775246143 0
+0.37342122153459123 -0.3329831782321124 0
+0.3750293236124298 -0.3313632640421503 0
+0.3753171558334755 -0.3310404821237485 0
+0.3755288701260535 -0.3306633712479605 0
+0.3756545669651464 -0.33024956470020983 0
+0.37568836890625995 -0.3298184116147561 0
+0.3756286954081961 -0.32939007223068295 0
+0.37547833673740183 -0.3289845752215247 0
+0.375244323498212 -0.328620881176752 0
+0.37493759788960396 -0.3283159960256814 0
+0.36315918350813553 -0.31767555262127056 0
+0.3627940876786667 -0.3174437324547107 0
+0.36238769310354835 -0.31729581692600034 0
+0.3619590023414378 -0.3172387224008657 0
+0.3615280604959157 -0.317275118555846 0
+0.36111501792872136 -0.3174033035471857 0
+0.36073918805123284 -0.31761728358715735 0
+0.36041814425081653 -0.3179070532069135 0
+
+0.4088111610465116 -0.25346848253787857 0
+0.4066912672797586 -0.25889386853573776 0
+0.4047937050069443 -0.26479902511240133 0
+0.4034318769756787 -0.2706062473594251 0
+0.4027103840765576 -0.2758415348993322 0
+0.40268033303823475 -0.280127659381515 0
+0.4032555541900657 -0.2833757551619378 0
+0.4044723112766043 -0.2853089470045228 0
+0.4062857721545332 -0.28586174991250884 0
+0.40855398918758107 -0.28513247027327093 0
+0.4112601730749271 -0.28302578529744205 0
+0.4141925420341468 -0.2799314132283548 0
+0.41721969370600376 -0.27600087185488326 0
+0.4201741098591029 -0.2715956967635227 0
+0.4229523559809995 -0.2671608860629718 0
+0.42557003620030387 -0.263080500923989 0
+0.42687241244713064 -0.2612059528751808 0
+0.42709982135806884 -0.26083809319874807 0
+0.4272428346184642 -0.26042994768343475 0
+0.4272947650872084 -0.2600006007599156 0
+0.4272531845532994 -0.2595701282131497 0
+0.4271200372762895 -0.25915865846098785 0
+0.42690154907486905 -0.2587854313717253 0
+0.4266079362145042 -0.258467898629244 0
+0.42625292770621853 -0.25822090771167 0
+0.4128057602984138 -0.24978741674466653 0
+0.41240595594549107 -0.24962251667279486 0
+0.4119800501551232 -0.24954741799071306 0
+0.4115479578087075 -0.249565632229329 0
+0.4111298830641264 -0.24967630771108876 0
+0.4107453746317798 -0.24987426937347212 0
+0.4104124116986136 -0.2501502607491647 0
+0.41014656324132104 -0.25049137678818145 0
+
+0.44661474100523174 -0.17862841362191362 0
+0.44546916157983907 -0.1843394915051334 0
+0.4446258472201236 -0.19048444371526646 0
+0.4442931219771664 -0.19643992016352546 0
+0.44449168831723596 -0.20172095784920618 0
+0.4452063715272942 -0.205947184777677 0
+0.446336879690472 -0.20904604857999268 0
+0.44787084674337324 -0.21073858324388958 0
+0.4497527502933227 -0.21096808365683933 0
+0.45185986993261934 -0.20985601165966203 0
+0.4541591187989834 -0.20731140806184217 0
+0.4565096064138948 -0.20375484593148505 0
+0.45880823750313565 -0.19935835894201567 0
+0.4609528188094137 -0.1945070793776121 0
+0.4629187603335851 -0.18965720604039052 0
+0.46478812066489916 -0.18518425572044747 0
+0.4657451990374884 -0.18311203100668907 0
+0.46590527493363476 -0.18271027080234795 0
+0.46597524177629857 -0.18228349194246035 0
+0.4659518279936794 -0.18185165013218396 0
+0.4658361283882299 -0.18143493781460968 0
+0.4656335529449101 -0.18105283999456473 0
+0.46535357386630316 -0.18072322314144323 0
+0.4650092826629504 -0.18046149977295434 0
+0.4646167780088683 -0.1802799077829239 0
+0.4499094429518185 -0.1743096166088079 0
+0.44948707792839443 -0.17421664703686476 0
+0.44905460185469864 -0.17421664703686476 0
+0.44863223683127457 -0.1743096166088079 0
+0.4482397321771925 -0.17449120859883832 0
+0.4478954409738397 -0.17475293196732722 0
+0.44761546189523277 -0.1750825488204487 0
+0.44741288645191296 -0.17546464664049366 0
+
+0.4708481580564715 -0.09836081074838557 0
+0.47071170082358854 -0.10418405230542914 0
+0.4709482580570542 -0.11038208888562262 0
+0.47165474529054563 -0.116304865396853 0
+0.4727673375320422 -0.12147119157056195 0
+0.4742050397027911 -0.12550910917867322 0
+0.4758564849588423 -0.12836458359434916 0
+0.4776610531654285 -0.12976503427025937 0
+0.47955421870032244 -0.12966425893425812 0
+0.4814362171818818 -0.12820318432404007 0
+0.4832586695139356 -0.12529797859691744 0
+0.48495585740776376 -0.12138729074591408 0
+0.4864561251719053 -0.1166584431728921 0
+0.48772570961358147 -0.11150846281014405 0
+0.48881961240163013 -0.10639088778344892 0
+0.4898838532772289 -0.10166128061459503 0
+0.49046655343353457 -0.09945434273521772 0
+0.490554432489787 -0.09903088928347657 0
+0.4905492270076098 -0.0985984445387119 0
+0.4904511803895642 -0.09817722913656098 0
+0.490264877186539 -0.09778693864108122 0
+0.48999902872924644 -0.09744582260206444 0
+0.48966606579608024 -0.09716983122637189 0
+0.4892815573637336 -0.09697186956398851 0
+0.48886348261915247 -0.09686119408222876 0
+0.47334285484629535 -0.09353550697721262 0
+0.4729107624998798 -0.09351729273859662 0
+0.4724848567095119 -0.09359239142067845 0
+0.47208505235658904 -0.09375729149255012 0
+0.47173004384830336 -0.09400428241012415 0
+0.4714364309879386 -0.09432181515260543 0
+0.47121794278651813 -0.09469504224186794 0
+0.4710847955095082 -0.09510651199402982 0
+
+0.48077509208582964 -0.01510456441323968 0
+0.48165190322942686 -0.020863033396098657 0
+0.48296114438423854 -0.026925830141221213 0
+0.48468537783708865 -0.03263594614819876 0
+0.4866781904277533 -0.037530584603435 0
+0.48879522770624695 -0.041257502807949153 0
+0.4909174317267381 -0.04378282569180483 0
+0.4929377701952078 -0.04484864039460296 0
+0.49478467483825644 -0.044420651317240406 0
+0.4963843685905535 -0.04265496810667366 0
+0.4976746500963929 -0.03947743345616184 0
+0.4986669700738024 -0.035331444155961456 0
+0.4993232896360033 -0.03041391963998083 0
+0.49967930153225804 -0.025121718026194534 0
+0.4998679279015106 -0.01989193623759411 0
+0.5000947129009208 -0.015049378940358321 0
+0.5002853297915542 -0.01277478458606246 0
+0.5002983418472572 -0.012342504305774715 0
+0.500218122206181 -0.011917533290874999 0
+0.5000484218495843 -0.011519742713698655 0
+0.49979717577753324 -0.011167732819522075 0
+0.499476131977117 -0.010877963199765944 0
+0.4991003020996284 -0.010663983159794332 0
+0.4986872595324341 -0.010535798168454569 0
+0.49825631768691203 -0.010499402013474324 0
+0.4823939836193093 -0.009919368297365033 0
+0.48196529285719875 -0.009976462822499699 0
+0.4815588982820803 -0.01012437835121005 0
+0.48119380245261156 -0.010356198517769893 0
+0.4808870768440035 -0.010661083668840471 0
+0.48065306360481364 -0.011024777713613182 0
+0.4805027049340195 -0.011430274722771472 0
+0.4804430314359556 -0.011858614106844606 0
+
+0.47609391822609515 0.06861062646832458 0
+0.4779573562832622 0.06309189822576844 0
+0.4802995007294389 0.057348556326894146 0
+0.4829890904406871 0.05202459980958335 0
+0.4858015727783642 0.04755037018547564 0
+0.48853362005816825 0.04424769190829114 0
+0.49106210074782375 0.04212925121420663 0
+0.4932368225161531 0.04143045672493678 0
+0.49498134900435625 0.042172655312118 0
+0.4962501321422116 0.044189297732159155 0
+0.49696903827119554 0.04754261352361447 0
+0.4972263391918109 0.051797930486097155 0
+0.4970187686142875 0.0567547154510058 0
+0.4964503907238037 0.062028337447778636 0
+0.49572800935748007 0.06721142172503503 0
+0.4951104477332534 0.0720197904976285 0
+0.4949031895604492 0.07429292892838782 0
+0.4948409392508749 0.07472090141965004 0
+0.49468814288410057 0.07512548617544276 0
+0.4944519450484155 0.07548776526224879 0
+0.49414339009210123 0.07579079891261326 0
+0.4937769057019809 0.07602041760984293 0
+0.49336962828081843 0.07616588463885815 0
+0.4929406016681709 0.0762203981230572 0
+0.492509886671617 0.07618140907250628 0
+0.4767878153031844 0.07399816536875586 0
+0.4763755516772576 0.07386749686812555 0
+0.4760010164109081 0.07365125883127766 0
+0.4756817223569244 0.0733595623084839 0
+0.47543259935040094 0.07300604670495273 0
+0.47526529610624235 0.07260724201740093 0
+0.4751876355382013 0.07218179590977877 0
+0.47520324896812594 0.07174960176922929 0
+
+0.45694687157620767 0.15024111818330052 0
+0.4597403169245227 0.14512981444608608 0
+0.4630441997882497 0.1398804359307861 0
+0.4666174239355178 0.13510440462786852 0
+0.4701641201675618 0.13118653103794842 0
+0.473428165574562 0.12840844289630995 0
+0.4762860963270996 0.12676125214050368 0
+0.47854912357482005 0.12645071038171152 0
+0.4801382653536068 0.12748456715021048 0
+0.48103758654341194 0.12969089412026347 0
+0.48116327369659534 0.1331181022491985 0
+0.4806777376021443 0.1373534512213527 0
+0.4796125838118588 0.1421988872322849 0
+0.4781370860092258 0.1472936932762538 0
+0.47652564609959897 0.15227259464916898 0
+0.47508250214918635 0.1569006750451168 0
+0.47448366634764755 0.15910328939138452 0
+0.47434804511695217 0.15951395036603874 0
+0.47412731466476543 0.1598858557596495 0
+0.4738317961017074 0.16020161568935468 0
+0.47347530754734124 0.1604464655717831 0
+0.47307451801026057 0.16060895649856372 0
+0.4726481679637738 0.16068149057455577 0
+0.4722161930622006 0.16066067618698185 0
+0.4717987919718328 0.16054748659347132 0
+0.45669469048534816 0.1556673022250251 0
+0.45631138041726343 0.15546703004516932 0
+0.45598008452422684 0.15518903978351178 0
+0.45571629383398793 0.15484632995572364 0
+0.45553234290603994 0.1544549252924576 0
+0.4554368330813268 0.1540331274407531 0
+0.4554342302931008 0.15360065919936106 0
+0.4555246562448464 0.15317774230259498 0
+
+0.4239157254597511 0.227306609547951 0
+0.42755430067585704 0.222758034693689 0
+0.4317195351481653 0.21816211927183707 0
+0.43606782312387726 0.21407913047766342 0
+0.4402409686799924 0.2108366555284209 0
+0.4439378358461837 0.2086675683247318 0
+0.44703837988187034 0.20754167656480016 0
+0.4493209516712071 0.20762882319068487 0
+0.45070642347177337 0.2089229249257475 0
+0.45120895729425453 0.21125189831728247 0
+0.45073760653108874 0.21464886479895068 0
+0.44952398619010797 0.2187355568454475 0
+0.4476336133459844 0.22332241778111994 0
+0.44529582788529726 0.2280836047687352 0
+0.4428442922185934 0.23270704183853866 0
+0.440619415140662 0.23701421197693173 0
+0.4396471970331929 0.23907937691637318 0
+0.43944232566384334 0.239460248648509 0
+0.439160367909339 0.2397881745227461 0
+0.4388145078009068 0.24004782108966854 0
+0.4384209173728213 0.2402270475643834 0
+0.43799800047605525 0.24031747351612903 0
+0.43756553223466316 0.24031487072790297 0
+0.4371437343829586 0.2402193609031899 0
+0.4367523297196927 0.24003540997524192 0
+0.4227251285957787 0.23260656687464265 0
+0.42238241876799054 0.23234277618440374 0
+0.422104428506333 0.23201148029136714 0
+0.42190415632647726 0.23162817022328241 0
+0.4217909667329667 0.2312107691329146 0
+0.4217701523453928 0.2307787942313414 0
+0.42184268642138484 0.2303524441848546 0
+0.42200517734816545 0.22995165464777395 0
+
+0.3780041145369074 0.29746550460418136 0
+0.38237726335407085 0.2936178647781286 0
+0.3872772908932297 0.2898150570141723 0
+0.39226852216758334 0.2865491702771616 0
+0.3969413181317606 0.28408061492915787 0
+0.40095867961900333 0.2825864352804911 0
+0.4042076284762656 0.28201605216783093 0
+0.40644039001843674 0.2824982392722633 0
+0.40758009498120495 0.2840132653475168 0
+0.40767057220046043 0.2863941204825494 0
+0.4066165052753692 0.2896576302093532 0
+0.4047116759277979 0.29347149326032573 0
+0.4020535220521301 0.2976604096722717 0
+0.39892448136163533 0.30194331134619146 0
+0.39570733860855034 0.3060708033170894 0
+0.392768330167271 0.3099261920128058 0
+0.3914522701091009 0.31179115855376 0
+0.391184373513985 0.3121306684485268 0
+0.3908497556008561 0.3124046509416401 0
+0.39046406273143086 0.31260029491623137 0
+0.3900453294756169 0.31270845227749144 0
+0.3896131353350675 0.31272406570741607 0
+0.3891876892274453 0.3126464051393751 0
+0.38878888453989346 0.3124791018952165 0
+0.3884353689363623 0.31222997888869297 0
+0.37591127758306286 0.3024781986943764 0
+0.37561958106026916 0.30215890464039274 0
+0.37540334302342127 0.3017843693740432 0
+0.3752726745227909 0.3013721057481164 0
+0.37523368547224 0.3009413907515625 0
+0.37528819895643906 0.300512364138915 0
+0.37543366598545425 0.3001050867177525 0
+0.37566328468268395 0.29973860232763216 0
+
+0.32060703987317096 0.3585860608278223 0
+0.3255818863775024 0.3555562646190938 0
+0.33106782212626806 0.3526621109026273 0
+0.336550340662677 0.350312558538665 0
+0.3415808064940937 0.3486929285970001 0
+0.345796596806481 0.347919056395889 0
+0.34909523281833854 0.3479215127327506 0
+0.351210342783717 0.34878408930456095 0
+0.35206965155011194 0.3504740064193489 0
+0.3517453230616183 0.35283440221937207 0
+0.35014056726473697 0.3558652950996781 0
+0.34760240618641103 0.3592904468562304 0
+0.3442572379396204 0.3629541406389668 0
+0.3404320163373276 0.36662862319908196 0
+0.33654701775246115 0.3701347583161502 0
+0.33298317823211204 0.3734212215345915 0
+0.33136326404215 0.37502932361243 0
+0.33104048212374815 0.37531715583347575 0
+0.3306633712479602 0.37552887012605374 0
+0.3302495647002095 0.3756545669651466 0
+0.3298184116147558 0.3756883689062602 0
+0.3293900722306826 0.3756286954081963 0
+0.3289845752215244 0.3754783367374021 0
+0.32862088117675164 0.37524432349821224 0
+0.32831599602568107 0.37493759788960423 0
+0.31767555262127023 0.36315918350813575 0
+0.31744373245471036 0.362794087678667 0
+0.31729581692600006 0.3623876931035486 0
+0.31723872240086537 0.361959002341438 0
+0.31727511855584567 0.36152806049591596 0
+0.3174033035471854 0.36111501792872164 0
+0.317617283587157 0.36073918805123306 0
+0.31790705320691315 0.3604181442508168 0
+
+0.2534684825378789 0.4088111610465114 0
+0.25889386853573815 0.40669126727975835 0
+0.2647990251124017 0.40479370500694406 0
+0.2706062473594255 0.40343187697567845 0
+0.2758415348993326 0.40271038407655735 0
+0.2801276593815154 0.4026803330382345 0
+0.2833757551619382 0.4032555541900654 0
+0.2853089470045232 0.4044723112766041 0
+0.28586174991250923 0.40628577215453293 0
+0.2851324702732713 0.4085539891875809 0
+0.2830257852974425 0.41126017307492685 0
+0.27993141322835524 0.4141925420341465 0
+0.2760008718548837 0.41721969370600354 0
+0.27159569676352313 0.42017410985910264 0
+0.2671608860629722 0.42295235598099923 0
+0.2630805009239894 0.42557003620030365 0
+0.2612059528751812 0.42687241244713037 0
+0.2608380931987485 0.4270998213580686 0
+0.26042994768343514 0.427242834618464 0
+0.26000060075991605 0.4272947650872082 0
+0.2595701282131501 0.4272531845532992 0
+0.25915865846098823 0.4271200372762893 0
+0.2587854313717257 0.4269015490748688 0
+0.25846789862924446 0.42660793621450405 0
+0.2582209077116704 0.4262529277062183 0
+0.24978741674466692 0.41280576029841365 0
+0.24962251667279528 0.41240595594549084 0
+0.24954741799071345 0.41198005015512296 0
+0.24956563222932943 0.41154795780870734 0
+0.24967630771108915 0.41112988306412623 0
+0.24987426937347254 0.41074537463177957 0
+0.25015026074916513 0.41041241169861337 0
+0.2504913767881819 0.4101465632413208 0
+
diff --git a/resources/designs/saved/v4rdso2_inner_var1.txt b/resources/designs/saved/v4rdso2_inner_var1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3a7a2fbc643bb4379b2b9eda1ee4c0bf75dd2332
--- /dev/null
+++ b/resources/designs/saved/v4rdso2_inner_var1.txt
@@ -0,0 +1,1877 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.083424 0.465495 0
+0.078418 0.465355 0
+0.073475 0.465239 0
+0.068411 0.465129 0
+0.063243 0.465024 0
+0.057948 0.464898 0
+0.052565 0.464631 0
+0.046724 0.463987 0
+0.040968 0.462852 0
+0.035525 0.461327 0
+0.030713 0.459534 0
+0.026832 0.457561 0
+0.024214 0.455531 0
+0.022997 0.453564 0
+0.023138 0.451785 0
+0.024799 0.450286 0
+0.027851 0.449080 0
+0.031968 0.448160 0
+0.036978 0.447567 0
+0.042470 0.447281 0
+0.047921 0.447157 0
+0.052854 0.447096 0
+0.057602 0.447196 0
+0.062192 0.447610 0
+0.066716 0.448343 0
+0.071386 0.449357 0
+0.076095 0.450610 0
+0.080833 0.452030 0
+0.085471 0.453525 0
+0.090434 0.454968 0
+0.095594 0.456227 0
+0.100998 0.457256 0
+0.103725 0.457663 0
+0.105088 0.457866 0
+0.105753 0.458017 0
+0.106222 0.458266 0
+0.106498 0.458623 0
+0.106680 0.459241 0
+0.106832 0.460150 0
+0.107213 0.462230 0
+0.107594 0.464310 0
+0.107716 0.465342 0
+0.107620 0.465772 0
+0.107503 0.466015 0
+0.107252 0.466239 0
+0.106739 0.466317 0
+0.105531 0.466254 0
+0.103088 0.466118 0
+0.098196 0.465921 0
+0.093293 0.465769 0
+0.088373 0.465634 0
+
+0.001324 0.472910 0
+-0.003582 0.471903 0
+-0.008429 0.470930 0
+-0.013397 0.469942 0
+-0.018468 0.468941 0
+-0.023661 0.467898 0
+-0.028916 0.466700 0
+-0.034556 0.465052 0
+-0.040028 0.462934 0
+-0.045124 0.460487 0
+-0.049551 0.457886 0
+-0.053031 0.455269 0
+-0.055256 0.452816 0
+-0.056113 0.450666 0
+-0.055665 0.448940 0
+-0.053769 0.447751 0
+-0.050555 0.447094 0
+-0.046340 0.446903 0
+-0.041302 0.447188 0
+-0.035844 0.447860 0
+-0.030455 0.448685 0
+-0.025586 0.449481 0
+-0.020927 0.450404 0
+-0.016479 0.451609 0
+-0.012151 0.453117 0
+-0.007729 0.454926 0
+-0.003308 0.456978 0
+0.001111 0.459199 0
+0.005418 0.461477 0
+0.010056 0.463759 0
+0.014919 0.465895 0
+0.020062 0.467847 0
+0.022676 0.468721 0
+0.023984 0.469159 0
+0.024613 0.469423 0
+0.025032 0.469750 0
+0.025241 0.470148 0
+0.025313 0.470789 0
+0.025305 0.471711 0
+0.025319 0.473825 0
+0.025332 0.475940 0
+0.025274 0.476977 0
+0.025105 0.477384 0
+0.024947 0.477603 0
+0.024661 0.477780 0
+0.024142 0.477767 0
+0.022964 0.477496 0
+0.020581 0.476938 0
+0.015798 0.475895 0
+0.010995 0.474893 0
+0.006174 0.473906 0
+
+-0.080816 0.465955 0
+-0.085472 0.464111 0
+-0.090077 0.462312 0
+-0.094798 0.460476 0
+-0.099618 0.458610 0
+-0.104551 0.456681 0
+-0.109518 0.454589 0
+-0.114787 0.451986 0
+-0.119808 0.448950 0
+-0.124401 0.445655 0
+-0.128309 0.442325 0
+-0.131282 0.439144 0
+-0.133047 0.436341 0
+-0.133518 0.434076 0
+-0.132777 0.432453 0
+-0.130703 0.431612 0
+-0.127424 0.431523 0
+-0.123240 0.432066 0
+-0.118328 0.433222 0
+-0.113070 0.434832 0
+-0.107905 0.436580 0
+-0.103249 0.438210 0
+-0.098821 0.439928 0
+-0.094650 0.441886 0
+-0.090650 0.444123 0
+-0.086609 0.446673 0
+-0.082611 0.449461 0
+-0.078645 0.452415 0
+-0.074799 0.455407 0
+-0.070628 0.458460 0
+-0.066209 0.461408 0
+-0.061484 0.464223 0
+-0.059061 0.465538 0
+-0.057849 0.466196 0
+-0.057275 0.466565 0
+-0.056920 0.466960 0
+-0.056783 0.467389 0
+-0.056823 0.468032 0
+-0.056991 0.468938 0
+-0.057345 0.471023 0
+-0.057698 0.473108 0
+-0.057937 0.474119 0
+-0.058174 0.474491 0
+-0.058367 0.474679 0
+-0.058679 0.474803 0
+-0.059188 0.474701 0
+-0.060301 0.474229 0
+-0.062551 0.473266 0
+-0.067081 0.471408 0
+-0.071636 0.469588 0
+-0.076212 0.467778 0
+
+-0.160501 0.444842 0
+-0.164766 0.442218 0
+-0.168988 0.439647 0
+-0.173319 0.437019 0
+-0.177742 0.434344 0
+-0.182264 0.431588 0
+-0.186793 0.428665 0
+-0.191529 0.425187 0
+-0.195947 0.421325 0
+-0.199898 0.417283 0
+-0.203169 0.413325 0
+-0.205544 0.409675 0
+-0.206796 0.406609 0
+-0.206866 0.404296 0
+-0.205855 0.402827 0
+-0.203666 0.402358 0
+-0.200421 0.402840 0
+-0.196395 0.404102 0
+-0.191759 0.406093 0
+-0.186860 0.408592 0
+-0.182077 0.411210 0
+-0.177775 0.413623 0
+-0.173713 0.416084 0
+-0.169945 0.418737 0
+-0.166394 0.421635 0
+-0.162857 0.424847 0
+-0.159404 0.428287 0
+-0.156011 0.431886 0
+-0.152743 0.435500 0
+-0.149165 0.439231 0
+-0.145326 0.442901 0
+-0.141161 0.446494 0
+-0.139003 0.448210 0
+-0.137924 0.449068 0
+-0.137423 0.449531 0
+-0.137142 0.449982 0
+-0.137082 0.450428 0
+-0.137233 0.451054 0
+-0.137556 0.451918 0
+-0.138266 0.453909 0
+-0.138976 0.455901 0
+-0.139386 0.456856 0
+-0.139684 0.457180 0
+-0.139907 0.457332 0
+-0.140237 0.457401 0
+-0.140720 0.457212 0
+-0.141734 0.456553 0
+-0.143782 0.455214 0
+-0.147921 0.452598 0
+-0.152091 0.450014 0
+-0.156283 0.447437 0
+
+-0.235308 0.410214 0
+-0.239053 0.406889 0
+-0.242765 0.403623 0
+-0.246573 0.400283 0
+-0.250464 0.396881 0
+-0.254440 0.393381 0
+-0.258392 0.389717 0
+-0.262453 0.385469 0
+-0.266132 0.380898 0
+-0.269322 0.376232 0
+-0.271855 0.371766 0
+-0.273560 0.367759 0
+-0.274261 0.364522 0
+-0.273928 0.362232 0
+-0.272678 0.360960 0
+-0.270441 0.360879 0
+-0.267328 0.361917 0
+-0.263583 0.363859 0
+-0.259363 0.366625 0
+-0.254972 0.369936 0
+-0.250717 0.373345 0
+-0.246899 0.376469 0
+-0.243326 0.379598 0
+-0.240076 0.382865 0
+-0.237082 0.386335 0
+-0.234157 0.390113 0
+-0.231354 0.394100 0
+-0.228637 0.398233 0
+-0.226046 0.402360 0
+-0.223171 0.406655 0
+-0.220027 0.410937 0
+-0.216550 0.415198 0
+-0.214722 0.417263 0
+-0.213809 0.418295 0
+-0.213396 0.418839 0
+-0.213197 0.419331 0
+-0.213215 0.419781 0
+-0.213473 0.420372 0
+-0.213941 0.421166 0
+-0.214986 0.423004 0
+-0.216031 0.424842 0
+-0.216601 0.425711 0
+-0.216951 0.425979 0
+-0.217196 0.426089 0
+-0.217533 0.426100 0
+-0.217976 0.425830 0
+-0.218861 0.425005 0
+-0.220645 0.423331 0
+-0.224266 0.420036 0
+-0.227924 0.416767 0
+-0.231606 0.413502 0
+
+-0.302966 0.363121 0
+-0.306077 0.359196 0
+-0.309165 0.355336 0
+-0.312335 0.351385 0
+-0.315577 0.347358 0
+-0.318884 0.343222 0
+-0.322140 0.338927 0
+-0.325401 0.334038 0
+-0.328232 0.328898 0
+-0.330562 0.323749 0
+-0.332282 0.318911 0
+-0.333265 0.314669 0
+-0.333393 0.311359 0
+-0.332668 0.309162 0
+-0.331215 0.308127 0
+-0.328999 0.308435 0
+-0.326113 0.309998 0
+-0.322762 0.312560 0
+-0.319087 0.316017 0
+-0.315338 0.320041 0
+-0.311739 0.324137 0
+-0.308521 0.327876 0
+-0.305546 0.331578 0
+-0.302912 0.335360 0
+-0.300567 0.339297 0
+-0.298342 0.343526 0
+-0.296274 0.347939 0
+-0.294316 0.352481 0
+-0.292481 0.356995 0
+-0.290395 0.361724 0
+-0.288043 0.366486 0
+-0.285358 0.371287 0
+-0.283917 0.373638 0
+-0.283197 0.374813 0
+-0.282885 0.375420 0
+-0.282774 0.375939 0
+-0.282870 0.376379 0
+-0.283226 0.376916 0
+-0.283825 0.377617 0
+-0.285174 0.379246 0
+-0.286522 0.380874 0
+-0.287234 0.381631 0
+-0.287625 0.381834 0
+-0.287886 0.381900 0
+-0.288220 0.381852 0
+-0.288609 0.381509 0
+-0.289337 0.380544 0
+-0.290803 0.378585 0
+-0.293797 0.374711 0
+-0.296833 0.370857 0
+-0.299891 0.367002 0
+
+-0.361419 0.304994 0
+-0.363801 0.300589 0
+-0.366171 0.296251 0
+-0.368608 0.291810 0
+-0.371101 0.287282 0
+-0.373640 0.282634 0
+-0.376100 0.277839 0
+-0.378463 0.272458 0
+-0.380358 0.266905 0
+-0.381758 0.261429 0
+-0.382612 0.256365 0
+-0.382844 0.252017 0
+-0.382395 0.248736 0
+-0.381299 0.246698 0
+-0.379689 0.245931 0
+-0.377560 0.246619 0
+-0.374990 0.248659 0
+-0.372134 0.251765 0
+-0.369115 0.255808 0
+-0.366121 0.260421 0
+-0.363289 0.265079 0
+-0.360769 0.269321 0
+-0.358482 0.273483 0
+-0.356545 0.277665 0
+-0.354919 0.281950 0
+-0.353462 0.286500 0
+-0.352192 0.291205 0
+-0.351053 0.296018 0
+-0.350029 0.300782 0
+-0.348796 0.305802 0
+-0.347307 0.310900 0
+-0.345496 0.316094 0
+-0.344485 0.318660 0
+-0.343980 0.319942 0
+-0.343778 0.320594 0
+-0.343759 0.321125 0
+-0.343930 0.321541 0
+-0.344374 0.322008 0
+-0.345086 0.322594 0
+-0.346697 0.323964 0
+-0.348308 0.325334 0
+-0.349140 0.325956 0
+-0.349560 0.326088 0
+-0.349829 0.326107 0
+-0.350149 0.326002 0
+-0.350473 0.325597 0
+-0.351022 0.324520 0
+-0.352126 0.322336 0
+-0.354402 0.318001 0
+-0.356722 0.313679 0
+-0.359064 0.309350 0
+
+-0.408890 0.237601 0
+-0.410470 0.232849 0
+-0.412052 0.228166 0
+-0.413680 0.223369 0
+-0.415349 0.218476 0
+-0.417042 0.213458 0
+-0.418632 0.208309 0
+-0.420025 0.202599 0
+-0.420927 0.196802 0
+-0.421355 0.191165 0
+-0.421316 0.186031 0
+-0.420790 0.181709 0
+-0.419778 0.178555 0
+-0.418345 0.176738 0
+-0.416626 0.176262 0
+-0.414649 0.177310 0
+-0.412472 0.179765 0
+-0.410199 0.183319 0
+-0.407928 0.187825 0
+-0.405781 0.192888 0
+-0.403800 0.197968 0
+-0.402055 0.202582 0
+-0.400525 0.207078 0
+-0.399344 0.211533 0
+-0.398487 0.216035 0
+-0.397842 0.220770 0
+-0.397408 0.225624 0
+-0.397122 0.230562 0
+-0.396942 0.235431 0
+-0.396599 0.240588 0
+-0.396018 0.245868 0
+-0.395137 0.251297 0
+-0.394587 0.253999 0
+-0.394311 0.255350 0
+-0.394226 0.256027 0
+-0.394299 0.256553 0
+-0.394540 0.256933 0
+-0.395059 0.257316 0
+-0.395861 0.257770 0
+-0.397685 0.258839 0
+-0.399510 0.259908 0
+-0.400437 0.260376 0
+-0.400874 0.260433 0
+-0.401142 0.260406 0
+-0.401439 0.260247 0
+-0.401687 0.259792 0
+-0.402042 0.258635 0
+-0.402749 0.256293 0
+-0.404238 0.251628 0
+-0.405772 0.246969 0
+-0.407327 0.242300 0
+
+-0.443937 0.162989 0
+-0.444668 0.158035 0
+-0.445412 0.153147 0
+-0.446183 0.148140 0
+-0.446977 0.143033 0
+-0.447773 0.137797 0
+-0.448445 0.132449 0
+-0.448825 0.126585 0
+-0.448706 0.120719 0
+-0.448149 0.115094 0
+-0.447220 0.110044 0
+-0.445950 0.105879 0
+-0.444406 0.102948 0
+-0.442680 0.101408 0
+-0.440904 0.101238 0
+-0.439139 0.102613 0
+-0.437421 0.105409 0
+-0.435800 0.109304 0
+-0.434346 0.114136 0
+-0.433111 0.119494 0
+-0.432042 0.124841 0
+-0.431125 0.129688 0
+-0.430399 0.134382 0
+-0.430010 0.138974 0
+-0.429947 0.143557 0
+-0.430134 0.148331 0
+-0.430550 0.153187 0
+-0.431126 0.158099 0
+-0.431793 0.162926 0
+-0.432352 0.168065 0
+-0.432696 0.173365 0
+-0.432771 0.178865 0
+-0.432698 0.181621 0
+-0.432662 0.182999 0
+-0.432695 0.183681 0
+-0.432859 0.184186 0
+-0.433162 0.184519 0
+-0.433739 0.184806 0
+-0.434608 0.185113 0
+-0.436590 0.185850 0
+-0.438573 0.186586 0
+-0.439568 0.186885 0
+-0.440008 0.186866 0
+-0.440267 0.186792 0
+-0.440532 0.186584 0
+-0.440697 0.186092 0
+-0.440845 0.184892 0
+-0.441135 0.182462 0
+-0.441792 0.177610 0
+-0.442493 0.172755 0
+-0.443214 0.167887 0
+
+-0.465495 0.083423 0
+-0.465355 0.078418 0
+-0.465239 0.073475 0
+-0.465129 0.068411 0
+-0.465024 0.063243 0
+-0.464898 0.057948 0
+-0.464631 0.052565 0
+-0.463987 0.046724 0
+-0.462852 0.040968 0
+-0.461327 0.035525 0
+-0.459534 0.030713 0
+-0.457561 0.026832 0
+-0.455531 0.024214 0
+-0.453564 0.022997 0
+-0.451785 0.023138 0
+-0.450286 0.024799 0
+-0.449080 0.027851 0
+-0.448160 0.031967 0
+-0.447567 0.036978 0
+-0.447281 0.042470 0
+-0.447157 0.047921 0
+-0.447096 0.052854 0
+-0.447196 0.057602 0
+-0.447610 0.062192 0
+-0.448343 0.066716 0
+-0.449357 0.071385 0
+-0.450610 0.076095 0
+-0.452030 0.080833 0
+-0.453525 0.085471 0
+-0.454968 0.090434 0
+-0.456227 0.095594 0
+-0.457256 0.100998 0
+-0.457663 0.103725 0
+-0.457866 0.105088 0
+-0.458017 0.105753 0
+-0.458266 0.106222 0
+-0.458623 0.106498 0
+-0.459241 0.106680 0
+-0.460150 0.106832 0
+-0.462230 0.107213 0
+-0.464310 0.107594 0
+-0.465342 0.107716 0
+-0.465772 0.107620 0
+-0.466015 0.107503 0
+-0.466239 0.107252 0
+-0.466317 0.106739 0
+-0.466254 0.105531 0
+-0.466118 0.103088 0
+-0.465921 0.098196 0
+-0.465769 0.093293 0
+-0.465634 0.088373 0
+
+-0.472910 0.001324 0
+-0.471903 -0.003582 0
+-0.470930 -0.008429 0
+-0.469942 -0.013397 0
+-0.468941 -0.018468 0
+-0.467898 -0.023661 0
+-0.466700 -0.028916 0
+-0.465052 -0.034556 0
+-0.462934 -0.040028 0
+-0.460487 -0.045124 0
+-0.457886 -0.049551 0
+-0.455269 -0.053031 0
+-0.452816 -0.055256 0
+-0.450666 -0.056113 0
+-0.448940 -0.055665 0
+-0.447751 -0.053769 0
+-0.447094 -0.050555 0
+-0.446903 -0.046340 0
+-0.447188 -0.041303 0
+-0.447860 -0.035844 0
+-0.448685 -0.030455 0
+-0.449481 -0.025586 0
+-0.450404 -0.020928 0
+-0.451609 -0.016479 0
+-0.453117 -0.012151 0
+-0.454926 -0.007729 0
+-0.456978 -0.003308 0
+-0.459199 0.001111 0
+-0.461477 0.005418 0
+-0.463759 0.010056 0
+-0.465895 0.014919 0
+-0.467847 0.020062 0
+-0.468721 0.022676 0
+-0.469159 0.023984 0
+-0.469423 0.024613 0
+-0.469750 0.025032 0
+-0.470148 0.025241 0
+-0.470789 0.025313 0
+-0.471711 0.025305 0
+-0.473825 0.025319 0
+-0.475940 0.025332 0
+-0.476977 0.025274 0
+-0.477384 0.025105 0
+-0.477603 0.024947 0
+-0.477780 0.024661 0
+-0.477767 0.024142 0
+-0.477496 0.022964 0
+-0.476938 0.020581 0
+-0.475895 0.015798 0
+-0.474893 0.010995 0
+-0.473906 0.006174 0
+
+-0.465955 -0.080816 0
+-0.464111 -0.085472 0
+-0.462312 -0.090077 0
+-0.460476 -0.094798 0
+-0.458610 -0.099618 0
+-0.456681 -0.104551 0
+-0.454589 -0.109518 0
+-0.451986 -0.114787 0
+-0.448950 -0.119808 0
+-0.445655 -0.124401 0
+-0.442325 -0.128309 0
+-0.439144 -0.131282 0
+-0.436341 -0.133047 0
+-0.434076 -0.133518 0
+-0.432453 -0.132777 0
+-0.431612 -0.130703 0
+-0.431523 -0.127424 0
+-0.432066 -0.123240 0
+-0.433222 -0.118328 0
+-0.434832 -0.113070 0
+-0.436580 -0.107905 0
+-0.438210 -0.103249 0
+-0.439928 -0.098821 0
+-0.441886 -0.094650 0
+-0.444123 -0.090650 0
+-0.446673 -0.086609 0
+-0.449461 -0.082611 0
+-0.452415 -0.078645 0
+-0.455407 -0.074799 0
+-0.458460 -0.070628 0
+-0.461408 -0.066209 0
+-0.464223 -0.061484 0
+-0.465538 -0.059061 0
+-0.466196 -0.057849 0
+-0.466565 -0.057275 0
+-0.466960 -0.056920 0
+-0.467389 -0.056783 0
+-0.468032 -0.056823 0
+-0.468938 -0.056991 0
+-0.471023 -0.057345 0
+-0.473108 -0.057698 0
+-0.474119 -0.057937 0
+-0.474491 -0.058174 0
+-0.474679 -0.058367 0
+-0.474803 -0.058679 0
+-0.474701 -0.059188 0
+-0.474229 -0.060301 0
+-0.473266 -0.062551 0
+-0.471408 -0.067081 0
+-0.469588 -0.071636 0
+-0.467778 -0.076212 0
+
+-0.444842 -0.160501 0
+-0.442218 -0.164766 0
+-0.439647 -0.168988 0
+-0.437019 -0.173319 0
+-0.434344 -0.177742 0
+-0.431588 -0.182264 0
+-0.428665 -0.186793 0
+-0.425187 -0.191529 0
+-0.421325 -0.195947 0
+-0.417283 -0.199898 0
+-0.413325 -0.203169 0
+-0.409675 -0.205544 0
+-0.406609 -0.206796 0
+-0.404296 -0.206866 0
+-0.402827 -0.205855 0
+-0.402358 -0.203666 0
+-0.402840 -0.200421 0
+-0.404102 -0.196395 0
+-0.406093 -0.191759 0
+-0.408592 -0.186860 0
+-0.411210 -0.182077 0
+-0.413623 -0.177775 0
+-0.416084 -0.173713 0
+-0.418737 -0.169945 0
+-0.421635 -0.166394 0
+-0.424847 -0.162857 0
+-0.428287 -0.159404 0
+-0.431886 -0.156011 0
+-0.435500 -0.152743 0
+-0.439231 -0.149165 0
+-0.442901 -0.145326 0
+-0.446494 -0.141161 0
+-0.448210 -0.139003 0
+-0.449068 -0.137924 0
+-0.449531 -0.137423 0
+-0.449982 -0.137142 0
+-0.450428 -0.137082 0
+-0.451054 -0.137233 0
+-0.451918 -0.137556 0
+-0.453909 -0.138266 0
+-0.455901 -0.138976 0
+-0.456856 -0.139386 0
+-0.457180 -0.139684 0
+-0.457332 -0.139907 0
+-0.457401 -0.140237 0
+-0.457212 -0.140720 0
+-0.456553 -0.141734 0
+-0.455214 -0.143782 0
+-0.452598 -0.147921 0
+-0.450014 -0.152091 0
+-0.447437 -0.156283 0
+
+-0.410214 -0.235308 0
+-0.406889 -0.239053 0
+-0.403623 -0.242765 0
+-0.400283 -0.246573 0
+-0.396881 -0.250464 0
+-0.393381 -0.254440 0
+-0.389717 -0.258392 0
+-0.385469 -0.262453 0
+-0.380898 -0.266132 0
+-0.376232 -0.269322 0
+-0.371766 -0.271855 0
+-0.367759 -0.273560 0
+-0.364522 -0.274261 0
+-0.362232 -0.273928 0
+-0.360960 -0.272678 0
+-0.360879 -0.270441 0
+-0.361917 -0.267328 0
+-0.363859 -0.263583 0
+-0.366625 -0.259363 0
+-0.369936 -0.254972 0
+-0.373345 -0.250717 0
+-0.376469 -0.246899 0
+-0.379598 -0.243326 0
+-0.382865 -0.240076 0
+-0.386335 -0.237082 0
+-0.390113 -0.234157 0
+-0.394100 -0.231354 0
+-0.398233 -0.228637 0
+-0.402360 -0.226046 0
+-0.406655 -0.223171 0
+-0.410937 -0.220027 0
+-0.415198 -0.216550 0
+-0.417263 -0.214722 0
+-0.418295 -0.213809 0
+-0.418839 -0.213396 0
+-0.419331 -0.213197 0
+-0.419781 -0.213215 0
+-0.420372 -0.213473 0
+-0.421166 -0.213941 0
+-0.423004 -0.214986 0
+-0.424842 -0.216031 0
+-0.425711 -0.216601 0
+-0.425979 -0.216951 0
+-0.426089 -0.217197 0
+-0.426100 -0.217533 0
+-0.425830 -0.217976 0
+-0.425005 -0.218861 0
+-0.423331 -0.220645 0
+-0.420036 -0.224266 0
+-0.416767 -0.227924 0
+-0.413502 -0.231606 0
+
+-0.363121 -0.302966 0
+-0.359196 -0.306077 0
+-0.355336 -0.309165 0
+-0.351385 -0.312335 0
+-0.347358 -0.315577 0
+-0.343222 -0.318884 0
+-0.338927 -0.322140 0
+-0.334038 -0.325401 0
+-0.328898 -0.328232 0
+-0.323749 -0.330562 0
+-0.318911 -0.332282 0
+-0.314669 -0.333265 0
+-0.311359 -0.333393 0
+-0.309162 -0.332668 0
+-0.308127 -0.331215 0
+-0.308435 -0.328999 0
+-0.309998 -0.326113 0
+-0.312560 -0.322762 0
+-0.316017 -0.319087 0
+-0.320041 -0.315338 0
+-0.324137 -0.311739 0
+-0.327876 -0.308521 0
+-0.331578 -0.305546 0
+-0.335360 -0.302912 0
+-0.339297 -0.300567 0
+-0.343526 -0.298342 0
+-0.347939 -0.296274 0
+-0.352481 -0.294316 0
+-0.356995 -0.292481 0
+-0.361724 -0.290395 0
+-0.366486 -0.288043 0
+-0.371287 -0.285358 0
+-0.373638 -0.283917 0
+-0.374813 -0.283197 0
+-0.375420 -0.282885 0
+-0.375939 -0.282774 0
+-0.376379 -0.282870 0
+-0.376916 -0.283226 0
+-0.377617 -0.283825 0
+-0.379246 -0.285174 0
+-0.380874 -0.286522 0
+-0.381631 -0.287234 0
+-0.381834 -0.287625 0
+-0.381900 -0.287886 0
+-0.381852 -0.288220 0
+-0.381509 -0.288609 0
+-0.380544 -0.289337 0
+-0.378585 -0.290803 0
+-0.374711 -0.293797 0
+-0.370857 -0.296833 0
+-0.367002 -0.299891 0
+
+-0.304994 -0.361419 0
+-0.300589 -0.363801 0
+-0.296251 -0.366171 0
+-0.291810 -0.368608 0
+-0.287282 -0.371101 0
+-0.282634 -0.373639 0
+-0.277839 -0.376100 0
+-0.272458 -0.378463 0
+-0.266905 -0.380358 0
+-0.261429 -0.381758 0
+-0.256366 -0.382612 0
+-0.252017 -0.382844 0
+-0.248736 -0.382395 0
+-0.246698 -0.381299 0
+-0.245931 -0.379689 0
+-0.246619 -0.377559 0
+-0.248659 -0.374990 0
+-0.251765 -0.372134 0
+-0.255808 -0.369115 0
+-0.260421 -0.366121 0
+-0.265079 -0.363289 0
+-0.269321 -0.360769 0
+-0.273483 -0.358482 0
+-0.277665 -0.356545 0
+-0.281950 -0.354919 0
+-0.286500 -0.353462 0
+-0.291205 -0.352192 0
+-0.296018 -0.351053 0
+-0.300782 -0.350029 0
+-0.305802 -0.348796 0
+-0.310900 -0.347307 0
+-0.316094 -0.345496 0
+-0.318660 -0.344485 0
+-0.319942 -0.343980 0
+-0.320594 -0.343778 0
+-0.321125 -0.343759 0
+-0.321541 -0.343930 0
+-0.322008 -0.344374 0
+-0.322594 -0.345086 0
+-0.323964 -0.346696 0
+-0.325334 -0.348308 0
+-0.325956 -0.349140 0
+-0.326088 -0.349560 0
+-0.326108 -0.349829 0
+-0.326002 -0.350149 0
+-0.325597 -0.350473 0
+-0.324520 -0.351022 0
+-0.322336 -0.352126 0
+-0.318001 -0.354402 0
+-0.313679 -0.356722 0
+-0.309350 -0.359064 0
+
+-0.237601 -0.408890 0
+-0.232849 -0.410470 0
+-0.228166 -0.412052 0
+-0.223369 -0.413680 0
+-0.218477 -0.415349 0
+-0.213458 -0.417042 0
+-0.208309 -0.418632 0
+-0.202599 -0.420025 0
+-0.196802 -0.420927 0
+-0.191165 -0.421355 0
+-0.186031 -0.421316 0
+-0.181709 -0.420790 0
+-0.178555 -0.419778 0
+-0.176738 -0.418345 0
+-0.176262 -0.416626 0
+-0.177310 -0.414649 0
+-0.179765 -0.412472 0
+-0.183319 -0.410199 0
+-0.187825 -0.407928 0
+-0.192888 -0.405781 0
+-0.197968 -0.403800 0
+-0.202582 -0.402055 0
+-0.207078 -0.400525 0
+-0.211533 -0.399344 0
+-0.216035 -0.398487 0
+-0.220770 -0.397842 0
+-0.225624 -0.397408 0
+-0.230562 -0.397122 0
+-0.235431 -0.396942 0
+-0.240588 -0.396599 0
+-0.245868 -0.396018 0
+-0.251297 -0.395137 0
+-0.253999 -0.394586 0
+-0.255350 -0.394311 0
+-0.256027 -0.394226 0
+-0.256553 -0.394299 0
+-0.256933 -0.394540 0
+-0.257316 -0.395059 0
+-0.257770 -0.395861 0
+-0.258839 -0.397685 0
+-0.259908 -0.399510 0
+-0.260376 -0.400437 0
+-0.260433 -0.400874 0
+-0.260406 -0.401142 0
+-0.260247 -0.401439 0
+-0.259792 -0.401687 0
+-0.258635 -0.402042 0
+-0.256293 -0.402749 0
+-0.251628 -0.404238 0
+-0.246969 -0.405772 0
+-0.242300 -0.407327 0
+
+-0.162989 -0.443937 0
+-0.158035 -0.444668 0
+-0.153147 -0.445412 0
+-0.148140 -0.446183 0
+-0.143033 -0.446977 0
+-0.137797 -0.447773 0
+-0.132449 -0.448445 0
+-0.126585 -0.448825 0
+-0.120719 -0.448706 0
+-0.115094 -0.448149 0
+-0.110044 -0.447220 0
+-0.105879 -0.445950 0
+-0.102948 -0.444406 0
+-0.101408 -0.442680 0
+-0.101238 -0.440904 0
+-0.102614 -0.439139 0
+-0.105409 -0.437421 0
+-0.109304 -0.435800 0
+-0.114136 -0.434346 0
+-0.119495 -0.433111 0
+-0.124841 -0.432042 0
+-0.129688 -0.431125 0
+-0.134382 -0.430399 0
+-0.138974 -0.430010 0
+-0.143557 -0.429947 0
+-0.148331 -0.430134 0
+-0.153187 -0.430550 0
+-0.158099 -0.431126 0
+-0.162926 -0.431793 0
+-0.168065 -0.432352 0
+-0.173365 -0.432696 0
+-0.178865 -0.432771 0
+-0.181621 -0.432698 0
+-0.182999 -0.432662 0
+-0.183681 -0.432695 0
+-0.184186 -0.432859 0
+-0.184519 -0.433162 0
+-0.184806 -0.433739 0
+-0.185113 -0.434608 0
+-0.185850 -0.436590 0
+-0.186586 -0.438573 0
+-0.186885 -0.439568 0
+-0.186866 -0.440008 0
+-0.186792 -0.440267 0
+-0.186584 -0.440532 0
+-0.186093 -0.440697 0
+-0.184892 -0.440845 0
+-0.182462 -0.441135 0
+-0.177610 -0.441792 0
+-0.172755 -0.442493 0
+-0.167887 -0.443214 0
+
+-0.083423 -0.465495 0
+-0.078418 -0.465355 0
+-0.073475 -0.465239 0
+-0.068411 -0.465129 0
+-0.063243 -0.465024 0
+-0.057948 -0.464898 0
+-0.052565 -0.464631 0
+-0.046724 -0.463987 0
+-0.040968 -0.462852 0
+-0.035525 -0.461327 0
+-0.030713 -0.459534 0
+-0.026832 -0.457561 0
+-0.024214 -0.455531 0
+-0.022997 -0.453564 0
+-0.023138 -0.451785 0
+-0.024799 -0.450286 0
+-0.027851 -0.449080 0
+-0.031967 -0.448160 0
+-0.036978 -0.447567 0
+-0.042470 -0.447281 0
+-0.047921 -0.447157 0
+-0.052854 -0.447096 0
+-0.057602 -0.447196 0
+-0.062192 -0.447610 0
+-0.066716 -0.448343 0
+-0.071385 -0.449357 0
+-0.076095 -0.450610 0
+-0.080833 -0.452030 0
+-0.085471 -0.453525 0
+-0.090434 -0.454968 0
+-0.095594 -0.456227 0
+-0.100998 -0.457256 0
+-0.103725 -0.457663 0
+-0.105088 -0.457866 0
+-0.105753 -0.458017 0
+-0.106222 -0.458266 0
+-0.106498 -0.458623 0
+-0.106680 -0.459241 0
+-0.106832 -0.460150 0
+-0.107213 -0.462230 0
+-0.107594 -0.464310 0
+-0.107716 -0.465342 0
+-0.107620 -0.465772 0
+-0.107503 -0.466015 0
+-0.107252 -0.466239 0
+-0.106739 -0.466317 0
+-0.105531 -0.466254 0
+-0.103088 -0.466118 0
+-0.098196 -0.465921 0
+-0.093293 -0.465769 0
+-0.088373 -0.465634 0
+
+-0.001324 -0.472910 0
+0.003582 -0.471903 0
+0.008429 -0.470930 0
+0.013397 -0.469942 0
+0.018468 -0.468941 0
+0.023661 -0.467898 0
+0.028916 -0.466700 0
+0.034556 -0.465052 0
+0.040028 -0.462934 0
+0.045124 -0.460487 0
+0.049551 -0.457886 0
+0.053031 -0.455269 0
+0.055256 -0.452816 0
+0.056113 -0.450666 0
+0.055665 -0.448940 0
+0.053769 -0.447751 0
+0.050555 -0.447094 0
+0.046340 -0.446903 0
+0.041303 -0.447188 0
+0.035844 -0.447860 0
+0.030455 -0.448685 0
+0.025586 -0.449481 0
+0.020928 -0.450404 0
+0.016479 -0.451609 0
+0.012151 -0.453117 0
+0.007729 -0.454926 0
+0.003308 -0.456978 0
+-0.001111 -0.459199 0
+-0.005418 -0.461477 0
+-0.010056 -0.463759 0
+-0.014919 -0.465895 0
+-0.020062 -0.467847 0
+-0.022676 -0.468721 0
+-0.023984 -0.469159 0
+-0.024613 -0.469423 0
+-0.025032 -0.469750 0
+-0.025241 -0.470148 0
+-0.025313 -0.470789 0
+-0.025305 -0.471711 0
+-0.025319 -0.473825 0
+-0.025332 -0.475940 0
+-0.025274 -0.476977 0
+-0.025105 -0.477384 0
+-0.024947 -0.477603 0
+-0.024661 -0.477780 0
+-0.024142 -0.477767 0
+-0.022964 -0.477496 0
+-0.020581 -0.476938 0
+-0.015798 -0.475895 0
+-0.010995 -0.474893 0
+-0.006174 -0.473906 0
+
+0.080816 -0.465955 0
+0.085472 -0.464111 0
+0.090077 -0.462312 0
+0.094798 -0.460476 0
+0.099618 -0.458610 0
+0.104551 -0.456681 0
+0.109518 -0.454589 0
+0.114787 -0.451986 0
+0.119808 -0.448950 0
+0.124401 -0.445655 0
+0.128309 -0.442325 0
+0.131282 -0.439144 0
+0.133047 -0.436341 0
+0.133518 -0.434076 0
+0.132777 -0.432453 0
+0.130703 -0.431612 0
+0.127424 -0.431523 0
+0.123240 -0.432066 0
+0.118328 -0.433222 0
+0.113070 -0.434832 0
+0.107905 -0.436580 0
+0.103249 -0.438210 0
+0.098821 -0.439928 0
+0.094650 -0.441886 0
+0.090650 -0.444123 0
+0.086609 -0.446673 0
+0.082611 -0.449461 0
+0.078645 -0.452415 0
+0.074799 -0.455407 0
+0.070628 -0.458460 0
+0.066210 -0.461408 0
+0.061484 -0.464223 0
+0.059061 -0.465538 0
+0.057849 -0.466196 0
+0.057275 -0.466565 0
+0.056920 -0.466960 0
+0.056783 -0.467389 0
+0.056823 -0.468032 0
+0.056991 -0.468938 0
+0.057345 -0.471023 0
+0.057698 -0.473108 0
+0.057937 -0.474119 0
+0.058174 -0.474491 0
+0.058367 -0.474679 0
+0.058679 -0.474803 0
+0.059188 -0.474701 0
+0.060302 -0.474229 0
+0.062551 -0.473266 0
+0.067081 -0.471408 0
+0.071636 -0.469588 0
+0.076212 -0.467778 0
+
+0.160501 -0.444842 0
+0.164766 -0.442218 0
+0.168988 -0.439647 0
+0.173319 -0.437019 0
+0.177742 -0.434344 0
+0.182264 -0.431588 0
+0.186793 -0.428665 0
+0.191529 -0.425187 0
+0.195947 -0.421325 0
+0.199898 -0.417283 0
+0.203169 -0.413325 0
+0.205544 -0.409675 0
+0.206796 -0.406609 0
+0.206866 -0.404296 0
+0.205855 -0.402827 0
+0.203666 -0.402358 0
+0.200421 -0.402840 0
+0.196395 -0.404102 0
+0.191759 -0.406093 0
+0.186860 -0.408592 0
+0.182077 -0.411210 0
+0.177775 -0.413623 0
+0.173713 -0.416084 0
+0.169945 -0.418737 0
+0.166394 -0.421635 0
+0.162857 -0.424847 0
+0.159404 -0.428287 0
+0.156011 -0.431886 0
+0.152743 -0.435500 0
+0.149165 -0.439231 0
+0.145326 -0.442901 0
+0.141161 -0.446494 0
+0.139003 -0.448210 0
+0.137924 -0.449068 0
+0.137423 -0.449531 0
+0.137142 -0.449982 0
+0.137082 -0.450428 0
+0.137233 -0.451054 0
+0.137556 -0.451918 0
+0.138266 -0.453909 0
+0.138976 -0.455901 0
+0.139386 -0.456856 0
+0.139684 -0.457180 0
+0.139907 -0.457332 0
+0.140237 -0.457401 0
+0.140720 -0.457212 0
+0.141734 -0.456553 0
+0.143782 -0.455214 0
+0.147921 -0.452598 0
+0.152091 -0.450014 0
+0.156283 -0.447437 0
+
+0.235308 -0.410214 0
+0.239053 -0.406889 0
+0.242765 -0.403623 0
+0.246573 -0.400283 0
+0.250464 -0.396881 0
+0.254440 -0.393381 0
+0.258392 -0.389717 0
+0.262453 -0.385469 0
+0.266132 -0.380898 0
+0.269322 -0.376232 0
+0.271855 -0.371766 0
+0.273560 -0.367759 0
+0.274261 -0.364522 0
+0.273928 -0.362232 0
+0.272678 -0.360960 0
+0.270441 -0.360879 0
+0.267328 -0.361917 0
+0.263583 -0.363859 0
+0.259363 -0.366625 0
+0.254972 -0.369936 0
+0.250717 -0.373345 0
+0.246899 -0.376469 0
+0.243326 -0.379598 0
+0.240076 -0.382865 0
+0.237082 -0.386335 0
+0.234157 -0.390113 0
+0.231354 -0.394100 0
+0.228637 -0.398233 0
+0.226046 -0.402360 0
+0.223171 -0.406655 0
+0.220027 -0.410937 0
+0.216550 -0.415198 0
+0.214722 -0.417263 0
+0.213809 -0.418295 0
+0.213396 -0.418839 0
+0.213197 -0.419331 0
+0.213215 -0.419781 0
+0.213473 -0.420372 0
+0.213941 -0.421166 0
+0.214986 -0.423004 0
+0.216031 -0.424842 0
+0.216601 -0.425711 0
+0.216951 -0.425979 0
+0.217196 -0.426089 0
+0.217533 -0.426100 0
+0.217976 -0.425830 0
+0.218861 -0.425005 0
+0.220645 -0.423331 0
+0.224266 -0.420036 0
+0.227924 -0.416767 0
+0.231606 -0.413502 0
+
+0.302966 -0.363121 0
+0.306077 -0.359196 0
+0.309165 -0.355335 0
+0.312336 -0.351385 0
+0.315577 -0.347358 0
+0.318884 -0.343222 0
+0.322140 -0.338927 0
+0.325401 -0.334038 0
+0.328232 -0.328898 0
+0.330562 -0.323749 0
+0.332282 -0.318911 0
+0.333265 -0.314669 0
+0.333393 -0.311359 0
+0.332668 -0.309162 0
+0.331215 -0.308127 0
+0.328999 -0.308435 0
+0.326113 -0.309998 0
+0.322762 -0.312560 0
+0.319087 -0.316017 0
+0.315338 -0.320041 0
+0.311739 -0.324137 0
+0.308521 -0.327876 0
+0.305546 -0.331578 0
+0.302912 -0.335360 0
+0.300567 -0.339297 0
+0.298342 -0.343526 0
+0.296274 -0.347939 0
+0.294316 -0.352481 0
+0.292481 -0.356995 0
+0.290395 -0.361724 0
+0.288043 -0.366486 0
+0.285358 -0.371287 0
+0.283917 -0.373638 0
+0.283197 -0.374813 0
+0.282885 -0.375420 0
+0.282774 -0.375939 0
+0.282870 -0.376379 0
+0.283226 -0.376916 0
+0.283825 -0.377617 0
+0.285174 -0.379246 0
+0.286522 -0.380874 0
+0.287234 -0.381631 0
+0.287625 -0.381834 0
+0.287887 -0.381900 0
+0.288220 -0.381852 0
+0.288609 -0.381509 0
+0.289337 -0.380544 0
+0.290804 -0.378585 0
+0.293798 -0.374711 0
+0.296833 -0.370857 0
+0.299891 -0.367002 0
+
+0.361419 -0.304994 0
+0.363801 -0.300589 0
+0.366171 -0.296251 0
+0.368608 -0.291810 0
+0.371101 -0.287282 0
+0.373640 -0.282634 0
+0.376100 -0.277838 0
+0.378463 -0.272458 0
+0.380358 -0.266905 0
+0.381758 -0.261429 0
+0.382612 -0.256365 0
+0.382844 -0.252017 0
+0.382395 -0.248736 0
+0.381299 -0.246698 0
+0.379689 -0.245931 0
+0.377560 -0.246619 0
+0.374990 -0.248659 0
+0.372134 -0.251765 0
+0.369115 -0.255807 0
+0.366121 -0.260421 0
+0.363289 -0.265079 0
+0.360769 -0.269321 0
+0.358482 -0.273483 0
+0.356545 -0.277665 0
+0.354919 -0.281950 0
+0.353462 -0.286500 0
+0.352192 -0.291205 0
+0.351053 -0.296018 0
+0.350029 -0.300782 0
+0.348796 -0.305802 0
+0.347307 -0.310900 0
+0.345496 -0.316094 0
+0.344485 -0.318659 0
+0.343980 -0.319942 0
+0.343778 -0.320594 0
+0.343759 -0.321125 0
+0.343930 -0.321541 0
+0.344374 -0.322008 0
+0.345086 -0.322594 0
+0.346697 -0.323964 0
+0.348308 -0.325334 0
+0.349140 -0.325956 0
+0.349560 -0.326088 0
+0.349829 -0.326107 0
+0.350149 -0.326002 0
+0.350473 -0.325597 0
+0.351022 -0.324520 0
+0.352126 -0.322336 0
+0.354402 -0.318001 0
+0.356722 -0.313678 0
+0.359064 -0.309350 0
+
+0.408890 -0.237601 0
+0.410471 -0.232849 0
+0.412052 -0.228166 0
+0.413680 -0.223368 0
+0.415349 -0.218476 0
+0.417042 -0.213458 0
+0.418632 -0.208308 0
+0.420025 -0.202599 0
+0.420927 -0.196801 0
+0.421355 -0.191165 0
+0.421316 -0.186031 0
+0.420790 -0.181709 0
+0.419778 -0.178555 0
+0.418345 -0.176738 0
+0.416626 -0.176262 0
+0.414649 -0.177310 0
+0.412472 -0.179765 0
+0.410199 -0.183319 0
+0.407928 -0.187825 0
+0.405781 -0.192888 0
+0.403800 -0.197968 0
+0.402055 -0.202582 0
+0.400525 -0.207078 0
+0.399344 -0.211533 0
+0.398487 -0.216035 0
+0.397842 -0.220770 0
+0.397408 -0.225624 0
+0.397122 -0.230562 0
+0.396942 -0.235431 0
+0.396599 -0.240588 0
+0.396018 -0.245868 0
+0.395137 -0.251297 0
+0.394587 -0.253999 0
+0.394312 -0.255350 0
+0.394226 -0.256027 0
+0.394299 -0.256553 0
+0.394540 -0.256933 0
+0.395059 -0.257316 0
+0.395861 -0.257770 0
+0.397685 -0.258839 0
+0.399510 -0.259908 0
+0.400437 -0.260376 0
+0.400874 -0.260433 0
+0.401142 -0.260406 0
+0.401439 -0.260247 0
+0.401687 -0.259792 0
+0.402042 -0.258635 0
+0.402749 -0.256293 0
+0.404238 -0.251628 0
+0.405772 -0.246969 0
+0.407327 -0.242300 0
+
+0.443937 -0.162988 0
+0.444668 -0.158034 0
+0.445412 -0.153147 0
+0.446183 -0.148140 0
+0.446977 -0.143033 0
+0.447773 -0.137797 0
+0.448445 -0.132449 0
+0.448825 -0.126585 0
+0.448706 -0.120719 0
+0.448149 -0.115094 0
+0.447220 -0.110044 0
+0.445950 -0.105879 0
+0.444406 -0.102948 0
+0.442680 -0.101408 0
+0.440904 -0.101238 0
+0.439139 -0.102613 0
+0.437422 -0.105409 0
+0.435800 -0.109304 0
+0.434346 -0.114136 0
+0.433111 -0.119494 0
+0.432042 -0.124841 0
+0.431125 -0.129688 0
+0.430399 -0.134382 0
+0.430010 -0.138974 0
+0.429947 -0.143557 0
+0.430134 -0.148331 0
+0.430550 -0.153187 0
+0.431126 -0.158099 0
+0.431793 -0.162926 0
+0.432352 -0.168065 0
+0.432696 -0.173365 0
+0.432771 -0.178865 0
+0.432698 -0.181621 0
+0.432662 -0.182999 0
+0.432695 -0.183681 0
+0.432859 -0.184186 0
+0.433162 -0.184519 0
+0.433739 -0.184806 0
+0.434608 -0.185113 0
+0.436590 -0.185850 0
+0.438573 -0.186586 0
+0.439568 -0.186885 0
+0.440008 -0.186866 0
+0.440267 -0.186792 0
+0.440532 -0.186584 0
+0.440697 -0.186092 0
+0.440845 -0.184892 0
+0.441136 -0.182462 0
+0.441792 -0.177610 0
+0.442493 -0.172755 0
+0.443214 -0.167887 0
+
+0.465495 -0.083423 0
+0.465355 -0.078418 0
+0.465239 -0.073475 0
+0.465129 -0.068411 0
+0.465024 -0.063243 0
+0.464898 -0.057948 0
+0.464631 -0.052565 0
+0.463987 -0.046724 0
+0.462852 -0.040968 0
+0.461327 -0.035525 0
+0.459534 -0.030713 0
+0.457561 -0.026832 0
+0.455531 -0.024214 0
+0.453564 -0.022997 0
+0.451785 -0.023138 0
+0.450286 -0.024799 0
+0.449080 -0.027851 0
+0.448160 -0.031967 0
+0.447567 -0.036978 0
+0.447281 -0.042470 0
+0.447157 -0.047921 0
+0.447096 -0.052854 0
+0.447196 -0.057602 0
+0.447610 -0.062192 0
+0.448343 -0.066716 0
+0.449357 -0.071386 0
+0.450610 -0.076095 0
+0.452030 -0.080833 0
+0.453525 -0.085471 0
+0.454968 -0.090434 0
+0.456227 -0.095594 0
+0.457256 -0.100998 0
+0.457663 -0.103725 0
+0.457866 -0.105088 0
+0.458017 -0.105753 0
+0.458266 -0.106222 0
+0.458623 -0.106498 0
+0.459241 -0.106680 0
+0.460150 -0.106832 0
+0.462230 -0.107213 0
+0.464310 -0.107594 0
+0.465342 -0.107716 0
+0.465772 -0.107620 0
+0.466015 -0.107503 0
+0.466239 -0.107252 0
+0.466317 -0.106739 0
+0.466254 -0.105531 0
+0.466118 -0.103088 0
+0.465921 -0.098196 0
+0.465769 -0.093293 0
+0.465634 -0.088373 0
+
+0.472910 -0.001324 0
+0.471903 0.003582 0
+0.470930 0.008429 0
+0.469942 0.013397 0
+0.468941 0.018468 0
+0.467898 0.023661 0
+0.466700 0.028916 0
+0.465052 0.034556 0
+0.462934 0.040028 0
+0.460487 0.045124 0
+0.457886 0.049551 0
+0.455269 0.053031 0
+0.452816 0.055256 0
+0.450666 0.056113 0
+0.448940 0.055665 0
+0.447751 0.053769 0
+0.447094 0.050554 0
+0.446903 0.046340 0
+0.447188 0.041302 0
+0.447860 0.035844 0
+0.448685 0.030455 0
+0.449481 0.025586 0
+0.450404 0.020927 0
+0.451609 0.016479 0
+0.453117 0.012151 0
+0.454926 0.007729 0
+0.456978 0.003308 0
+0.459199 -0.001111 0
+0.461477 -0.005418 0
+0.463759 -0.010056 0
+0.465895 -0.014919 0
+0.467847 -0.020062 0
+0.468721 -0.022676 0
+0.469159 -0.023984 0
+0.469423 -0.024613 0
+0.469750 -0.025032 0
+0.470148 -0.025241 0
+0.470789 -0.025313 0
+0.471711 -0.025305 0
+0.473825 -0.025319 0
+0.475940 -0.025332 0
+0.476977 -0.025274 0
+0.477384 -0.025105 0
+0.477603 -0.024947 0
+0.477780 -0.024661 0
+0.477767 -0.024142 0
+0.477496 -0.022964 0
+0.476938 -0.020581 0
+0.475895 -0.015798 0
+0.474893 -0.010995 0
+0.473906 -0.006174 0
+
+0.465955 0.080816 0
+0.464111 0.085472 0
+0.462312 0.090077 0
+0.460476 0.094798 0
+0.458610 0.099618 0
+0.456681 0.104551 0
+0.454589 0.109518 0
+0.451986 0.114787 0
+0.448950 0.119808 0
+0.445655 0.124401 0
+0.442325 0.128309 0
+0.439144 0.131282 0
+0.436341 0.133047 0
+0.434076 0.133518 0
+0.432453 0.132777 0
+0.431612 0.130703 0
+0.431523 0.127423 0
+0.432066 0.123240 0
+0.433222 0.118328 0
+0.434832 0.113070 0
+0.436580 0.107905 0
+0.438210 0.103249 0
+0.439928 0.098821 0
+0.441886 0.094650 0
+0.444123 0.090650 0
+0.446673 0.086609 0
+0.449461 0.082611 0
+0.452415 0.078645 0
+0.455407 0.074799 0
+0.458460 0.070628 0
+0.461408 0.066209 0
+0.464223 0.061484 0
+0.465538 0.059061 0
+0.466196 0.057849 0
+0.466565 0.057275 0
+0.466960 0.056920 0
+0.467389 0.056783 0
+0.468032 0.056823 0
+0.468938 0.056991 0
+0.471023 0.057345 0
+0.473108 0.057698 0
+0.474119 0.057937 0
+0.474491 0.058174 0
+0.474679 0.058367 0
+0.474803 0.058679 0
+0.474701 0.059188 0
+0.474229 0.060301 0
+0.473266 0.062551 0
+0.471408 0.067081 0
+0.469588 0.071636 0
+0.467778 0.076212 0
+
+0.444842 0.160501 0
+0.442218 0.164766 0
+0.439647 0.168988 0
+0.437019 0.173319 0
+0.434344 0.177742 0
+0.431588 0.182264 0
+0.428665 0.186793 0
+0.425187 0.191529 0
+0.421325 0.195947 0
+0.417283 0.199898 0
+0.413325 0.203169 0
+0.409675 0.205544 0
+0.406609 0.206796 0
+0.404296 0.206866 0
+0.402827 0.205855 0
+0.402358 0.203666 0
+0.402840 0.200421 0
+0.404102 0.196395 0
+0.406093 0.191759 0
+0.408592 0.186860 0
+0.411210 0.182077 0
+0.413623 0.177775 0
+0.416084 0.173713 0
+0.418737 0.169945 0
+0.421635 0.166394 0
+0.424847 0.162857 0
+0.428287 0.159404 0
+0.431886 0.156011 0
+0.435500 0.152743 0
+0.439231 0.149165 0
+0.442901 0.145326 0
+0.446494 0.141161 0
+0.448210 0.139003 0
+0.449068 0.137924 0
+0.449531 0.137423 0
+0.449982 0.137142 0
+0.450428 0.137082 0
+0.451054 0.137233 0
+0.451918 0.137556 0
+0.453909 0.138266 0
+0.455901 0.138976 0
+0.456856 0.139386 0
+0.457180 0.139684 0
+0.457332 0.139907 0
+0.457401 0.140237 0
+0.457212 0.140720 0
+0.456553 0.141734 0
+0.455214 0.143782 0
+0.452598 0.147921 0
+0.450014 0.152091 0
+0.447437 0.156283 0
+
+0.410214 0.235308 0
+0.406889 0.239053 0
+0.403623 0.242765 0
+0.400283 0.246573 0
+0.396881 0.250464 0
+0.393381 0.254440 0
+0.389717 0.258392 0
+0.385469 0.262452 0
+0.380898 0.266132 0
+0.376232 0.269322 0
+0.371766 0.271855 0
+0.367759 0.273560 0
+0.364522 0.274261 0
+0.362232 0.273928 0
+0.360960 0.272677 0
+0.360879 0.270441 0
+0.361917 0.267328 0
+0.363859 0.263583 0
+0.366625 0.259363 0
+0.369936 0.254972 0
+0.373345 0.250717 0
+0.376469 0.246899 0
+0.379598 0.243326 0
+0.382865 0.240076 0
+0.386335 0.237082 0
+0.390113 0.234157 0
+0.394100 0.231354 0
+0.398233 0.228637 0
+0.402360 0.226046 0
+0.406655 0.223171 0
+0.410937 0.220027 0
+0.415198 0.216550 0
+0.417263 0.214722 0
+0.418295 0.213809 0
+0.418839 0.213396 0
+0.419331 0.213197 0
+0.419781 0.213215 0
+0.420372 0.213473 0
+0.421166 0.213940 0
+0.423004 0.214986 0
+0.424842 0.216031 0
+0.425711 0.216601 0
+0.425979 0.216951 0
+0.426089 0.217196 0
+0.426100 0.217533 0
+0.425830 0.217976 0
+0.425005 0.218861 0
+0.423331 0.220645 0
+0.420036 0.224266 0
+0.416767 0.227924 0
+0.413502 0.231606 0
+
+0.363121 0.302966 0
+0.359196 0.306077 0
+0.355336 0.309165 0
+0.351385 0.312335 0
+0.347358 0.315577 0
+0.343222 0.318884 0
+0.338927 0.322140 0
+0.334038 0.325401 0
+0.328898 0.328231 0
+0.323749 0.330562 0
+0.318911 0.332282 0
+0.314669 0.333265 0
+0.311359 0.333393 0
+0.309162 0.332668 0
+0.308127 0.331215 0
+0.308435 0.328998 0
+0.309998 0.326113 0
+0.312560 0.322762 0
+0.316017 0.319087 0
+0.320041 0.315337 0
+0.324137 0.311739 0
+0.327876 0.308521 0
+0.331578 0.305546 0
+0.335360 0.302912 0
+0.339297 0.300567 0
+0.343526 0.298342 0
+0.347939 0.296274 0
+0.352481 0.294316 0
+0.356995 0.292481 0
+0.361724 0.290395 0
+0.366486 0.288043 0
+0.371287 0.285358 0
+0.373638 0.283917 0
+0.374813 0.283197 0
+0.375420 0.282885 0
+0.375939 0.282774 0
+0.376379 0.282870 0
+0.376916 0.283226 0
+0.377617 0.283825 0
+0.379246 0.285174 0
+0.380874 0.286522 0
+0.381631 0.287234 0
+0.381834 0.287625 0
+0.381900 0.287886 0
+0.381852 0.288220 0
+0.381509 0.288609 0
+0.380544 0.289337 0
+0.378585 0.290803 0
+0.374711 0.293797 0
+0.370857 0.296833 0
+0.367002 0.299891 0
+
+0.304995 0.361419 0
+0.300589 0.363801 0
+0.296251 0.366171 0
+0.291810 0.368608 0
+0.287282 0.371101 0
+0.282634 0.373639 0
+0.277839 0.376100 0
+0.272458 0.378463 0
+0.266905 0.380357 0
+0.261429 0.381758 0
+0.256366 0.382612 0
+0.252017 0.382844 0
+0.248736 0.382395 0
+0.246698 0.381299 0
+0.245931 0.379689 0
+0.246619 0.377559 0
+0.248659 0.374990 0
+0.251765 0.372134 0
+0.255808 0.369115 0
+0.260421 0.366121 0
+0.265080 0.363288 0
+0.269321 0.360769 0
+0.273483 0.358481 0
+0.277665 0.356545 0
+0.281950 0.354919 0
+0.286500 0.353462 0
+0.291205 0.352191 0
+0.296018 0.351053 0
+0.300783 0.350029 0
+0.305802 0.348796 0
+0.310900 0.347307 0
+0.316094 0.345496 0
+0.318660 0.344485 0
+0.319942 0.343980 0
+0.320594 0.343778 0
+0.321125 0.343759 0
+0.321541 0.343930 0
+0.322008 0.344374 0
+0.322595 0.345085 0
+0.323964 0.346696 0
+0.325334 0.348307 0
+0.325956 0.349140 0
+0.326088 0.349560 0
+0.326108 0.349829 0
+0.326002 0.350149 0
+0.325597 0.350473 0
+0.324520 0.351022 0
+0.322336 0.352126 0
+0.318001 0.354402 0
+0.313679 0.356722 0
+0.309351 0.359064 0
+
+0.237601 0.408890 0
+0.232850 0.410470 0
+0.228166 0.412052 0
+0.223369 0.413680 0
+0.218477 0.415349 0
+0.213458 0.417042 0
+0.208309 0.418632 0
+0.202600 0.420025 0
+0.196802 0.420927 0
+0.191165 0.421355 0
+0.186031 0.421316 0
+0.181709 0.420790 0
+0.178555 0.419778 0
+0.176738 0.418345 0
+0.176262 0.416626 0
+0.177310 0.414648 0
+0.179766 0.412472 0
+0.183319 0.410199 0
+0.187825 0.407928 0
+0.192888 0.405781 0
+0.197968 0.403800 0
+0.202582 0.402055 0
+0.207078 0.400525 0
+0.211533 0.399344 0
+0.216035 0.398487 0
+0.220770 0.397842 0
+0.225624 0.397408 0
+0.230562 0.397122 0
+0.235431 0.396942 0
+0.240589 0.396599 0
+0.245868 0.396018 0
+0.251297 0.395137 0
+0.253999 0.394586 0
+0.255350 0.394311 0
+0.256027 0.394226 0
+0.256553 0.394299 0
+0.256933 0.394540 0
+0.257316 0.395059 0
+0.257770 0.395861 0
+0.258839 0.397685 0
+0.259908 0.399510 0
+0.260376 0.400437 0
+0.260433 0.400874 0
+0.260406 0.401142 0
+0.260247 0.401439 0
+0.259792 0.401687 0
+0.258635 0.402042 0
+0.256293 0.402749 0
+0.251629 0.404238 0
+0.246969 0.405772 0
+0.242300 0.407327 0
+
+0.162988 0.443937 0
+0.158034 0.444668 0
+0.153147 0.445412 0
+0.148140 0.446183 0
+0.143033 0.446977 0
+0.137797 0.447773 0
+0.132449 0.448445 0
+0.126585 0.448825 0
+0.120718 0.448706 0
+0.115093 0.448149 0
+0.110044 0.447220 0
+0.105879 0.445950 0
+0.102948 0.444406 0
+0.101408 0.442680 0
+0.101238 0.440904 0
+0.102613 0.439139 0
+0.105409 0.437422 0
+0.109304 0.435800 0
+0.114136 0.434346 0
+0.119494 0.433111 0
+0.124841 0.432042 0
+0.129688 0.431125 0
+0.134382 0.430399 0
+0.138974 0.430010 0
+0.143557 0.429947 0
+0.148331 0.430134 0
+0.153187 0.430550 0
+0.158099 0.431126 0
+0.162926 0.431793 0
+0.168065 0.432352 0
+0.173365 0.432696 0
+0.178865 0.432771 0
+0.181621 0.432698 0
+0.182999 0.432662 0
+0.183681 0.432695 0
+0.184186 0.432859 0
+0.184519 0.433162 0
+0.184806 0.433739 0
+0.185113 0.434608 0
+0.185849 0.436590 0
+0.186586 0.438573 0
+0.186885 0.439568 0
+0.186865 0.440008 0
+0.186792 0.440267 0
+0.186584 0.440532 0
+0.186092 0.440697 0
+0.184892 0.440845 0
+0.182462 0.441136 0
+0.177610 0.441792 0
+0.172755 0.442493 0
+0.167887 0.443214 0
+
diff --git a/resources/designs/saved/v4rdso2_outer1_var1.txt b/resources/designs/saved/v4rdso2_outer1_var1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..940be91639e71cdefbae813dadb5ad7827a5bf75
--- /dev/null
+++ b/resources/designs/saved/v4rdso2_outer1_var1.txt
@@ -0,0 +1,2201 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.112377 0.461673 0
+0.112262 0.460659 0
+0.112229 0.459825 0
+0.112318 0.459400 0
+0.112506 0.459073 0
+0.112907 0.458813 0
+0.113537 0.458717 0
+0.114813 0.458771 0
+0.117594 0.458912 0
+0.123138 0.458929 0
+0.128639 0.458685 0
+0.133942 0.458205 0
+0.139188 0.457435 0
+0.144333 0.456404 0
+0.149342 0.455156 0
+0.154196 0.453750 0
+0.158790 0.452263 0
+0.163597 0.450746 0
+0.166042 0.450004 0
+0.166653 0.449819 0
+0.167379 0.449683 0
+0.167987 0.449667 0
+0.168399 0.449765 0
+0.168758 0.449975 0
+0.169183 0.450381 0
+0.169670 0.451201 0
+0.170043 0.452053 0
+0.170871 0.453783 0
+0.172127 0.456250 0
+0.173681 0.458708 0
+0.176144 0.461698 0
+0.178936 0.464692 0
+0.179498 0.465294 0
+0.179995 0.465830 0
+0.180286 0.466244 0
+0.180321 0.466618 0
+0.180156 0.466935 0
+0.179844 0.467162 0
+0.179431 0.467373 0
+0.178937 0.467583 0
+0.176762 0.468492 0
+0.172156 0.470039 0
+0.167313 0.471222 0
+0.162265 0.471986 0
+0.157051 0.472311 0
+0.151724 0.472218 0
+0.146319 0.471740 0
+0.140698 0.471010 0
+0.135013 0.470079 0
+0.129321 0.469062 0
+0.123714 0.468087 0
+0.118182 0.467298 0
+0.115567 0.467021 0
+0.114259 0.466882 0
+0.113704 0.466715 0
+0.113312 0.466482 0
+0.113041 0.466138 0
+0.112886 0.465730 0
+0.112722 0.464715 0
+0.112492 0.462687 0
+
+0.030501 0.474173 0
+0.030564 0.473155 0
+0.030676 0.472327 0
+0.030838 0.471924 0
+0.031080 0.471635 0
+0.031520 0.471449 0
+0.032157 0.471464 0
+0.033404 0.471739 0
+0.036119 0.472360 0
+0.041575 0.473340 0
+0.047035 0.474055 0
+0.052341 0.474502 0
+0.057641 0.474655 0
+0.062886 0.474533 0
+0.068036 0.474174 0
+0.073060 0.473632 0
+0.077843 0.472966 0
+0.082841 0.472306 0
+0.085377 0.472001 0
+0.086011 0.471924 0
+0.086749 0.471916 0
+0.087351 0.472006 0
+0.087740 0.472174 0
+0.088057 0.472443 0
+0.088404 0.472917 0
+0.088742 0.473809 0
+0.088961 0.474713 0
+0.089476 0.476560 0
+0.090285 0.479208 0
+0.091388 0.481899 0
+0.093295 0.485271 0
+0.095525 0.488705 0
+0.095974 0.489394 0
+0.096370 0.490009 0
+0.096585 0.490467 0
+0.096554 0.490841 0
+0.096337 0.491125 0
+0.095990 0.491294 0
+0.095547 0.491430 0
+0.095023 0.491552 0
+0.092724 0.492068 0
+0.087919 0.492793 0
+0.082944 0.493117 0
+0.077840 0.492992 0
+0.072649 0.492407 0
+0.067419 0.491391 0
+0.062179 0.489982 0
+0.056770 0.488286 0
+0.051334 0.486383 0
+0.045904 0.484392 0
+0.040552 0.482458 0
+0.035241 0.480720 0
+0.032714 0.479994 0
+0.031450 0.479630 0
+0.030932 0.479369 0
+0.030586 0.479071 0
+0.030380 0.478686 0
+0.030298 0.478256 0
+0.030312 0.477229 0
+0.030438 0.475192 0
+
+-0.052302 0.472266 0
+-0.052063 0.471274 0
+-0.051809 0.470478 0
+-0.051579 0.470110 0
+-0.051291 0.469866 0
+-0.050825 0.469760 0
+-0.050201 0.469885 0
+-0.049020 0.470372 0
+-0.046455 0.471456 0
+-0.041252 0.473368 0
+-0.035999 0.475020 0
+-0.030851 0.476383 0
+-0.025658 0.477454 0
+-0.020471 0.478244 0
+-0.015337 0.478784 0
+-0.010295 0.479123 0
+-0.005469 0.479298 0
+-0.000433 0.479516 0
+0.002118 0.479655 0
+0.002755 0.479690 0
+0.003484 0.479810 0
+0.004061 0.480003 0
+0.004415 0.480237 0
+0.004680 0.480557 0
+0.004940 0.481084 0
+0.005118 0.482021 0
+0.005176 0.482949 0
+0.005363 0.484857 0
+0.005700 0.487605 0
+0.006319 0.490447 0
+0.007612 0.494099 0
+0.009211 0.497868 0
+0.009533 0.498625 0
+0.009817 0.499299 0
+0.009949 0.499788 0
+0.009853 0.500151 0
+0.009590 0.500392 0
+0.009219 0.500499 0
+0.008759 0.500556 0
+0.008223 0.500585 0
+0.005868 0.500694 0
+0.001011 0.500573 0
+-0.003945 0.500028 0
+-0.008950 0.499019 0
+-0.013960 0.497542 0
+-0.018935 0.495633 0
+-0.023850 0.493335 0
+-0.028882 0.490726 0
+-0.033906 0.487907 0
+-0.038907 0.485004 0
+-0.043842 0.482171 0
+-0.048770 0.479537 0
+-0.051133 0.478382 0
+-0.052314 0.477805 0
+-0.052779 0.477457 0
+-0.053068 0.477104 0
+-0.053205 0.476689 0
+-0.053211 0.476252 0
+-0.053018 0.475243 0
+-0.052541 0.473258 0
+
+-0.133515 0.456009 0
+-0.133108 0.455073 0
+-0.132720 0.454334 0
+-0.132429 0.454011 0
+-0.132103 0.453822 0
+-0.131626 0.453797 0
+-0.131033 0.454029 0
+-0.129955 0.454714 0
+-0.127616 0.456226 0
+-0.122824 0.459013 0
+-0.117938 0.461553 0
+-0.113105 0.463788 0
+-0.108177 0.465745 0
+-0.103206 0.467424 0
+-0.098244 0.468847 0
+-0.093338 0.470057 0
+-0.088615 0.471066 0
+-0.083693 0.472156 0
+-0.081206 0.472736 0
+-0.080584 0.472881 0
+-0.079887 0.473126 0
+-0.079352 0.473416 0
+-0.079045 0.473707 0
+-0.078839 0.474069 0
+-0.078674 0.474633 0
+-0.078662 0.475586 0
+-0.078766 0.476511 0
+-0.078913 0.478423 0
+-0.079058 0.481187 0
+-0.078942 0.484093 0
+-0.078303 0.487914 0
+-0.077383 0.491903 0
+-0.077197 0.492705 0
+-0.077035 0.493418 0
+-0.076990 0.493923 0
+-0.077147 0.494263 0
+-0.077448 0.494456 0
+-0.077831 0.494496 0
+-0.078294 0.494472 0
+-0.078828 0.494408 0
+-0.081166 0.494106 0
+-0.085928 0.493144 0
+-0.090714 0.491747 0
+-0.095468 0.489884 0
+-0.100146 0.487559 0
+-0.104713 0.484815 0
+-0.109154 0.481699 0
+-0.113657 0.478255 0
+-0.118115 0.474607 0
+-0.122536 0.470880 0
+-0.126904 0.467232 0
+-0.131300 0.463783 0
+-0.133426 0.462235 0
+-0.134490 0.461461 0
+-0.134887 0.461039 0
+-0.135110 0.460641 0
+-0.135173 0.460208 0
+-0.135103 0.459776 0
+-0.134738 0.458816 0
+-0.133923 0.456945 0
+
+-0.210672 0.425896 0
+-0.210108 0.425046 0
+-0.209598 0.424385 0
+-0.209256 0.424117 0
+-0.208901 0.423988 0
+-0.208428 0.424047 0
+-0.207883 0.424378 0
+-0.206941 0.425240 0
+-0.204900 0.427135 0
+-0.200665 0.430712 0
+-0.196294 0.434061 0
+-0.191923 0.437102 0
+-0.187409 0.439884 0
+-0.182806 0.442401 0
+-0.178166 0.444665 0
+-0.173544 0.446708 0
+-0.169068 0.448522 0
+-0.164411 0.450450 0
+-0.162062 0.451453 0
+-0.161475 0.451704 0
+-0.160831 0.452066 0
+-0.160355 0.452445 0
+-0.160102 0.452785 0
+-0.159962 0.453176 0
+-0.159898 0.453761 0
+-0.160052 0.454702 0
+-0.160314 0.455594 0
+-0.160791 0.457451 0
+-0.161415 0.460149 0
+-0.161805 0.463031 0
+-0.161839 0.466904 0
+-0.161626 0.470993 0
+-0.161581 0.471815 0
+-0.161545 0.472545 0
+-0.161589 0.473050 0
+-0.161803 0.473358 0
+-0.162132 0.473495 0
+-0.162517 0.473469 0
+-0.162969 0.473365 0
+-0.163483 0.473208 0
+-0.165733 0.472506 0
+-0.170256 0.470731 0
+-0.174727 0.468524 0
+-0.179085 0.465864 0
+-0.183288 0.462762 0
+-0.187309 0.459266 0
+-0.191142 0.455426 0
+-0.194978 0.451253 0
+-0.198735 0.446886 0
+-0.202442 0.442448 0
+-0.206110 0.438097 0
+-0.209840 0.433937 0
+-0.211666 0.432044 0
+-0.212578 0.431097 0
+-0.212896 0.430611 0
+-0.213047 0.430181 0
+-0.213033 0.429744 0
+-0.212890 0.429331 0
+-0.212363 0.428449 0
+-0.211236 0.426747 0
+
+-0.281428 0.382843 0
+-0.280725 0.382103 0
+-0.280107 0.381542 0
+-0.279724 0.381337 0
+-0.279352 0.381271 0
+-0.278896 0.381411 0
+-0.278418 0.381832 0
+-0.277639 0.382844 0
+-0.275959 0.385065 0
+-0.272409 0.389323 0
+-0.268686 0.393380 0
+-0.264909 0.397134 0
+-0.260947 0.400658 0
+-0.256850 0.403936 0
+-0.252674 0.406971 0
+-0.248477 0.409786 0
+-0.244385 0.412349 0
+-0.240133 0.415057 0
+-0.237994 0.416453 0
+-0.237459 0.416802 0
+-0.236888 0.417270 0
+-0.236485 0.417726 0
+-0.236295 0.418104 0
+-0.236225 0.418515 0
+-0.236264 0.419101 0
+-0.236578 0.420001 0
+-0.236992 0.420834 0
+-0.237784 0.422580 0
+-0.238866 0.425129 0
+-0.239751 0.427899 0
+-0.240458 0.431708 0
+-0.240957 0.435772 0
+-0.241056 0.436589 0
+-0.241148 0.437314 0
+-0.241278 0.437803 0
+-0.241542 0.438070 0
+-0.241891 0.438148 0
+-0.242265 0.438055 0
+-0.242692 0.437874 0
+-0.243171 0.437630 0
+-0.245265 0.436548 0
+-0.249411 0.434014 0
+-0.253431 0.431065 0
+-0.257260 0.427688 0
+-0.260861 0.423904 0
+-0.264214 0.419763 0
+-0.267322 0.415316 0
+-0.270376 0.410540 0
+-0.273317 0.405587 0
+-0.276196 0.400572 0
+-0.279054 0.395651 0
+-0.282005 0.390906 0
+-0.283474 0.388725 0
+-0.284208 0.387634 0
+-0.284437 0.387100 0
+-0.284510 0.386650 0
+-0.284421 0.386223 0
+-0.284208 0.385841 0
+-0.283537 0.385063 0
+-0.282131 0.383583 0
+
+-0.343632 0.328158 0
+-0.342811 0.327551 0
+-0.342106 0.327105 0
+-0.341693 0.326970 0
+-0.341315 0.326970 0
+-0.340890 0.327187 0
+-0.340492 0.327685 0
+-0.339901 0.328817 0
+-0.338632 0.331296 0
+-0.335876 0.336105 0
+-0.332914 0.340747 0
+-0.329846 0.345100 0
+-0.326556 0.349258 0
+-0.323091 0.353198 0
+-0.319505 0.356912 0
+-0.315861 0.360412 0
+-0.312276 0.363648 0
+-0.308559 0.367052 0
+-0.306694 0.368799 0
+-0.306228 0.369235 0
+-0.305748 0.369795 0
+-0.305429 0.370314 0
+-0.305308 0.370720 0
+-0.305311 0.371136 0
+-0.305450 0.371707 0
+-0.305917 0.372539 0
+-0.306468 0.373288 0
+-0.307552 0.374870 0
+-0.309060 0.377191 0
+-0.310413 0.379766 0
+-0.311770 0.383394 0
+-0.312967 0.387309 0
+-0.313207 0.388097 0
+-0.313423 0.388795 0
+-0.313636 0.389255 0
+-0.313943 0.389471 0
+-0.314300 0.389487 0
+-0.314652 0.389331 0
+-0.315041 0.389078 0
+-0.315471 0.388755 0
+-0.317345 0.387326 0
+-0.320988 0.384111 0
+-0.324434 0.380508 0
+-0.327619 0.376518 0
+-0.330508 0.372166 0
+-0.333091 0.367506 0
+-0.335380 0.362586 0
+-0.337557 0.357353 0
+-0.339594 0.351965 0
+-0.341559 0.346526 0
+-0.343518 0.341183 0
+-0.345600 0.335998 0
+-0.346668 0.333594 0
+-0.347202 0.332393 0
+-0.347335 0.331828 0
+-0.347329 0.331372 0
+-0.347167 0.330966 0
+-0.346891 0.330627 0
+-0.346095 0.329978 0
+-0.344453 0.328764 0
+
+-0.395396 0.263501 0
+-0.394482 0.263046 0
+-0.393710 0.262730 0
+-0.393279 0.262669 0
+-0.392908 0.262733 0
+-0.392527 0.263021 0
+-0.392221 0.263580 0
+-0.391836 0.264798 0
+-0.391016 0.267460 0
+-0.389137 0.272675 0
+-0.387026 0.277761 0
+-0.384761 0.282580 0
+-0.382243 0.287246 0
+-0.379515 0.291728 0
+-0.376628 0.296008 0
+-0.373647 0.300088 0
+-0.370679 0.303897 0
+-0.367609 0.307895 0
+-0.366076 0.309939 0
+-0.365693 0.310450 0
+-0.365317 0.311085 0
+-0.365093 0.311651 0
+-0.365045 0.312072 0
+-0.365120 0.312481 0
+-0.365356 0.313019 0
+-0.365960 0.313757 0
+-0.366633 0.314399 0
+-0.367975 0.315769 0
+-0.369863 0.317793 0
+-0.371643 0.320094 0
+-0.373609 0.323431 0
+-0.375468 0.327079 0
+-0.375841 0.327813 0
+-0.376175 0.328463 0
+-0.376465 0.328879 0
+-0.376804 0.329039 0
+-0.377158 0.328993 0
+-0.377478 0.328777 0
+-0.377818 0.328461 0
+-0.378185 0.328068 0
+-0.379782 0.326335 0
+-0.382812 0.322536 0
+-0.385580 0.318390 0
+-0.388024 0.313907 0
+-0.390113 0.309119 0
+-0.391848 0.304082 0
+-0.393247 0.298840 0
+-0.394483 0.293307 0
+-0.395553 0.287647 0
+-0.396544 0.281950 0
+-0.397545 0.276348 0
+-0.398695 0.270880 0
+-0.399330 0.268328 0
+-0.399647 0.267052 0
+-0.399679 0.266472 0
+-0.399595 0.266024 0
+-0.399364 0.265653 0
+-0.399033 0.265367 0
+-0.398137 0.264866 0
+-0.396309 0.263956 0
+
+-0.435145 0.190838 0
+-0.434166 0.190549 0
+-0.433351 0.190371 0
+-0.432916 0.190386 0
+-0.432562 0.190514 0
+-0.432237 0.190864 0
+-0.432033 0.191468 0
+-0.431864 0.192734 0
+-0.431520 0.195497 0
+-0.430575 0.200959 0
+-0.429379 0.206334 0
+-0.427985 0.211474 0
+-0.426316 0.216507 0
+-0.424407 0.221394 0
+-0.422308 0.226110 0
+-0.420081 0.230646 0
+-0.417818 0.234913 0
+-0.415489 0.239383 0
+-0.414335 0.241662 0
+-0.414046 0.242231 0
+-0.413786 0.242922 0
+-0.413665 0.243519 0
+-0.413690 0.243942 0
+-0.413834 0.244332 0
+-0.414161 0.244820 0
+-0.414883 0.245442 0
+-0.415658 0.245957 0
+-0.417217 0.247073 0
+-0.419429 0.248739 0
+-0.421580 0.250696 0
+-0.424096 0.253641 0
+-0.426561 0.256911 0
+-0.427055 0.257569 0
+-0.427497 0.258151 0
+-0.427855 0.258510 0
+-0.428217 0.258609 0
+-0.428557 0.258502 0
+-0.428835 0.258234 0
+-0.429114 0.257864 0
+-0.429408 0.257413 0
+-0.430680 0.255429 0
+-0.433004 0.251162 0
+-0.435010 0.246598 0
+-0.436638 0.241759 0
+-0.437864 0.236681 0
+-0.438698 0.231418 0
+-0.439166 0.226013 0
+-0.439422 0.220350 0
+-0.439493 0.214590 0
+-0.439479 0.208808 0
+-0.439493 0.203117 0
+-0.439676 0.197532 0
+-0.439858 0.194909 0
+-0.439948 0.193597 0
+-0.439880 0.193020 0
+-0.439719 0.192594 0
+-0.439427 0.192268 0
+-0.439052 0.192044 0
+-0.438081 0.191706 0
+-0.436124 0.191128 0
+
+-0.461673 0.112377 0
+-0.460659 0.112262 0
+-0.459825 0.112229 0
+-0.459400 0.112318 0
+-0.459073 0.112506 0
+-0.458813 0.112907 0
+-0.458717 0.113537 0
+-0.458771 0.114813 0
+-0.458912 0.117594 0
+-0.458929 0.123138 0
+-0.458685 0.128639 0
+-0.458205 0.133942 0
+-0.457435 0.139188 0
+-0.456404 0.144333 0
+-0.455156 0.149342 0
+-0.453750 0.154196 0
+-0.452263 0.158790 0
+-0.450746 0.163597 0
+-0.450004 0.166042 0
+-0.449819 0.166653 0
+-0.449683 0.167379 0
+-0.449667 0.167987 0
+-0.449765 0.168399 0
+-0.449975 0.168758 0
+-0.450381 0.169183 0
+-0.451201 0.169670 0
+-0.452053 0.170043 0
+-0.453783 0.170871 0
+-0.456250 0.172127 0
+-0.458708 0.173681 0
+-0.461698 0.176144 0
+-0.464692 0.178936 0
+-0.465294 0.179498 0
+-0.465830 0.179995 0
+-0.466244 0.180286 0
+-0.466618 0.180321 0
+-0.466935 0.180156 0
+-0.467162 0.179844 0
+-0.467373 0.179431 0
+-0.467583 0.178937 0
+-0.468492 0.176762 0
+-0.470039 0.172156 0
+-0.471222 0.167313 0
+-0.471986 0.162265 0
+-0.472311 0.157051 0
+-0.472218 0.151724 0
+-0.471740 0.146319 0
+-0.471010 0.140698 0
+-0.470079 0.135013 0
+-0.469062 0.129321 0
+-0.468087 0.123714 0
+-0.467298 0.118182 0
+-0.467021 0.115567 0
+-0.466882 0.114259 0
+-0.466715 0.113704 0
+-0.466482 0.113312 0
+-0.466138 0.113041 0
+-0.465730 0.112886 0
+-0.464715 0.112722 0
+-0.462687 0.112492 0
+
+-0.474173 0.030501 0
+-0.473155 0.030564 0
+-0.472327 0.030676 0
+-0.471924 0.030838 0
+-0.471635 0.031080 0
+-0.471449 0.031520 0
+-0.471464 0.032157 0
+-0.471739 0.033404 0
+-0.472360 0.036119 0
+-0.473340 0.041575 0
+-0.474055 0.047035 0
+-0.474502 0.052341 0
+-0.474655 0.057641 0
+-0.474533 0.062886 0
+-0.474174 0.068036 0
+-0.473632 0.073060 0
+-0.472966 0.077843 0
+-0.472306 0.082841 0
+-0.472001 0.085377 0
+-0.471924 0.086011 0
+-0.471916 0.086749 0
+-0.472006 0.087351 0
+-0.472174 0.087740 0
+-0.472443 0.088057 0
+-0.472917 0.088404 0
+-0.473809 0.088742 0
+-0.474713 0.088961 0
+-0.476560 0.089476 0
+-0.479208 0.090285 0
+-0.481899 0.091388 0
+-0.485271 0.093295 0
+-0.488705 0.095525 0
+-0.489394 0.095974 0
+-0.490009 0.096370 0
+-0.490467 0.096585 0
+-0.490841 0.096554 0
+-0.491125 0.096337 0
+-0.491294 0.095990 0
+-0.491430 0.095547 0
+-0.491552 0.095023 0
+-0.492068 0.092724 0
+-0.492793 0.087919 0
+-0.493117 0.082944 0
+-0.492992 0.077840 0
+-0.492407 0.072649 0
+-0.491391 0.067419 0
+-0.489982 0.062179 0
+-0.488286 0.056770 0
+-0.486383 0.051334 0
+-0.484392 0.045904 0
+-0.482458 0.040552 0
+-0.480720 0.035241 0
+-0.479994 0.032714 0
+-0.479630 0.031450 0
+-0.479369 0.030932 0
+-0.479071 0.030586 0
+-0.478686 0.030380 0
+-0.478256 0.030298 0
+-0.477229 0.030312 0
+-0.475192 0.030438 0
+
+-0.472266 -0.052302 0
+-0.471274 -0.052063 0
+-0.470478 -0.051809 0
+-0.470110 -0.051579 0
+-0.469866 -0.051291 0
+-0.469760 -0.050825 0
+-0.469885 -0.050201 0
+-0.470372 -0.049020 0
+-0.471456 -0.046455 0
+-0.473368 -0.041252 0
+-0.475020 -0.035999 0
+-0.476383 -0.030851 0
+-0.477454 -0.025658 0
+-0.478244 -0.020471 0
+-0.478784 -0.015337 0
+-0.479123 -0.010295 0
+-0.479298 -0.005469 0
+-0.479516 -0.000433 0
+-0.479655 0.002118 0
+-0.479690 0.002755 0
+-0.479810 0.003484 0
+-0.480003 0.004061 0
+-0.480237 0.004415 0
+-0.480557 0.004680 0
+-0.481084 0.004940 0
+-0.482021 0.005118 0
+-0.482949 0.005176 0
+-0.484857 0.005363 0
+-0.487605 0.005700 0
+-0.490447 0.006319 0
+-0.494099 0.007612 0
+-0.497868 0.009211 0
+-0.498625 0.009533 0
+-0.499299 0.009817 0
+-0.499788 0.009949 0
+-0.500151 0.009853 0
+-0.500392 0.009590 0
+-0.500499 0.009219 0
+-0.500556 0.008759 0
+-0.500585 0.008223 0
+-0.500694 0.005868 0
+-0.500573 0.001011 0
+-0.500028 -0.003945 0
+-0.499019 -0.008950 0
+-0.497542 -0.013960 0
+-0.495633 -0.018935 0
+-0.493335 -0.023850 0
+-0.490726 -0.028882 0
+-0.487907 -0.033906 0
+-0.485004 -0.038907 0
+-0.482171 -0.043842 0
+-0.479537 -0.048770 0
+-0.478382 -0.051133 0
+-0.477805 -0.052314 0
+-0.477457 -0.052779 0
+-0.477104 -0.053068 0
+-0.476689 -0.053205 0
+-0.476252 -0.053211 0
+-0.475243 -0.053018 0
+-0.473258 -0.052541 0
+
+-0.456009 -0.133515 0
+-0.455073 -0.133108 0
+-0.454334 -0.132720 0
+-0.454011 -0.132429 0
+-0.453822 -0.132103 0
+-0.453797 -0.131626 0
+-0.454029 -0.131033 0
+-0.454714 -0.129955 0
+-0.456226 -0.127616 0
+-0.459013 -0.122824 0
+-0.461553 -0.117938 0
+-0.463788 -0.113105 0
+-0.465745 -0.108177 0
+-0.467424 -0.103206 0
+-0.468847 -0.098244 0
+-0.470057 -0.093338 0
+-0.471066 -0.088615 0
+-0.472156 -0.083693 0
+-0.472736 -0.081206 0
+-0.472881 -0.080584 0
+-0.473126 -0.079887 0
+-0.473416 -0.079352 0
+-0.473707 -0.079045 0
+-0.474069 -0.078839 0
+-0.474633 -0.078674 0
+-0.475587 -0.078662 0
+-0.476511 -0.078766 0
+-0.478423 -0.078913 0
+-0.481187 -0.079058 0
+-0.484093 -0.078942 0
+-0.487914 -0.078303 0
+-0.491903 -0.077383 0
+-0.492705 -0.077197 0
+-0.493418 -0.077035 0
+-0.493923 -0.076990 0
+-0.494263 -0.077147 0
+-0.494456 -0.077448 0
+-0.494496 -0.077831 0
+-0.494472 -0.078294 0
+-0.494408 -0.078828 0
+-0.494107 -0.081166 0
+-0.493144 -0.085928 0
+-0.491747 -0.090714 0
+-0.489884 -0.095468 0
+-0.487559 -0.100146 0
+-0.484815 -0.104713 0
+-0.481699 -0.109154 0
+-0.478255 -0.113657 0
+-0.474607 -0.118115 0
+-0.470880 -0.122536 0
+-0.467232 -0.126904 0
+-0.463783 -0.131300 0
+-0.462235 -0.133426 0
+-0.461461 -0.134490 0
+-0.461039 -0.134887 0
+-0.460641 -0.135110 0
+-0.460208 -0.135173 0
+-0.459776 -0.135103 0
+-0.458816 -0.134738 0
+-0.456945 -0.133923 0
+
+-0.425896 -0.210672 0
+-0.425046 -0.210108 0
+-0.424385 -0.209598 0
+-0.424117 -0.209256 0
+-0.423988 -0.208901 0
+-0.424047 -0.208428 0
+-0.424378 -0.207883 0
+-0.425240 -0.206941 0
+-0.427135 -0.204900 0
+-0.430712 -0.200665 0
+-0.434061 -0.196294 0
+-0.437102 -0.191923 0
+-0.439884 -0.187409 0
+-0.442401 -0.182806 0
+-0.444665 -0.178166 0
+-0.446708 -0.173544 0
+-0.448522 -0.169068 0
+-0.450450 -0.164411 0
+-0.451453 -0.162062 0
+-0.451704 -0.161475 0
+-0.452066 -0.160831 0
+-0.452445 -0.160355 0
+-0.452785 -0.160102 0
+-0.453176 -0.159962 0
+-0.453761 -0.159898 0
+-0.454702 -0.160052 0
+-0.455594 -0.160314 0
+-0.457451 -0.160791 0
+-0.460149 -0.161415 0
+-0.463031 -0.161805 0
+-0.466904 -0.161839 0
+-0.470993 -0.161626 0
+-0.471815 -0.161581 0
+-0.472545 -0.161545 0
+-0.473050 -0.161589 0
+-0.473358 -0.161803 0
+-0.473495 -0.162133 0
+-0.473469 -0.162517 0
+-0.473365 -0.162969 0
+-0.473208 -0.163483 0
+-0.472506 -0.165733 0
+-0.470731 -0.170256 0
+-0.468524 -0.174727 0
+-0.465864 -0.179085 0
+-0.462762 -0.183288 0
+-0.459266 -0.187309 0
+-0.455426 -0.191142 0
+-0.451253 -0.194978 0
+-0.446886 -0.198735 0
+-0.442448 -0.202442 0
+-0.438097 -0.206110 0
+-0.433937 -0.209840 0
+-0.432044 -0.211666 0
+-0.431097 -0.212578 0
+-0.430612 -0.212896 0
+-0.430181 -0.213047 0
+-0.429744 -0.213033 0
+-0.429331 -0.212890 0
+-0.428449 -0.212364 0
+-0.426747 -0.211236 0
+
+-0.382843 -0.281428 0
+-0.382103 -0.280725 0
+-0.381542 -0.280107 0
+-0.381337 -0.279724 0
+-0.381271 -0.279352 0
+-0.381411 -0.278896 0
+-0.381832 -0.278418 0
+-0.382844 -0.277639 0
+-0.385065 -0.275959 0
+-0.389323 -0.272409 0
+-0.393380 -0.268686 0
+-0.397134 -0.264909 0
+-0.400658 -0.260947 0
+-0.403936 -0.256850 0
+-0.406971 -0.252674 0
+-0.409786 -0.248477 0
+-0.412349 -0.244385 0
+-0.415057 -0.240133 0
+-0.416453 -0.237994 0
+-0.416802 -0.237459 0
+-0.417270 -0.236888 0
+-0.417726 -0.236485 0
+-0.418104 -0.236295 0
+-0.418515 -0.236225 0
+-0.419101 -0.236264 0
+-0.420001 -0.236578 0
+-0.420834 -0.236992 0
+-0.422580 -0.237784 0
+-0.425129 -0.238866 0
+-0.427899 -0.239751 0
+-0.431708 -0.240458 0
+-0.435772 -0.240957 0
+-0.436589 -0.241056 0
+-0.437314 -0.241148 0
+-0.437803 -0.241278 0
+-0.438070 -0.241542 0
+-0.438148 -0.241891 0
+-0.438055 -0.242265 0
+-0.437874 -0.242692 0
+-0.437630 -0.243171 0
+-0.436548 -0.245265 0
+-0.434014 -0.249411 0
+-0.431065 -0.253431 0
+-0.427688 -0.257260 0
+-0.423904 -0.260861 0
+-0.419763 -0.264214 0
+-0.415316 -0.267322 0
+-0.410540 -0.270376 0
+-0.405587 -0.273317 0
+-0.400572 -0.276196 0
+-0.395651 -0.279054 0
+-0.390906 -0.282005 0
+-0.388725 -0.283474 0
+-0.387634 -0.284208 0
+-0.387100 -0.284437 0
+-0.386650 -0.284510 0
+-0.386223 -0.284421 0
+-0.385841 -0.284208 0
+-0.385063 -0.283537 0
+-0.383583 -0.282131 0
+
+-0.328158 -0.343632 0
+-0.327551 -0.342811 0
+-0.327105 -0.342106 0
+-0.326970 -0.341693 0
+-0.326970 -0.341315 0
+-0.327187 -0.340890 0
+-0.327685 -0.340492 0
+-0.328817 -0.339901 0
+-0.331296 -0.338632 0
+-0.336105 -0.335876 0
+-0.340747 -0.332914 0
+-0.345100 -0.329846 0
+-0.349258 -0.326556 0
+-0.353198 -0.323091 0
+-0.356912 -0.319505 0
+-0.360412 -0.315861 0
+-0.363648 -0.312276 0
+-0.367052 -0.308558 0
+-0.368799 -0.306694 0
+-0.369235 -0.306228 0
+-0.369796 -0.305747 0
+-0.370314 -0.305429 0
+-0.370720 -0.305308 0
+-0.371136 -0.305311 0
+-0.371707 -0.305450 0
+-0.372539 -0.305917 0
+-0.373288 -0.306468 0
+-0.374870 -0.307552 0
+-0.377191 -0.309060 0
+-0.379766 -0.310413 0
+-0.383394 -0.311770 0
+-0.387309 -0.312967 0
+-0.388097 -0.313207 0
+-0.388795 -0.313423 0
+-0.389255 -0.313636 0
+-0.389471 -0.313943 0
+-0.389487 -0.314300 0
+-0.389331 -0.314652 0
+-0.389078 -0.315041 0
+-0.388756 -0.315471 0
+-0.387326 -0.317345 0
+-0.384111 -0.320988 0
+-0.380508 -0.324434 0
+-0.376518 -0.327619 0
+-0.372166 -0.330508 0
+-0.367506 -0.333091 0
+-0.362586 -0.335380 0
+-0.357353 -0.337557 0
+-0.351965 -0.339594 0
+-0.346526 -0.341559 0
+-0.341183 -0.343518 0
+-0.335998 -0.345600 0
+-0.333594 -0.346668 0
+-0.332393 -0.347202 0
+-0.331828 -0.347335 0
+-0.331372 -0.347329 0
+-0.330966 -0.347167 0
+-0.330627 -0.346891 0
+-0.329978 -0.346095 0
+-0.328764 -0.344453 0
+
+-0.263501 -0.395396 0
+-0.263046 -0.394482 0
+-0.262730 -0.393710 0
+-0.262669 -0.393279 0
+-0.262733 -0.392908 0
+-0.263021 -0.392527 0
+-0.263580 -0.392221 0
+-0.264798 -0.391836 0
+-0.267460 -0.391016 0
+-0.272675 -0.389137 0
+-0.277761 -0.387026 0
+-0.282580 -0.384761 0
+-0.287246 -0.382243 0
+-0.291728 -0.379515 0
+-0.296008 -0.376628 0
+-0.300088 -0.373647 0
+-0.303897 -0.370679 0
+-0.307895 -0.367609 0
+-0.309939 -0.366076 0
+-0.310450 -0.365693 0
+-0.311085 -0.365317 0
+-0.311651 -0.365093 0
+-0.312072 -0.365045 0
+-0.312481 -0.365120 0
+-0.313019 -0.365356 0
+-0.313757 -0.365960 0
+-0.314399 -0.366633 0
+-0.315769 -0.367975 0
+-0.317793 -0.369863 0
+-0.320094 -0.371643 0
+-0.323431 -0.373609 0
+-0.327079 -0.375468 0
+-0.327813 -0.375841 0
+-0.328463 -0.376175 0
+-0.328879 -0.376465 0
+-0.329039 -0.376804 0
+-0.328993 -0.377158 0
+-0.328777 -0.377478 0
+-0.328461 -0.377818 0
+-0.328068 -0.378185 0
+-0.326335 -0.379782 0
+-0.322536 -0.382812 0
+-0.318390 -0.385580 0
+-0.313907 -0.388024 0
+-0.309120 -0.390113 0
+-0.304082 -0.391848 0
+-0.298840 -0.393247 0
+-0.293307 -0.394483 0
+-0.287648 -0.395553 0
+-0.281950 -0.396544 0
+-0.276348 -0.397545 0
+-0.270880 -0.398695 0
+-0.268328 -0.399330 0
+-0.267052 -0.399647 0
+-0.266472 -0.399679 0
+-0.266024 -0.399595 0
+-0.265653 -0.399364 0
+-0.265367 -0.399033 0
+-0.264866 -0.398137 0
+-0.263956 -0.396309 0
+
+-0.190838 -0.435145 0
+-0.190549 -0.434166 0
+-0.190371 -0.433351 0
+-0.190386 -0.432916 0
+-0.190514 -0.432562 0
+-0.190864 -0.432237 0
+-0.191468 -0.432033 0
+-0.192734 -0.431864 0
+-0.195497 -0.431520 0
+-0.200959 -0.430575 0
+-0.206334 -0.429379 0
+-0.211474 -0.427985 0
+-0.216507 -0.426316 0
+-0.221394 -0.424407 0
+-0.226110 -0.422308 0
+-0.230646 -0.420081 0
+-0.234913 -0.417818 0
+-0.239383 -0.415489 0
+-0.241662 -0.414335 0
+-0.242231 -0.414046 0
+-0.242922 -0.413786 0
+-0.243519 -0.413664 0
+-0.243942 -0.413690 0
+-0.244332 -0.413834 0
+-0.244820 -0.414161 0
+-0.245442 -0.414883 0
+-0.245958 -0.415658 0
+-0.247073 -0.417217 0
+-0.248739 -0.419429 0
+-0.250696 -0.421580 0
+-0.253641 -0.424096 0
+-0.256911 -0.426561 0
+-0.257569 -0.427055 0
+-0.258151 -0.427497 0
+-0.258510 -0.427855 0
+-0.258609 -0.428217 0
+-0.258502 -0.428557 0
+-0.258234 -0.428835 0
+-0.257864 -0.429114 0
+-0.257413 -0.429408 0
+-0.255429 -0.430680 0
+-0.251162 -0.433004 0
+-0.246598 -0.435010 0
+-0.241759 -0.436638 0
+-0.236681 -0.437864 0
+-0.231418 -0.438698 0
+-0.226013 -0.439166 0
+-0.220350 -0.439422 0
+-0.214591 -0.439493 0
+-0.208808 -0.439479 0
+-0.203117 -0.439493 0
+-0.197532 -0.439676 0
+-0.194909 -0.439858 0
+-0.193597 -0.439948 0
+-0.193020 -0.439880 0
+-0.192594 -0.439719 0
+-0.192268 -0.439427 0
+-0.192044 -0.439052 0
+-0.191706 -0.438081 0
+-0.191128 -0.436124 0
+
+-0.112377 -0.461673 0
+-0.112262 -0.460659 0
+-0.112229 -0.459825 0
+-0.112318 -0.459400 0
+-0.112506 -0.459073 0
+-0.112907 -0.458813 0
+-0.113537 -0.458717 0
+-0.114813 -0.458771 0
+-0.117594 -0.458912 0
+-0.123138 -0.458929 0
+-0.128639 -0.458685 0
+-0.133942 -0.458205 0
+-0.139188 -0.457435 0
+-0.144333 -0.456404 0
+-0.149342 -0.455156 0
+-0.154196 -0.453750 0
+-0.158790 -0.452263 0
+-0.163597 -0.450746 0
+-0.166042 -0.450004 0
+-0.166653 -0.449819 0
+-0.167378 -0.449683 0
+-0.167987 -0.449667 0
+-0.168399 -0.449765 0
+-0.168758 -0.449975 0
+-0.169183 -0.450381 0
+-0.169670 -0.451201 0
+-0.170042 -0.452053 0
+-0.170871 -0.453783 0
+-0.172127 -0.456250 0
+-0.173681 -0.458708 0
+-0.176144 -0.461698 0
+-0.178936 -0.464692 0
+-0.179498 -0.465294 0
+-0.179995 -0.465830 0
+-0.180286 -0.466244 0
+-0.180321 -0.466618 0
+-0.180156 -0.466935 0
+-0.179844 -0.467162 0
+-0.179431 -0.467373 0
+-0.178937 -0.467584 0
+-0.176762 -0.468492 0
+-0.172156 -0.470039 0
+-0.167313 -0.471222 0
+-0.162264 -0.471986 0
+-0.157051 -0.472311 0
+-0.151724 -0.472218 0
+-0.146319 -0.471740 0
+-0.140698 -0.471010 0
+-0.135013 -0.470079 0
+-0.129321 -0.469062 0
+-0.123714 -0.468087 0
+-0.118182 -0.467298 0
+-0.115567 -0.467021 0
+-0.114259 -0.466882 0
+-0.113704 -0.466715 0
+-0.113312 -0.466482 0
+-0.113041 -0.466138 0
+-0.112886 -0.465730 0
+-0.112722 -0.464715 0
+-0.112492 -0.462687 0
+
+-0.030501 -0.474173 0
+-0.030564 -0.473155 0
+-0.030676 -0.472327 0
+-0.030838 -0.471924 0
+-0.031080 -0.471635 0
+-0.031520 -0.471449 0
+-0.032157 -0.471464 0
+-0.033404 -0.471739 0
+-0.036119 -0.472360 0
+-0.041575 -0.473340 0
+-0.047035 -0.474055 0
+-0.052341 -0.474502 0
+-0.057641 -0.474655 0
+-0.062886 -0.474533 0
+-0.068036 -0.474174 0
+-0.073060 -0.473632 0
+-0.077843 -0.472966 0
+-0.082841 -0.472306 0
+-0.085377 -0.472001 0
+-0.086011 -0.471924 0
+-0.086749 -0.471916 0
+-0.087351 -0.472006 0
+-0.087740 -0.472174 0
+-0.088057 -0.472443 0
+-0.088404 -0.472917 0
+-0.088742 -0.473809 0
+-0.088961 -0.474713 0
+-0.089476 -0.476560 0
+-0.090285 -0.479208 0
+-0.091388 -0.481899 0
+-0.093295 -0.485271 0
+-0.095525 -0.488705 0
+-0.095974 -0.489394 0
+-0.096370 -0.490009 0
+-0.096585 -0.490467 0
+-0.096554 -0.490842 0
+-0.096337 -0.491125 0
+-0.095990 -0.491294 0
+-0.095547 -0.491430 0
+-0.095023 -0.491552 0
+-0.092724 -0.492068 0
+-0.087919 -0.492793 0
+-0.082944 -0.493117 0
+-0.077840 -0.492992 0
+-0.072649 -0.492407 0
+-0.067419 -0.491391 0
+-0.062179 -0.489982 0
+-0.056770 -0.488286 0
+-0.051334 -0.486383 0
+-0.045904 -0.484392 0
+-0.040552 -0.482458 0
+-0.035241 -0.480720 0
+-0.032714 -0.479994 0
+-0.031450 -0.479630 0
+-0.030932 -0.479369 0
+-0.030586 -0.479071 0
+-0.030380 -0.478686 0
+-0.030298 -0.478256 0
+-0.030312 -0.477229 0
+-0.030438 -0.475192 0
+
+0.052302 -0.472266 0
+0.052063 -0.471274 0
+0.051809 -0.470478 0
+0.051579 -0.470110 0
+0.051291 -0.469866 0
+0.050825 -0.469760 0
+0.050201 -0.469885 0
+0.049020 -0.470372 0
+0.046455 -0.471456 0
+0.041252 -0.473368 0
+0.035999 -0.475020 0
+0.030851 -0.476383 0
+0.025658 -0.477454 0
+0.020471 -0.478244 0
+0.015337 -0.478784 0
+0.010295 -0.479123 0
+0.005469 -0.479298 0
+0.000433 -0.479516 0
+-0.002118 -0.479655 0
+-0.002755 -0.479690 0
+-0.003484 -0.479810 0
+-0.004061 -0.480003 0
+-0.004415 -0.480237 0
+-0.004680 -0.480557 0
+-0.004940 -0.481084 0
+-0.005118 -0.482021 0
+-0.005176 -0.482949 0
+-0.005363 -0.484857 0
+-0.005700 -0.487605 0
+-0.006319 -0.490447 0
+-0.007612 -0.494099 0
+-0.009211 -0.497868 0
+-0.009533 -0.498625 0
+-0.009817 -0.499299 0
+-0.009949 -0.499788 0
+-0.009853 -0.500151 0
+-0.009590 -0.500392 0
+-0.009219 -0.500499 0
+-0.008759 -0.500556 0
+-0.008223 -0.500585 0
+-0.005868 -0.500694 0
+-0.001011 -0.500573 0
+0.003945 -0.500028 0
+0.008950 -0.499019 0
+0.013960 -0.497542 0
+0.018935 -0.495633 0
+0.023850 -0.493335 0
+0.028882 -0.490726 0
+0.033906 -0.487907 0
+0.038907 -0.485004 0
+0.043842 -0.482171 0
+0.048770 -0.479537 0
+0.051133 -0.478382 0
+0.052314 -0.477805 0
+0.052779 -0.477457 0
+0.053068 -0.477104 0
+0.053205 -0.476689 0
+0.053211 -0.476252 0
+0.053018 -0.475243 0
+0.052541 -0.473258 0
+
+0.133515 -0.456009 0
+0.133108 -0.455073 0
+0.132720 -0.454334 0
+0.132429 -0.454011 0
+0.132103 -0.453822 0
+0.131626 -0.453797 0
+0.131033 -0.454029 0
+0.129955 -0.454714 0
+0.127616 -0.456226 0
+0.122824 -0.459013 0
+0.117938 -0.461553 0
+0.113105 -0.463788 0
+0.108177 -0.465745 0
+0.103206 -0.467424 0
+0.098244 -0.468847 0
+0.093338 -0.470057 0
+0.088615 -0.471066 0
+0.083693 -0.472156 0
+0.081206 -0.472736 0
+0.080584 -0.472881 0
+0.079887 -0.473126 0
+0.079352 -0.473416 0
+0.079045 -0.473707 0
+0.078839 -0.474069 0
+0.078674 -0.474633 0
+0.078662 -0.475586 0
+0.078766 -0.476511 0
+0.078913 -0.478423 0
+0.079058 -0.481187 0
+0.078942 -0.484093 0
+0.078303 -0.487914 0
+0.077383 -0.491903 0
+0.077197 -0.492705 0
+0.077035 -0.493418 0
+0.076990 -0.493923 0
+0.077147 -0.494263 0
+0.077448 -0.494456 0
+0.077831 -0.494496 0
+0.078294 -0.494472 0
+0.078828 -0.494408 0
+0.081166 -0.494106 0
+0.085928 -0.493144 0
+0.090714 -0.491747 0
+0.095468 -0.489884 0
+0.100146 -0.487559 0
+0.104713 -0.484815 0
+0.109154 -0.481699 0
+0.113657 -0.478255 0
+0.118115 -0.474607 0
+0.122536 -0.470880 0
+0.126904 -0.467232 0
+0.131300 -0.463783 0
+0.133426 -0.462235 0
+0.134490 -0.461461 0
+0.134887 -0.461039 0
+0.135110 -0.460641 0
+0.135173 -0.460208 0
+0.135103 -0.459776 0
+0.134738 -0.458816 0
+0.133923 -0.456945 0
+
+0.210672 -0.425896 0
+0.210108 -0.425046 0
+0.209598 -0.424385 0
+0.209256 -0.424117 0
+0.208901 -0.423988 0
+0.208428 -0.424047 0
+0.207883 -0.424378 0
+0.206941 -0.425240 0
+0.204900 -0.427135 0
+0.200665 -0.430712 0
+0.196294 -0.434061 0
+0.191923 -0.437102 0
+0.187409 -0.439884 0
+0.182806 -0.442401 0
+0.178166 -0.444665 0
+0.173544 -0.446708 0
+0.169068 -0.448522 0
+0.164411 -0.450450 0
+0.162062 -0.451453 0
+0.161475 -0.451704 0
+0.160831 -0.452066 0
+0.160355 -0.452445 0
+0.160102 -0.452785 0
+0.159962 -0.453176 0
+0.159898 -0.453761 0
+0.160052 -0.454702 0
+0.160314 -0.455594 0
+0.160791 -0.457451 0
+0.161415 -0.460149 0
+0.161805 -0.463031 0
+0.161839 -0.466904 0
+0.161626 -0.470993 0
+0.161581 -0.471815 0
+0.161545 -0.472545 0
+0.161589 -0.473050 0
+0.161803 -0.473358 0
+0.162132 -0.473495 0
+0.162517 -0.473469 0
+0.162969 -0.473365 0
+0.163483 -0.473208 0
+0.165733 -0.472506 0
+0.170256 -0.470731 0
+0.174727 -0.468524 0
+0.179085 -0.465864 0
+0.183288 -0.462762 0
+0.187309 -0.459266 0
+0.191142 -0.455426 0
+0.194978 -0.451253 0
+0.198735 -0.446886 0
+0.202442 -0.442448 0
+0.206110 -0.438097 0
+0.209840 -0.433937 0
+0.211666 -0.432044 0
+0.212578 -0.431097 0
+0.212896 -0.430612 0
+0.213047 -0.430181 0
+0.213033 -0.429744 0
+0.212890 -0.429331 0
+0.212363 -0.428449 0
+0.211236 -0.426747 0
+
+0.281428 -0.382843 0
+0.280725 -0.382103 0
+0.280107 -0.381542 0
+0.279724 -0.381337 0
+0.279352 -0.381271 0
+0.278896 -0.381411 0
+0.278418 -0.381832 0
+0.277639 -0.382844 0
+0.275959 -0.385065 0
+0.272409 -0.389323 0
+0.268686 -0.393380 0
+0.264909 -0.397134 0
+0.260947 -0.400658 0
+0.256851 -0.403936 0
+0.252674 -0.406971 0
+0.248478 -0.409785 0
+0.244385 -0.412349 0
+0.240133 -0.415057 0
+0.237994 -0.416453 0
+0.237459 -0.416802 0
+0.236888 -0.417270 0
+0.236485 -0.417726 0
+0.236295 -0.418104 0
+0.236225 -0.418514 0
+0.236264 -0.419101 0
+0.236578 -0.420001 0
+0.236992 -0.420834 0
+0.237784 -0.422580 0
+0.238866 -0.425128 0
+0.239751 -0.427899 0
+0.240458 -0.431708 0
+0.240957 -0.435772 0
+0.241056 -0.436589 0
+0.241148 -0.437314 0
+0.241278 -0.437803 0
+0.241542 -0.438070 0
+0.241891 -0.438148 0
+0.242265 -0.438055 0
+0.242692 -0.437874 0
+0.243172 -0.437630 0
+0.245265 -0.436548 0
+0.249411 -0.434014 0
+0.253431 -0.431065 0
+0.257260 -0.427688 0
+0.260861 -0.423904 0
+0.264214 -0.419763 0
+0.267322 -0.415316 0
+0.270376 -0.410540 0
+0.273317 -0.405587 0
+0.276197 -0.400572 0
+0.279054 -0.395651 0
+0.282005 -0.390906 0
+0.283474 -0.388724 0
+0.284208 -0.387634 0
+0.284437 -0.387100 0
+0.284511 -0.386650 0
+0.284421 -0.386223 0
+0.284208 -0.385841 0
+0.283537 -0.385063 0
+0.282131 -0.383583 0
+
+0.343632 -0.328158 0
+0.342812 -0.327551 0
+0.342106 -0.327105 0
+0.341693 -0.326970 0
+0.341315 -0.326970 0
+0.340890 -0.327187 0
+0.340492 -0.327685 0
+0.339901 -0.328817 0
+0.338632 -0.331295 0
+0.335876 -0.336105 0
+0.332914 -0.340747 0
+0.329846 -0.345100 0
+0.326556 -0.349258 0
+0.323091 -0.353198 0
+0.319505 -0.356912 0
+0.315861 -0.360412 0
+0.312276 -0.363648 0
+0.308559 -0.367052 0
+0.306694 -0.368799 0
+0.306228 -0.369235 0
+0.305748 -0.369795 0
+0.305429 -0.370314 0
+0.305308 -0.370720 0
+0.305311 -0.371136 0
+0.305450 -0.371707 0
+0.305917 -0.372539 0
+0.306468 -0.373288 0
+0.307552 -0.374870 0
+0.309060 -0.377191 0
+0.310413 -0.379766 0
+0.311770 -0.383394 0
+0.312967 -0.387309 0
+0.313207 -0.388097 0
+0.313423 -0.388795 0
+0.313637 -0.389255 0
+0.313943 -0.389471 0
+0.314300 -0.389487 0
+0.314652 -0.389331 0
+0.315041 -0.389078 0
+0.315471 -0.388755 0
+0.317345 -0.387326 0
+0.320988 -0.384111 0
+0.324434 -0.380508 0
+0.327619 -0.376518 0
+0.330508 -0.372166 0
+0.333091 -0.367506 0
+0.335380 -0.362586 0
+0.337557 -0.357353 0
+0.339594 -0.351964 0
+0.341559 -0.346526 0
+0.343518 -0.341183 0
+0.345600 -0.335998 0
+0.346668 -0.333594 0
+0.347202 -0.332392 0
+0.347335 -0.331828 0
+0.347329 -0.331372 0
+0.347167 -0.330966 0
+0.346891 -0.330627 0
+0.346095 -0.329978 0
+0.344453 -0.328764 0
+
+0.395396 -0.263501 0
+0.394482 -0.263046 0
+0.393710 -0.262730 0
+0.393279 -0.262669 0
+0.392908 -0.262733 0
+0.392527 -0.263021 0
+0.392221 -0.263580 0
+0.391836 -0.264798 0
+0.391016 -0.267460 0
+0.389137 -0.272674 0
+0.387026 -0.277761 0
+0.384761 -0.282580 0
+0.382243 -0.287246 0
+0.379515 -0.291728 0
+0.376628 -0.296008 0
+0.373647 -0.300088 0
+0.370679 -0.303897 0
+0.367609 -0.307895 0
+0.366076 -0.309939 0
+0.365693 -0.310450 0
+0.365317 -0.311085 0
+0.365094 -0.311651 0
+0.365045 -0.312072 0
+0.365120 -0.312481 0
+0.365356 -0.313019 0
+0.365960 -0.313757 0
+0.366633 -0.314399 0
+0.367975 -0.315769 0
+0.369863 -0.317793 0
+0.371643 -0.320094 0
+0.373609 -0.323431 0
+0.375468 -0.327079 0
+0.375841 -0.327813 0
+0.376175 -0.328463 0
+0.376465 -0.328879 0
+0.376804 -0.329039 0
+0.377158 -0.328993 0
+0.377479 -0.328777 0
+0.377818 -0.328461 0
+0.378185 -0.328068 0
+0.379782 -0.326335 0
+0.382812 -0.322536 0
+0.385580 -0.318390 0
+0.388024 -0.313907 0
+0.390113 -0.309119 0
+0.391848 -0.304082 0
+0.393247 -0.298840 0
+0.394483 -0.293307 0
+0.395553 -0.287647 0
+0.396544 -0.281950 0
+0.397545 -0.276348 0
+0.398695 -0.270880 0
+0.399330 -0.268328 0
+0.399647 -0.267052 0
+0.399679 -0.266472 0
+0.399595 -0.266024 0
+0.399364 -0.265653 0
+0.399033 -0.265367 0
+0.398137 -0.264866 0
+0.396309 -0.263956 0
+
+0.435145 -0.190838 0
+0.434166 -0.190549 0
+0.433351 -0.190371 0
+0.432916 -0.190386 0
+0.432562 -0.190514 0
+0.432237 -0.190864 0
+0.432033 -0.191467 0
+0.431864 -0.192734 0
+0.431520 -0.195497 0
+0.430575 -0.200959 0
+0.429379 -0.206334 0
+0.427985 -0.211474 0
+0.426316 -0.216507 0
+0.424407 -0.221394 0
+0.422308 -0.226110 0
+0.420081 -0.230646 0
+0.417818 -0.234913 0
+0.415489 -0.239383 0
+0.414335 -0.241662 0
+0.414046 -0.242231 0
+0.413786 -0.242922 0
+0.413665 -0.243519 0
+0.413690 -0.243942 0
+0.413834 -0.244332 0
+0.414161 -0.244820 0
+0.414883 -0.245442 0
+0.415658 -0.245957 0
+0.417217 -0.247073 0
+0.419429 -0.248739 0
+0.421580 -0.250696 0
+0.424096 -0.253641 0
+0.426561 -0.256911 0
+0.427055 -0.257569 0
+0.427497 -0.258151 0
+0.427855 -0.258510 0
+0.428217 -0.258609 0
+0.428558 -0.258502 0
+0.428835 -0.258234 0
+0.429114 -0.257864 0
+0.429408 -0.257413 0
+0.430680 -0.255429 0
+0.433004 -0.251162 0
+0.435010 -0.246598 0
+0.436638 -0.241759 0
+0.437864 -0.236681 0
+0.438698 -0.231418 0
+0.439166 -0.226013 0
+0.439422 -0.220350 0
+0.439493 -0.214590 0
+0.439479 -0.208808 0
+0.439493 -0.203117 0
+0.439676 -0.197532 0
+0.439858 -0.194909 0
+0.439948 -0.193597 0
+0.439880 -0.193020 0
+0.439719 -0.192594 0
+0.439427 -0.192268 0
+0.439052 -0.192044 0
+0.438081 -0.191706 0
+0.436124 -0.191127 0
+
+0.461673 -0.112377 0
+0.460659 -0.112262 0
+0.459825 -0.112229 0
+0.459400 -0.112318 0
+0.459073 -0.112506 0
+0.458813 -0.112907 0
+0.458717 -0.113537 0
+0.458771 -0.114813 0
+0.458912 -0.117594 0
+0.458929 -0.123138 0
+0.458685 -0.128639 0
+0.458205 -0.133942 0
+0.457435 -0.139188 0
+0.456404 -0.144333 0
+0.455156 -0.149342 0
+0.453750 -0.154196 0
+0.452263 -0.158790 0
+0.450746 -0.163597 0
+0.450004 -0.166042 0
+0.449819 -0.166653 0
+0.449683 -0.167379 0
+0.449667 -0.167987 0
+0.449765 -0.168399 0
+0.449975 -0.168758 0
+0.450381 -0.169183 0
+0.451201 -0.169670 0
+0.452053 -0.170043 0
+0.453783 -0.170871 0
+0.456250 -0.172127 0
+0.458708 -0.173681 0
+0.461698 -0.176144 0
+0.464692 -0.178936 0
+0.465294 -0.179498 0
+0.465830 -0.179995 0
+0.466244 -0.180286 0
+0.466618 -0.180321 0
+0.466935 -0.180156 0
+0.467162 -0.179844 0
+0.467373 -0.179431 0
+0.467583 -0.178937 0
+0.468492 -0.176762 0
+0.470039 -0.172156 0
+0.471222 -0.167313 0
+0.471986 -0.162265 0
+0.472311 -0.157051 0
+0.472218 -0.151724 0
+0.471740 -0.146319 0
+0.471010 -0.140698 0
+0.470079 -0.135013 0
+0.469062 -0.129321 0
+0.468087 -0.123714 0
+0.467298 -0.118182 0
+0.467021 -0.115567 0
+0.466882 -0.114259 0
+0.466715 -0.113704 0
+0.466482 -0.113312 0
+0.466138 -0.113041 0
+0.465730 -0.112886 0
+0.464715 -0.112722 0
+0.462687 -0.112492 0
+
+0.474173 -0.030501 0
+0.473155 -0.030564 0
+0.472327 -0.030676 0
+0.471924 -0.030838 0
+0.471635 -0.031080 0
+0.471449 -0.031520 0
+0.471464 -0.032157 0
+0.471739 -0.033404 0
+0.472360 -0.036119 0
+0.473340 -0.041575 0
+0.474055 -0.047035 0
+0.474502 -0.052341 0
+0.474655 -0.057641 0
+0.474533 -0.062886 0
+0.474174 -0.068036 0
+0.473632 -0.073060 0
+0.472966 -0.077843 0
+0.472306 -0.082841 0
+0.472001 -0.085377 0
+0.471924 -0.086011 0
+0.471916 -0.086749 0
+0.472006 -0.087351 0
+0.472174 -0.087740 0
+0.472443 -0.088057 0
+0.472917 -0.088404 0
+0.473809 -0.088742 0
+0.474713 -0.088961 0
+0.476560 -0.089476 0
+0.479208 -0.090285 0
+0.481899 -0.091388 0
+0.485271 -0.093295 0
+0.488705 -0.095525 0
+0.489394 -0.095974 0
+0.490009 -0.096370 0
+0.490467 -0.096585 0
+0.490841 -0.096554 0
+0.491125 -0.096337 0
+0.491294 -0.095990 0
+0.491430 -0.095547 0
+0.491552 -0.095023 0
+0.492068 -0.092724 0
+0.492793 -0.087919 0
+0.493117 -0.082944 0
+0.492992 -0.077840 0
+0.492407 -0.072649 0
+0.491391 -0.067419 0
+0.489982 -0.062179 0
+0.488286 -0.056770 0
+0.486383 -0.051334 0
+0.484392 -0.045904 0
+0.482458 -0.040552 0
+0.480720 -0.035241 0
+0.479994 -0.032714 0
+0.479630 -0.031450 0
+0.479369 -0.030932 0
+0.479071 -0.030586 0
+0.478686 -0.030380 0
+0.478256 -0.030298 0
+0.477229 -0.030312 0
+0.475192 -0.030438 0
+
+0.472266 0.052302 0
+0.471274 0.052063 0
+0.470478 0.051809 0
+0.470110 0.051579 0
+0.469866 0.051291 0
+0.469760 0.050825 0
+0.469885 0.050201 0
+0.470372 0.049020 0
+0.471456 0.046455 0
+0.473368 0.041252 0
+0.475020 0.035999 0
+0.476383 0.030851 0
+0.477454 0.025658 0
+0.478244 0.020471 0
+0.478784 0.015337 0
+0.479123 0.010295 0
+0.479298 0.005469 0
+0.479516 0.000433 0
+0.479655 -0.002118 0
+0.479690 -0.002755 0
+0.479810 -0.003484 0
+0.480003 -0.004061 0
+0.480237 -0.004415 0
+0.480557 -0.004680 0
+0.481084 -0.004940 0
+0.482021 -0.005118 0
+0.482949 -0.005176 0
+0.484857 -0.005363 0
+0.487605 -0.005700 0
+0.490447 -0.006319 0
+0.494099 -0.007612 0
+0.497868 -0.009211 0
+0.498625 -0.009533 0
+0.499299 -0.009817 0
+0.499788 -0.009949 0
+0.500151 -0.009853 0
+0.500392 -0.009590 0
+0.500499 -0.009219 0
+0.500556 -0.008759 0
+0.500585 -0.008223 0
+0.500694 -0.005868 0
+0.500573 -0.001011 0
+0.500028 0.003945 0
+0.499019 0.008950 0
+0.497542 0.013960 0
+0.495633 0.018935 0
+0.493335 0.023850 0
+0.490726 0.028882 0
+0.487907 0.033906 0
+0.485004 0.038907 0
+0.482171 0.043842 0
+0.479537 0.048770 0
+0.478382 0.051133 0
+0.477805 0.052314 0
+0.477457 0.052779 0
+0.477104 0.053068 0
+0.476689 0.053205 0
+0.476252 0.053211 0
+0.475243 0.053018 0
+0.473258 0.052541 0
+
+0.456009 0.133515 0
+0.455073 0.133108 0
+0.454334 0.132720 0
+0.454011 0.132429 0
+0.453822 0.132103 0
+0.453797 0.131626 0
+0.454029 0.131033 0
+0.454714 0.129955 0
+0.456226 0.127616 0
+0.459013 0.122824 0
+0.461553 0.117938 0
+0.463788 0.113105 0
+0.465745 0.108177 0
+0.467424 0.103206 0
+0.468847 0.098244 0
+0.470057 0.093338 0
+0.471066 0.088615 0
+0.472156 0.083693 0
+0.472736 0.081206 0
+0.472881 0.080584 0
+0.473126 0.079887 0
+0.473416 0.079352 0
+0.473707 0.079045 0
+0.474069 0.078839 0
+0.474633 0.078674 0
+0.475587 0.078662 0
+0.476511 0.078765 0
+0.478423 0.078913 0
+0.481187 0.079058 0
+0.484093 0.078942 0
+0.487914 0.078303 0
+0.491903 0.077383 0
+0.492705 0.077197 0
+0.493418 0.077034 0
+0.493923 0.076990 0
+0.494263 0.077147 0
+0.494456 0.077448 0
+0.494496 0.077831 0
+0.494472 0.078294 0
+0.494408 0.078828 0
+0.494107 0.081166 0
+0.493144 0.085928 0
+0.491747 0.090714 0
+0.489884 0.095468 0
+0.487559 0.100146 0
+0.484815 0.104713 0
+0.481699 0.109154 0
+0.478255 0.113657 0
+0.474607 0.118115 0
+0.470880 0.122536 0
+0.467232 0.126904 0
+0.463783 0.131300 0
+0.462235 0.133426 0
+0.461461 0.134490 0
+0.461039 0.134887 0
+0.460641 0.135110 0
+0.460208 0.135172 0
+0.459776 0.135103 0
+0.458816 0.134738 0
+0.456945 0.133923 0
+
+0.425896 0.210672 0
+0.425046 0.210108 0
+0.424385 0.209598 0
+0.424117 0.209255 0
+0.423988 0.208901 0
+0.424047 0.208427 0
+0.424378 0.207883 0
+0.425240 0.206941 0
+0.427135 0.204900 0
+0.430712 0.200665 0
+0.434061 0.196294 0
+0.437102 0.191923 0
+0.439884 0.187409 0
+0.442401 0.182806 0
+0.444665 0.178166 0
+0.446708 0.173544 0
+0.448522 0.169068 0
+0.450450 0.164411 0
+0.451453 0.162062 0
+0.451704 0.161475 0
+0.452066 0.160831 0
+0.452445 0.160355 0
+0.452785 0.160102 0
+0.453176 0.159962 0
+0.453761 0.159898 0
+0.454702 0.160052 0
+0.455594 0.160314 0
+0.457451 0.160791 0
+0.460149 0.161415 0
+0.463031 0.161805 0
+0.466904 0.161839 0
+0.470993 0.161625 0
+0.471815 0.161581 0
+0.472545 0.161545 0
+0.473050 0.161589 0
+0.473358 0.161803 0
+0.473495 0.162132 0
+0.473469 0.162517 0
+0.473365 0.162969 0
+0.473208 0.163483 0
+0.472506 0.165733 0
+0.470731 0.170256 0
+0.468524 0.174727 0
+0.465864 0.179085 0
+0.462762 0.183288 0
+0.459266 0.187309 0
+0.455426 0.191142 0
+0.451253 0.194978 0
+0.446886 0.198735 0
+0.442448 0.202442 0
+0.438097 0.206110 0
+0.433937 0.209840 0
+0.432044 0.211666 0
+0.431097 0.212578 0
+0.430612 0.212896 0
+0.430181 0.213047 0
+0.429744 0.213033 0
+0.429331 0.212890 0
+0.428449 0.212363 0
+0.426747 0.211236 0
+
+0.382843 0.281428 0
+0.382103 0.280725 0
+0.381542 0.280107 0
+0.381337 0.279724 0
+0.381271 0.279352 0
+0.381411 0.278896 0
+0.381832 0.278418 0
+0.382844 0.277639 0
+0.385065 0.275959 0
+0.389323 0.272409 0
+0.393380 0.268686 0
+0.397134 0.264909 0
+0.400658 0.260947 0
+0.403936 0.256850 0
+0.406971 0.252674 0
+0.409786 0.248477 0
+0.412349 0.244385 0
+0.415057 0.240133 0
+0.416453 0.237994 0
+0.416802 0.237459 0
+0.417270 0.236888 0
+0.417726 0.236485 0
+0.418105 0.236295 0
+0.418515 0.236225 0
+0.419101 0.236264 0
+0.420001 0.236578 0
+0.420835 0.236992 0
+0.422580 0.237784 0
+0.425129 0.238866 0
+0.427899 0.239751 0
+0.431708 0.240458 0
+0.435772 0.240957 0
+0.436589 0.241056 0
+0.437314 0.241148 0
+0.437803 0.241278 0
+0.438070 0.241542 0
+0.438148 0.241891 0
+0.438055 0.242265 0
+0.437874 0.242692 0
+0.437630 0.243171 0
+0.436548 0.245265 0
+0.434014 0.249411 0
+0.431065 0.253430 0
+0.427688 0.257260 0
+0.423904 0.260861 0
+0.419763 0.264214 0
+0.415316 0.267322 0
+0.410540 0.270375 0
+0.405587 0.273317 0
+0.400572 0.276196 0
+0.395651 0.279054 0
+0.390906 0.282005 0
+0.388725 0.283473 0
+0.387634 0.284208 0
+0.387101 0.284437 0
+0.386650 0.284510 0
+0.386223 0.284421 0
+0.385841 0.284208 0
+0.385063 0.283536 0
+0.383583 0.282131 0
+
+0.328158 0.343632 0
+0.327551 0.342811 0
+0.327105 0.342106 0
+0.326970 0.341693 0
+0.326970 0.341315 0
+0.327187 0.340890 0
+0.327685 0.340492 0
+0.328817 0.339901 0
+0.331296 0.338632 0
+0.336105 0.335876 0
+0.340747 0.332914 0
+0.345100 0.329846 0
+0.349258 0.326556 0
+0.353198 0.323091 0
+0.356912 0.319505 0
+0.360412 0.315861 0
+0.363648 0.312276 0
+0.367052 0.308558 0
+0.368799 0.306694 0
+0.369235 0.306228 0
+0.369796 0.305747 0
+0.370314 0.305429 0
+0.370720 0.305308 0
+0.371136 0.305311 0
+0.371707 0.305450 0
+0.372539 0.305917 0
+0.373288 0.306468 0
+0.374870 0.307552 0
+0.377191 0.309060 0
+0.379766 0.310413 0
+0.383394 0.311770 0
+0.387309 0.312967 0
+0.388097 0.313207 0
+0.388795 0.313423 0
+0.389255 0.313636 0
+0.389471 0.313943 0
+0.389487 0.314300 0
+0.389331 0.314652 0
+0.389079 0.315041 0
+0.388756 0.315471 0
+0.387326 0.317345 0
+0.384111 0.320988 0
+0.380508 0.324434 0
+0.376518 0.327619 0
+0.372166 0.330508 0
+0.367506 0.333091 0
+0.362586 0.335380 0
+0.357353 0.337557 0
+0.351965 0.339594 0
+0.346526 0.341559 0
+0.341183 0.343518 0
+0.335998 0.345600 0
+0.333594 0.346668 0
+0.332393 0.347202 0
+0.331828 0.347335 0
+0.331372 0.347329 0
+0.330966 0.347167 0
+0.330627 0.346891 0
+0.329978 0.346094 0
+0.328764 0.344453 0
+
+0.263501 0.395396 0
+0.263046 0.394482 0
+0.262730 0.393710 0
+0.262669 0.393279 0
+0.262734 0.392908 0
+0.263021 0.392527 0
+0.263581 0.392221 0
+0.264798 0.391836 0
+0.267460 0.391016 0
+0.272675 0.389137 0
+0.277761 0.387026 0
+0.282580 0.384761 0
+0.287246 0.382243 0
+0.291728 0.379515 0
+0.296008 0.376628 0
+0.300088 0.373647 0
+0.303897 0.370678 0
+0.307895 0.367609 0
+0.309939 0.366076 0
+0.310450 0.365693 0
+0.311085 0.365317 0
+0.311651 0.365093 0
+0.312072 0.365045 0
+0.312481 0.365119 0
+0.313019 0.365356 0
+0.313757 0.365960 0
+0.314399 0.366633 0
+0.315769 0.367975 0
+0.317793 0.369863 0
+0.320094 0.371643 0
+0.323431 0.373609 0
+0.327079 0.375468 0
+0.327813 0.375841 0
+0.328463 0.376175 0
+0.328879 0.376465 0
+0.329039 0.376804 0
+0.328993 0.377158 0
+0.328777 0.377478 0
+0.328461 0.377818 0
+0.328069 0.378185 0
+0.326335 0.379782 0
+0.322537 0.382812 0
+0.318390 0.385580 0
+0.313908 0.388024 0
+0.309120 0.390113 0
+0.304082 0.391847 0
+0.298840 0.393247 0
+0.293307 0.394483 0
+0.287648 0.395553 0
+0.281950 0.396544 0
+0.276348 0.397545 0
+0.270880 0.398695 0
+0.268328 0.399330 0
+0.267052 0.399647 0
+0.266472 0.399679 0
+0.266024 0.399595 0
+0.265653 0.399364 0
+0.265367 0.399033 0
+0.264866 0.398136 0
+0.263956 0.396309 0
+
+0.190838 0.435145 0
+0.190549 0.434167 0
+0.190371 0.433351 0
+0.190386 0.432916 0
+0.190514 0.432562 0
+0.190864 0.432237 0
+0.191467 0.432033 0
+0.192733 0.431865 0
+0.195497 0.431520 0
+0.200959 0.430575 0
+0.206334 0.429379 0
+0.211474 0.427985 0
+0.216506 0.426316 0
+0.221394 0.424407 0
+0.226110 0.422308 0
+0.230646 0.420081 0
+0.234913 0.417818 0
+0.239383 0.415489 0
+0.241662 0.414335 0
+0.242231 0.414046 0
+0.242922 0.413786 0
+0.243519 0.413665 0
+0.243941 0.413690 0
+0.244331 0.413834 0
+0.244820 0.414161 0
+0.245442 0.414883 0
+0.245957 0.415658 0
+0.247073 0.417217 0
+0.248739 0.419429 0
+0.250696 0.421580 0
+0.253641 0.424096 0
+0.256911 0.426561 0
+0.257569 0.427055 0
+0.258151 0.427497 0
+0.258510 0.427855 0
+0.258608 0.428217 0
+0.258501 0.428558 0
+0.258234 0.428835 0
+0.257864 0.429114 0
+0.257413 0.429408 0
+0.255429 0.430680 0
+0.251162 0.433004 0
+0.246598 0.435010 0
+0.241759 0.436638 0
+0.236681 0.437864 0
+0.231418 0.438698 0
+0.226013 0.439166 0
+0.220350 0.439422 0
+0.214590 0.439493 0
+0.208808 0.439479 0
+0.203117 0.439493 0
+0.197532 0.439676 0
+0.194908 0.439858 0
+0.193597 0.439948 0
+0.193020 0.439880 0
+0.192594 0.439719 0
+0.192268 0.439427 0
+0.192044 0.439052 0
+0.191706 0.438081 0
+0.191127 0.436124 0
+
diff --git a/resources/designs/saved/v4rdso2_outer2_var1.txt b/resources/designs/saved/v4rdso2_outer2_var1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7d358b2012713ff049e92ab08af4508e5541b72c
--- /dev/null
+++ b/resources/designs/saved/v4rdso2_outer2_var1.txt
@@ -0,0 +1,1337 @@
+3d = true
+polyline = true
+fit = false
+fittol = 0.0001
+
+0.179358 0.458635 0
+0.178242 0.457033 0
+0.176948 0.455173 0
+0.175313 0.452187 0
+0.174559 0.450693 0
+0.174083 0.449167 0
+0.174069 0.448508 0
+0.174284 0.447979 0
+0.174518 0.447756 0
+0.174900 0.447565 0
+0.175412 0.447406 0
+0.176055 0.447248 0
+0.178628 0.446615 0
+0.184339 0.445469 0
+0.190484 0.444626 0
+0.196440 0.444293 0
+0.201721 0.444492 0
+0.205947 0.445206 0
+0.209046 0.446337 0
+0.210739 0.447871 0
+0.210968 0.449753 0
+0.209856 0.451860 0
+0.207311 0.454159 0
+0.203755 0.456510 0
+0.199358 0.458808 0
+0.194507 0.460953 0
+0.189657 0.462919 0
+0.187421 0.463853 0
+0.186302 0.464321 0
+0.185771 0.464522 0
+0.185173 0.464608 0
+0.184675 0.464479 0
+0.184188 0.464171 0
+0.183162 0.462999 0
+0.181550 0.461268 0
+0.179945 0.459335 0
+
+0.096992 0.482813 0
+0.096171 0.481041 0
+0.095220 0.478985 0
+0.094128 0.475760 0
+0.093645 0.474158 0
+0.093441 0.472572 0
+0.093542 0.471921 0
+0.093846 0.471438 0
+0.094115 0.471258 0
+0.094524 0.471136 0
+0.095056 0.471069 0
+0.095717 0.471025 0
+0.098361 0.470848 0
+0.104184 0.470712 0
+0.110382 0.470948 0
+0.116305 0.471655 0
+0.121471 0.472767 0
+0.125509 0.474205 0
+0.128365 0.475856 0
+0.129765 0.477661 0
+0.129664 0.479554 0
+0.128203 0.481436 0
+0.125298 0.483259 0
+0.121387 0.484956 0
+0.116658 0.486456 0
+0.111508 0.487726 0
+0.106391 0.488820 0
+0.104026 0.489352 0
+0.102844 0.489618 0
+0.102285 0.489723 0
+0.101682 0.489705 0
+0.101214 0.489491 0
+0.100788 0.489103 0
+0.099981 0.487771 0
+0.098693 0.485786 0
+0.097449 0.483603 0
+
+0.011679 0.492320 0
+0.011178 0.490433 0
+0.010598 0.488243 0
+0.010084 0.484878 0
+0.009886 0.483216 0
+0.009960 0.481619 0
+0.010173 0.480994 0
+0.010556 0.480572 0
+0.010852 0.480441 0
+0.011276 0.480392 0
+0.011811 0.480419 0
+0.012470 0.480490 0
+0.015105 0.480775 0
+0.020863 0.481652 0
+0.026926 0.482961 0
+0.032636 0.484685 0
+0.037531 0.486678 0
+0.041258 0.488795 0
+0.043783 0.490917 0
+0.044849 0.492938 0
+0.044421 0.494785 0
+0.042655 0.496384 0
+0.039477 0.497675 0
+0.035331 0.498667 0
+0.030414 0.499323 0
+0.025122 0.499679 0
+0.019892 0.499868 0
+0.017471 0.499981 0
+0.016260 0.500038 0
+0.015692 0.500045 0
+0.015101 0.499922 0
+0.014677 0.499631 0
+0.014325 0.499174 0
+0.013761 0.497722 0
+0.012838 0.495544 0
+0.011991 0.493178 0
+
+-0.073989 0.486869 0
+-0.074154 0.484923 0
+-0.074345 0.482666 0
+-0.074268 0.479262 0
+-0.074174 0.477592 0
+-0.073823 0.476031 0
+-0.073506 0.475453 0
+-0.073055 0.475104 0
+-0.072741 0.475027 0
+-0.072315 0.475052 0
+-0.071792 0.475171 0
+-0.071156 0.475356 0
+-0.068611 0.476094 0
+-0.063092 0.477957 0
+-0.057349 0.480300 0
+-0.052025 0.482989 0
+-0.047550 0.485802 0
+-0.044248 0.488534 0
+-0.042129 0.491062 0
+-0.041430 0.493237 0
+-0.042173 0.494981 0
+-0.044189 0.496250 0
+-0.047543 0.496969 0
+-0.051798 0.497226 0
+-0.056755 0.497019 0
+-0.062028 0.496450 0
+-0.067211 0.495728 0
+-0.069616 0.495419 0
+-0.070818 0.495265 0
+-0.071379 0.495173 0
+-0.071939 0.494949 0
+-0.072306 0.494589 0
+-0.072574 0.494078 0
+-0.072876 0.492550 0
+-0.073407 0.490245 0
+-0.073830 0.487768 0
+
+-0.157409 0.466624 0
+-0.157234 0.464680 0
+-0.157030 0.462423 0
+-0.156363 0.459085 0
+-0.155980 0.457456 0
+-0.155364 0.455980 0
+-0.154951 0.455466 0
+-0.154446 0.455200 0
+-0.154123 0.455179 0
+-0.153708 0.455278 0
+-0.153214 0.455486 0
+-0.152619 0.455778 0
+-0.150241 0.456947 0
+-0.145130 0.459740 0
+-0.139880 0.463044 0
+-0.135104 0.466617 0
+-0.131187 0.470164 0
+-0.128408 0.473428 0
+-0.126761 0.476286 0
+-0.126451 0.478549 0
+-0.127485 0.480138 0
+-0.129691 0.481038 0
+-0.133118 0.481163 0
+-0.137353 0.480678 0
+-0.142199 0.479613 0
+-0.147294 0.478137 0
+-0.152273 0.476526 0
+-0.154587 0.475804 0
+-0.155744 0.475443 0
+-0.156280 0.475255 0
+-0.156793 0.474938 0
+-0.157092 0.474519 0
+-0.157267 0.473969 0
+-0.157300 0.472413 0
+-0.157422 0.470050 0
+-0.157409 0.467537 0
+
+-0.236046 0.432201 0
+-0.235536 0.430317 0
+-0.234943 0.428130 0
+-0.233706 0.424958 0
+-0.233047 0.423420 0
+-0.232184 0.422074 0
+-0.231687 0.421640 0
+-0.231144 0.421465 0
+-0.230823 0.421501 0
+-0.230431 0.421670 0
+-0.229980 0.421961 0
+-0.229446 0.422352 0
+-0.227307 0.423916 0
+-0.222758 0.427554 0
+-0.218162 0.431720 0
+-0.214079 0.436068 0
+-0.210837 0.440241 0
+-0.208668 0.443938 0
+-0.207542 0.447038 0
+-0.207629 0.449321 0
+-0.208923 0.450706 0
+-0.211252 0.451209 0
+-0.214649 0.450738 0
+-0.218736 0.449524 0
+-0.223322 0.447634 0
+-0.228084 0.445296 0
+-0.232707 0.442844 0
+-0.234861 0.441732 0
+-0.235937 0.441176 0
+-0.236433 0.440897 0
+-0.236883 0.440495 0
+-0.237105 0.440031 0
+-0.237181 0.439460 0
+-0.236944 0.437921 0
+-0.236654 0.435572 0
+-0.236204 0.433100 0
+
+-0.307511 0.384646 0
+-0.306681 0.382879 0
+-0.305718 0.380828 0
+-0.303949 0.377919 0
+-0.303033 0.376519 0
+-0.301949 0.375344 0
+-0.301385 0.375002 0
+-0.300819 0.374924 0
+-0.300509 0.375015 0
+-0.300152 0.375250 0
+-0.299759 0.375614 0
+-0.299300 0.376092 0
+-0.297466 0.378004 0
+-0.293618 0.382377 0
+-0.289815 0.387277 0
+-0.286549 0.392269 0
+-0.284081 0.396941 0
+-0.282586 0.400959 0
+-0.282016 0.404208 0
+-0.282498 0.406440 0
+-0.284013 0.407580 0
+-0.286394 0.407671 0
+-0.289658 0.406617 0
+-0.293472 0.404712 0
+-0.297660 0.402054 0
+-0.301943 0.398924 0
+-0.306071 0.395707 0
+-0.307999 0.394238 0
+-0.308962 0.393503 0
+-0.309402 0.393143 0
+-0.309776 0.392669 0
+-0.309913 0.392173 0
+-0.309889 0.391597 0
+-0.309388 0.390123 0
+-0.308695 0.387861 0
+-0.307823 0.385504 0
+
+-0.369632 0.325404 0
+-0.368508 0.323807 0
+-0.367203 0.321955 0
+-0.364956 0.319398 0
+-0.363811 0.318178 0
+-0.362539 0.317208 0
+-0.361924 0.316970 0
+-0.361354 0.316991 0
+-0.361064 0.317135 0
+-0.360754 0.317428 0
+-0.360430 0.317855 0
+-0.360061 0.318406 0
+-0.358586 0.320607 0
+-0.355556 0.325582 0
+-0.352662 0.331068 0
+-0.350313 0.336550 0
+-0.348693 0.341581 0
+-0.347919 0.345797 0
+-0.347921 0.349095 0
+-0.348784 0.351210 0
+-0.350474 0.352070 0
+-0.352834 0.351745 0
+-0.355865 0.350141 0
+-0.359290 0.347602 0
+-0.362954 0.344257 0
+-0.366629 0.340432 0
+-0.370135 0.336547 0
+-0.371778 0.334765 0
+-0.372600 0.333874 0
+-0.372970 0.333443 0
+-0.373256 0.332911 0
+-0.373305 0.332399 0
+-0.373182 0.331836 0
+-0.372432 0.330471 0
+-0.371356 0.328364 0
+-0.370088 0.326195 0
+
+-0.420522 0.256274 0
+-0.419138 0.254897 0
+-0.417532 0.253300 0
+-0.414875 0.251171 0
+-0.413535 0.250169 0
+-0.412114 0.249435 0
+-0.411467 0.249307 0
+-0.410909 0.249427 0
+-0.410648 0.249619 0
+-0.410394 0.249961 0
+-0.410149 0.250439 0
+-0.409882 0.251045 0
+-0.408811 0.253469 0
+-0.406691 0.258894 0
+-0.404794 0.264799 0
+-0.403432 0.270606 0
+-0.402710 0.275842 0
+-0.402680 0.280128 0
+-0.403256 0.283376 0
+-0.404472 0.285309 0
+-0.406286 0.285862 0
+-0.408554 0.285132 0
+-0.411260 0.283026 0
+-0.414193 0.279931 0
+-0.417220 0.276001 0
+-0.420174 0.271596 0
+-0.422952 0.267161 0
+-0.424261 0.265121 0
+-0.424916 0.264101 0
+-0.425206 0.263612 0
+-0.425395 0.263039 0
+-0.425354 0.262526 0
+-0.425135 0.261992 0
+-0.424160 0.260779 0
+-0.422734 0.258890 0
+-0.421109 0.256974 0
+
+-0.458635 0.179358 0
+-0.457033 0.178242 0
+-0.455173 0.176948 0
+-0.452187 0.175313 0
+-0.450693 0.174559 0
+-0.449167 0.174083 0
+-0.448508 0.174069 0
+-0.447979 0.174284 0
+-0.447756 0.174518 0
+-0.447565 0.174900 0
+-0.447406 0.175412 0
+-0.447248 0.176055 0
+-0.446615 0.178628 0
+-0.445469 0.184339 0
+-0.444626 0.190484 0
+-0.444293 0.196440 0
+-0.444492 0.201721 0
+-0.445206 0.205947 0
+-0.446337 0.209046 0
+-0.447871 0.210739 0
+-0.449753 0.210968 0
+-0.451860 0.209856 0
+-0.454159 0.207311 0
+-0.456510 0.203755 0
+-0.458808 0.199358 0
+-0.460953 0.194507 0
+-0.462919 0.189657 0
+-0.463853 0.187421 0
+-0.464321 0.186302 0
+-0.464522 0.185771 0
+-0.464608 0.185173 0
+-0.464479 0.184675 0
+-0.464171 0.184188 0
+-0.462999 0.183162 0
+-0.461268 0.181550 0
+-0.459335 0.179945 0
+
+-0.482813 0.096992 0
+-0.481041 0.096171 0
+-0.478985 0.095220 0
+-0.475760 0.094128 0
+-0.474158 0.093645 0
+-0.472572 0.093441 0
+-0.471921 0.093542 0
+-0.471438 0.093846 0
+-0.471258 0.094115 0
+-0.471136 0.094524 0
+-0.471069 0.095056 0
+-0.471025 0.095717 0
+-0.470848 0.098361 0
+-0.470712 0.104184 0
+-0.470948 0.110382 0
+-0.471655 0.116305 0
+-0.472767 0.121471 0
+-0.474205 0.125509 0
+-0.475856 0.128365 0
+-0.477661 0.129765 0
+-0.479554 0.129664 0
+-0.481436 0.128203 0
+-0.483259 0.125298 0
+-0.484956 0.121387 0
+-0.486456 0.116658 0
+-0.487726 0.111508 0
+-0.488820 0.106391 0
+-0.489352 0.104026 0
+-0.489618 0.102844 0
+-0.489723 0.102285 0
+-0.489705 0.101682 0
+-0.489491 0.101214 0
+-0.489103 0.100788 0
+-0.487771 0.099981 0
+-0.485786 0.098693 0
+-0.483603 0.097449 0
+
+-0.492320 0.011679 0
+-0.490433 0.011178 0
+-0.488243 0.010598 0
+-0.484878 0.010084 0
+-0.483216 0.009886 0
+-0.481619 0.009960 0
+-0.480994 0.010173 0
+-0.480572 0.010556 0
+-0.480441 0.010852 0
+-0.480392 0.011276 0
+-0.480419 0.011811 0
+-0.480490 0.012470 0
+-0.480775 0.015105 0
+-0.481652 0.020863 0
+-0.482961 0.026926 0
+-0.484685 0.032636 0
+-0.486678 0.037531 0
+-0.488795 0.041258 0
+-0.490917 0.043783 0
+-0.492938 0.044849 0
+-0.494785 0.044421 0
+-0.496384 0.042655 0
+-0.497675 0.039477 0
+-0.498667 0.035331 0
+-0.499323 0.030414 0
+-0.499679 0.025122 0
+-0.499868 0.019892 0
+-0.499981 0.017471 0
+-0.500038 0.016260 0
+-0.500045 0.015692 0
+-0.499922 0.015101 0
+-0.499631 0.014677 0
+-0.499174 0.014325 0
+-0.497722 0.013761 0
+-0.495544 0.012838 0
+-0.493178 0.011991 0
+
+-0.486869 -0.073989 0
+-0.484923 -0.074154 0
+-0.482666 -0.074345 0
+-0.479262 -0.074268 0
+-0.477592 -0.074174 0
+-0.476031 -0.073823 0
+-0.475453 -0.073506 0
+-0.475104 -0.073055 0
+-0.475027 -0.072741 0
+-0.475052 -0.072315 0
+-0.475171 -0.071792 0
+-0.475356 -0.071156 0
+-0.476094 -0.068611 0
+-0.477957 -0.063092 0
+-0.480300 -0.057349 0
+-0.482989 -0.052025 0
+-0.485802 -0.047550 0
+-0.488534 -0.044248 0
+-0.491062 -0.042129 0
+-0.493237 -0.041430 0
+-0.494981 -0.042173 0
+-0.496250 -0.044189 0
+-0.496969 -0.047543 0
+-0.497226 -0.051798 0
+-0.497019 -0.056755 0
+-0.496450 -0.062028 0
+-0.495728 -0.067211 0
+-0.495419 -0.069616 0
+-0.495265 -0.070818 0
+-0.495173 -0.071379 0
+-0.494949 -0.071939 0
+-0.494589 -0.072306 0
+-0.494078 -0.072574 0
+-0.492550 -0.072876 0
+-0.490245 -0.073407 0
+-0.487768 -0.073830 0
+
+-0.466624 -0.157409 0
+-0.464680 -0.157234 0
+-0.462423 -0.157030 0
+-0.459085 -0.156363 0
+-0.457456 -0.155980 0
+-0.455980 -0.155364 0
+-0.455466 -0.154951 0
+-0.455200 -0.154446 0
+-0.455179 -0.154123 0
+-0.455278 -0.153708 0
+-0.455486 -0.153214 0
+-0.455778 -0.152619 0
+-0.456947 -0.150241 0
+-0.459740 -0.145130 0
+-0.463044 -0.139880 0
+-0.466617 -0.135104 0
+-0.470164 -0.131187 0
+-0.473428 -0.128408 0
+-0.476286 -0.126761 0
+-0.478549 -0.126451 0
+-0.480138 -0.127485 0
+-0.481038 -0.129691 0
+-0.481163 -0.133118 0
+-0.480678 -0.137353 0
+-0.479613 -0.142199 0
+-0.478137 -0.147294 0
+-0.476526 -0.152273 0
+-0.475804 -0.154587 0
+-0.475443 -0.155744 0
+-0.475255 -0.156280 0
+-0.474938 -0.156793 0
+-0.474519 -0.157092 0
+-0.473969 -0.157267 0
+-0.472413 -0.157300 0
+-0.470050 -0.157422 0
+-0.467537 -0.157409 0
+
+-0.432201 -0.236046 0
+-0.430317 -0.235536 0
+-0.428130 -0.234943 0
+-0.424958 -0.233706 0
+-0.423420 -0.233047 0
+-0.422074 -0.232184 0
+-0.421640 -0.231687 0
+-0.421465 -0.231144 0
+-0.421501 -0.230823 0
+-0.421670 -0.230431 0
+-0.421961 -0.229980 0
+-0.422352 -0.229446 0
+-0.423916 -0.227307 0
+-0.427554 -0.222758 0
+-0.431720 -0.218162 0
+-0.436068 -0.214079 0
+-0.440241 -0.210837 0
+-0.443938 -0.208668 0
+-0.447038 -0.207542 0
+-0.449321 -0.207629 0
+-0.450706 -0.208923 0
+-0.451209 -0.211252 0
+-0.450738 -0.214649 0
+-0.449524 -0.218736 0
+-0.447634 -0.223322 0
+-0.445296 -0.228084 0
+-0.442844 -0.232707 0
+-0.441732 -0.234861 0
+-0.441176 -0.235937 0
+-0.440897 -0.236433 0
+-0.440495 -0.236883 0
+-0.440031 -0.237105 0
+-0.439460 -0.237181 0
+-0.437921 -0.236944 0
+-0.435572 -0.236654 0
+-0.433100 -0.236204 0
+
+-0.384646 -0.307511 0
+-0.382879 -0.306681 0
+-0.380828 -0.305718 0
+-0.377920 -0.303949 0
+-0.376519 -0.303033 0
+-0.375344 -0.301949 0
+-0.375002 -0.301385 0
+-0.374924 -0.300819 0
+-0.375015 -0.300509 0
+-0.375250 -0.300152 0
+-0.375615 -0.299759 0
+-0.376092 -0.299300 0
+-0.378004 -0.297465 0
+-0.382377 -0.293618 0
+-0.387277 -0.289815 0
+-0.392269 -0.286549 0
+-0.396941 -0.284081 0
+-0.400959 -0.282586 0
+-0.404208 -0.282016 0
+-0.406440 -0.282498 0
+-0.407580 -0.284013 0
+-0.407671 -0.286394 0
+-0.406617 -0.289658 0
+-0.404712 -0.293471 0
+-0.402054 -0.297660 0
+-0.398924 -0.301943 0
+-0.395707 -0.306071 0
+-0.394238 -0.307998 0
+-0.393503 -0.308962 0
+-0.393143 -0.309402 0
+-0.392669 -0.309776 0
+-0.392173 -0.309913 0
+-0.391597 -0.309889 0
+-0.390123 -0.309388 0
+-0.387861 -0.308695 0
+-0.385504 -0.307823 0
+
+-0.325404 -0.369632 0
+-0.323807 -0.368508 0
+-0.321955 -0.367203 0
+-0.319398 -0.364956 0
+-0.318178 -0.363811 0
+-0.317208 -0.362539 0
+-0.316970 -0.361924 0
+-0.316991 -0.361354 0
+-0.317135 -0.361064 0
+-0.317428 -0.360754 0
+-0.317855 -0.360430 0
+-0.318406 -0.360061 0
+-0.320607 -0.358586 0
+-0.325582 -0.355556 0
+-0.331068 -0.352662 0
+-0.336550 -0.350313 0
+-0.341581 -0.348693 0
+-0.345797 -0.347919 0
+-0.349095 -0.347921 0
+-0.351210 -0.348784 0
+-0.352070 -0.350474 0
+-0.351745 -0.352834 0
+-0.350141 -0.355865 0
+-0.347602 -0.359290 0
+-0.344257 -0.362954 0
+-0.340432 -0.366629 0
+-0.336547 -0.370135 0
+-0.334765 -0.371778 0
+-0.333874 -0.372600 0
+-0.333443 -0.372970 0
+-0.332911 -0.373256 0
+-0.332399 -0.373305 0
+-0.331836 -0.373182 0
+-0.330472 -0.372432 0
+-0.328364 -0.371356 0
+-0.326195 -0.370088 0
+
+-0.256275 -0.420522 0
+-0.254897 -0.419138 0
+-0.253300 -0.417532 0
+-0.251172 -0.414875 0
+-0.250169 -0.413535 0
+-0.249435 -0.412114 0
+-0.249307 -0.411467 0
+-0.249427 -0.410909 0
+-0.249619 -0.410648 0
+-0.249961 -0.410394 0
+-0.250439 -0.410149 0
+-0.251045 -0.409882 0
+-0.253469 -0.408811 0
+-0.258894 -0.406691 0
+-0.264799 -0.404794 0
+-0.270606 -0.403432 0
+-0.275842 -0.402710 0
+-0.280128 -0.402680 0
+-0.283376 -0.403256 0
+-0.285309 -0.404472 0
+-0.285862 -0.406286 0
+-0.285133 -0.408554 0
+-0.283026 -0.411260 0
+-0.279931 -0.414193 0
+-0.276001 -0.417220 0
+-0.271596 -0.420174 0
+-0.267161 -0.422952 0
+-0.265121 -0.424261 0
+-0.264101 -0.424916 0
+-0.263612 -0.425206 0
+-0.263039 -0.425395 0
+-0.262526 -0.425354 0
+-0.261993 -0.425135 0
+-0.260779 -0.424160 0
+-0.258890 -0.422734 0
+-0.256974 -0.421109 0
+
+-0.179358 -0.458635 0
+-0.178242 -0.457033 0
+-0.176948 -0.455173 0
+-0.175313 -0.452187 0
+-0.174559 -0.450694 0
+-0.174083 -0.449167 0
+-0.174069 -0.448508 0
+-0.174284 -0.447979 0
+-0.174518 -0.447756 0
+-0.174900 -0.447565 0
+-0.175412 -0.447406 0
+-0.176055 -0.447248 0
+-0.178628 -0.446615 0
+-0.184339 -0.445469 0
+-0.190484 -0.444626 0
+-0.196440 -0.444293 0
+-0.201721 -0.444492 0
+-0.205947 -0.445206 0
+-0.209046 -0.446337 0
+-0.210739 -0.447871 0
+-0.210968 -0.449753 0
+-0.209856 -0.451860 0
+-0.207311 -0.454159 0
+-0.203755 -0.456510 0
+-0.199358 -0.458808 0
+-0.194507 -0.460953 0
+-0.189657 -0.462919 0
+-0.187421 -0.463853 0
+-0.186302 -0.464321 0
+-0.185771 -0.464522 0
+-0.185173 -0.464608 0
+-0.184675 -0.464479 0
+-0.184188 -0.464171 0
+-0.183162 -0.462999 0
+-0.181550 -0.461268 0
+-0.179945 -0.459335 0
+
+-0.096992 -0.482813 0
+-0.096171 -0.481041 0
+-0.095220 -0.478985 0
+-0.094128 -0.475760 0
+-0.093645 -0.474158 0
+-0.093441 -0.472572 0
+-0.093542 -0.471921 0
+-0.093846 -0.471438 0
+-0.094115 -0.471258 0
+-0.094524 -0.471136 0
+-0.095056 -0.471069 0
+-0.095717 -0.471025 0
+-0.098361 -0.470848 0
+-0.104184 -0.470712 0
+-0.110382 -0.470948 0
+-0.116305 -0.471655 0
+-0.121471 -0.472767 0
+-0.125509 -0.474205 0
+-0.128365 -0.475856 0
+-0.129765 -0.477661 0
+-0.129664 -0.479554 0
+-0.128203 -0.481436 0
+-0.125298 -0.483259 0
+-0.121387 -0.484956 0
+-0.116658 -0.486456 0
+-0.111508 -0.487726 0
+-0.106391 -0.488820 0
+-0.104026 -0.489352 0
+-0.102844 -0.489618 0
+-0.102285 -0.489723 0
+-0.101682 -0.489705 0
+-0.101214 -0.489491 0
+-0.100788 -0.489103 0
+-0.099981 -0.487771 0
+-0.098693 -0.485786 0
+-0.097449 -0.483603 0
+
+-0.011679 -0.492320 0
+-0.011178 -0.490433 0
+-0.010598 -0.488243 0
+-0.010083 -0.484878 0
+-0.009886 -0.483216 0
+-0.009960 -0.481619 0
+-0.010173 -0.480994 0
+-0.010556 -0.480572 0
+-0.010852 -0.480441 0
+-0.011276 -0.480392 0
+-0.011811 -0.480419 0
+-0.012470 -0.480490 0
+-0.015105 -0.480775 0
+-0.020863 -0.481652 0
+-0.026926 -0.482961 0
+-0.032636 -0.484685 0
+-0.037531 -0.486678 0
+-0.041258 -0.488795 0
+-0.043783 -0.490917 0
+-0.044849 -0.492938 0
+-0.044421 -0.494785 0
+-0.042655 -0.496384 0
+-0.039477 -0.497675 0
+-0.035331 -0.498667 0
+-0.030414 -0.499323 0
+-0.025122 -0.499679 0
+-0.019892 -0.499868 0
+-0.017471 -0.499981 0
+-0.016260 -0.500038 0
+-0.015692 -0.500045 0
+-0.015101 -0.499922 0
+-0.014677 -0.499631 0
+-0.014325 -0.499174 0
+-0.013761 -0.497722 0
+-0.012838 -0.495544 0
+-0.011991 -0.493178 0
+
+0.073989 -0.486869 0
+0.074154 -0.484923 0
+0.074345 -0.482666 0
+0.074268 -0.479262 0
+0.074174 -0.477592 0
+0.073823 -0.476031 0
+0.073506 -0.475453 0
+0.073055 -0.475104 0
+0.072741 -0.475027 0
+0.072315 -0.475052 0
+0.071792 -0.475171 0
+0.071156 -0.475356 0
+0.068611 -0.476094 0
+0.063092 -0.477957 0
+0.057349 -0.480300 0
+0.052025 -0.482989 0
+0.047550 -0.485802 0
+0.044248 -0.488534 0
+0.042129 -0.491062 0
+0.041430 -0.493237 0
+0.042173 -0.494981 0
+0.044189 -0.496250 0
+0.047543 -0.496969 0
+0.051798 -0.497226 0
+0.056755 -0.497019 0
+0.062028 -0.496450 0
+0.067211 -0.495728 0
+0.069616 -0.495419 0
+0.070818 -0.495265 0
+0.071379 -0.495173 0
+0.071939 -0.494949 0
+0.072306 -0.494589 0
+0.072574 -0.494078 0
+0.072876 -0.492550 0
+0.073407 -0.490245 0
+0.073830 -0.487768 0
+
+0.157409 -0.466624 0
+0.157234 -0.464680 0
+0.157030 -0.462423 0
+0.156363 -0.459085 0
+0.155980 -0.457456 0
+0.155364 -0.455980 0
+0.154951 -0.455466 0
+0.154446 -0.455200 0
+0.154123 -0.455179 0
+0.153708 -0.455278 0
+0.153214 -0.455486 0
+0.152619 -0.455778 0
+0.150241 -0.456947 0
+0.145130 -0.459740 0
+0.139880 -0.463044 0
+0.135104 -0.466617 0
+0.131187 -0.470164 0
+0.128408 -0.473428 0
+0.126761 -0.476286 0
+0.126451 -0.478549 0
+0.127485 -0.480138 0
+0.129691 -0.481038 0
+0.133118 -0.481163 0
+0.137353 -0.480678 0
+0.142199 -0.479613 0
+0.147294 -0.478137 0
+0.152273 -0.476526 0
+0.154587 -0.475804 0
+0.155744 -0.475443 0
+0.156280 -0.475255 0
+0.156793 -0.474938 0
+0.157092 -0.474519 0
+0.157267 -0.473969 0
+0.157300 -0.472413 0
+0.157422 -0.470050 0
+0.157409 -0.467537 0
+
+0.236046 -0.432201 0
+0.235536 -0.430317 0
+0.234943 -0.428130 0
+0.233706 -0.424958 0
+0.233047 -0.423420 0
+0.232184 -0.422074 0
+0.231688 -0.421640 0
+0.231144 -0.421465 0
+0.230823 -0.421501 0
+0.230431 -0.421670 0
+0.229980 -0.421961 0
+0.229446 -0.422352 0
+0.227307 -0.423916 0
+0.222758 -0.427554 0
+0.218162 -0.431720 0
+0.214079 -0.436068 0
+0.210837 -0.440241 0
+0.208668 -0.443938 0
+0.207542 -0.447038 0
+0.207629 -0.449321 0
+0.208923 -0.450706 0
+0.211252 -0.451209 0
+0.214649 -0.450738 0
+0.218736 -0.449524 0
+0.223322 -0.447634 0
+0.228084 -0.445296 0
+0.232707 -0.442844 0
+0.234861 -0.441732 0
+0.235938 -0.441176 0
+0.236433 -0.440897 0
+0.236883 -0.440495 0
+0.237105 -0.440031 0
+0.237181 -0.439460 0
+0.236944 -0.437921 0
+0.236654 -0.435572 0
+0.236204 -0.433100 0
+
+0.307511 -0.384646 0
+0.306681 -0.382879 0
+0.305718 -0.380828 0
+0.303949 -0.377919 0
+0.303033 -0.376519 0
+0.301949 -0.375344 0
+0.301385 -0.375002 0
+0.300819 -0.374924 0
+0.300509 -0.375015 0
+0.300152 -0.375250 0
+0.299759 -0.375614 0
+0.299300 -0.376092 0
+0.297466 -0.378004 0
+0.293618 -0.382377 0
+0.289815 -0.387277 0
+0.286549 -0.392268 0
+0.284081 -0.396941 0
+0.282586 -0.400959 0
+0.282016 -0.404208 0
+0.282498 -0.406440 0
+0.284013 -0.407580 0
+0.286394 -0.407671 0
+0.289658 -0.406616 0
+0.293472 -0.404712 0
+0.297660 -0.402053 0
+0.301943 -0.398924 0
+0.306071 -0.395707 0
+0.307999 -0.394238 0
+0.308962 -0.393503 0
+0.309402 -0.393143 0
+0.309776 -0.392669 0
+0.309913 -0.392173 0
+0.309889 -0.391597 0
+0.309388 -0.390123 0
+0.308695 -0.387860 0
+0.307823 -0.385504 0
+
+0.369632 -0.325404 0
+0.368508 -0.323807 0
+0.367203 -0.321955 0
+0.364956 -0.319398 0
+0.363811 -0.318178 0
+0.362539 -0.317208 0
+0.361924 -0.316970 0
+0.361354 -0.316991 0
+0.361064 -0.317135 0
+0.360754 -0.317428 0
+0.360430 -0.317855 0
+0.360061 -0.318406 0
+0.358586 -0.320607 0
+0.355556 -0.325582 0
+0.352662 -0.331068 0
+0.350313 -0.336550 0
+0.348693 -0.341581 0
+0.347919 -0.345797 0
+0.347922 -0.349095 0
+0.348784 -0.351210 0
+0.350474 -0.352070 0
+0.352834 -0.351745 0
+0.355865 -0.350141 0
+0.359290 -0.347602 0
+0.362954 -0.344257 0
+0.366629 -0.340432 0
+0.370135 -0.336547 0
+0.371778 -0.334765 0
+0.372600 -0.333874 0
+0.372970 -0.333443 0
+0.373256 -0.332911 0
+0.373305 -0.332399 0
+0.373182 -0.331836 0
+0.372432 -0.330471 0
+0.371356 -0.328364 0
+0.370089 -0.326195 0
+
+0.420522 -0.256274 0
+0.419138 -0.254897 0
+0.417532 -0.253300 0
+0.414875 -0.251171 0
+0.413535 -0.250169 0
+0.412114 -0.249435 0
+0.411467 -0.249307 0
+0.410909 -0.249427 0
+0.410648 -0.249619 0
+0.410394 -0.249961 0
+0.410149 -0.250438 0
+0.409882 -0.251044 0
+0.408811 -0.253468 0
+0.406691 -0.258894 0
+0.404794 -0.264799 0
+0.403432 -0.270606 0
+0.402710 -0.275842 0
+0.402680 -0.280128 0
+0.403256 -0.283376 0
+0.404472 -0.285309 0
+0.406286 -0.285862 0
+0.408554 -0.285132 0
+0.411260 -0.283026 0
+0.414193 -0.279931 0
+0.417220 -0.276001 0
+0.420174 -0.271596 0
+0.422952 -0.267161 0
+0.424261 -0.265121 0
+0.424916 -0.264101 0
+0.425206 -0.263612 0
+0.425395 -0.263038 0
+0.425354 -0.262526 0
+0.425135 -0.261992 0
+0.424160 -0.260779 0
+0.422734 -0.258890 0
+0.421109 -0.256974 0
+
+0.458635 -0.179358 0
+0.457033 -0.178242 0
+0.455173 -0.176948 0
+0.452187 -0.175313 0
+0.450693 -0.174559 0
+0.449167 -0.174083 0
+0.448508 -0.174069 0
+0.447979 -0.174284 0
+0.447756 -0.174518 0
+0.447565 -0.174900 0
+0.447406 -0.175412 0
+0.447248 -0.176055 0
+0.446615 -0.178628 0
+0.445469 -0.184339 0
+0.444626 -0.190484 0
+0.444293 -0.196440 0
+0.444492 -0.201721 0
+0.445206 -0.205947 0
+0.446337 -0.209046 0
+0.447871 -0.210739 0
+0.449753 -0.210968 0
+0.451860 -0.209856 0
+0.454159 -0.207311 0
+0.456510 -0.203755 0
+0.458808 -0.199358 0
+0.460953 -0.194507 0
+0.462919 -0.189657 0
+0.463853 -0.187421 0
+0.464321 -0.186302 0
+0.464522 -0.185771 0
+0.464608 -0.185173 0
+0.464479 -0.184675 0
+0.464171 -0.184188 0
+0.462999 -0.183162 0
+0.461268 -0.181550 0
+0.459335 -0.179945 0
+
+0.482813 -0.096992 0
+0.481041 -0.096171 0
+0.478985 -0.095220 0
+0.475760 -0.094128 0
+0.474158 -0.093645 0
+0.472572 -0.093441 0
+0.471921 -0.093542 0
+0.471438 -0.093846 0
+0.471258 -0.094115 0
+0.471136 -0.094524 0
+0.471069 -0.095056 0
+0.471025 -0.095717 0
+0.470848 -0.098361 0
+0.470712 -0.104184 0
+0.470948 -0.110382 0
+0.471655 -0.116305 0
+0.472767 -0.121471 0
+0.474205 -0.125509 0
+0.475856 -0.128365 0
+0.477661 -0.129765 0
+0.479554 -0.129664 0
+0.481436 -0.128203 0
+0.483259 -0.125298 0
+0.484956 -0.121387 0
+0.486456 -0.116658 0
+0.487726 -0.111508 0
+0.488820 -0.106391 0
+0.489352 -0.104026 0
+0.489618 -0.102844 0
+0.489723 -0.102285 0
+0.489705 -0.101682 0
+0.489491 -0.101214 0
+0.489103 -0.100788 0
+0.487771 -0.099981 0
+0.485786 -0.098693 0
+0.483603 -0.097449 0
+
+0.492320 -0.011679 0
+0.490433 -0.011178 0
+0.488243 -0.010598 0
+0.484878 -0.010084 0
+0.483216 -0.009886 0
+0.481619 -0.009960 0
+0.480994 -0.010173 0
+0.480572 -0.010556 0
+0.480441 -0.010852 0
+0.480392 -0.011276 0
+0.480419 -0.011812 0
+0.480490 -0.012470 0
+0.480775 -0.015105 0
+0.481652 -0.020863 0
+0.482961 -0.026926 0
+0.484685 -0.032636 0
+0.486678 -0.037531 0
+0.488795 -0.041258 0
+0.490917 -0.043783 0
+0.492938 -0.044849 0
+0.494785 -0.044421 0
+0.496384 -0.042655 0
+0.497675 -0.039477 0
+0.498667 -0.035331 0
+0.499323 -0.030414 0
+0.499679 -0.025122 0
+0.499868 -0.019892 0
+0.499981 -0.017471 0
+0.500038 -0.016260 0
+0.500045 -0.015692 0
+0.499922 -0.015101 0
+0.499631 -0.014677 0
+0.499174 -0.014325 0
+0.497722 -0.013761 0
+0.495544 -0.012838 0
+0.493178 -0.011991 0
+
+0.486869 0.073989 0
+0.484923 0.074154 0
+0.482666 0.074345 0
+0.479262 0.074268 0
+0.477591 0.074174 0
+0.476031 0.073823 0
+0.475453 0.073506 0
+0.475104 0.073055 0
+0.475027 0.072740 0
+0.475052 0.072315 0
+0.475171 0.071792 0
+0.475356 0.071156 0
+0.476094 0.068611 0
+0.477957 0.063092 0
+0.480300 0.057349 0
+0.482989 0.052025 0
+0.485802 0.047550 0
+0.488534 0.044248 0
+0.491062 0.042129 0
+0.493237 0.041430 0
+0.494981 0.042173 0
+0.496250 0.044189 0
+0.496969 0.047543 0
+0.497226 0.051798 0
+0.497019 0.056755 0
+0.496450 0.062028 0
+0.495728 0.067211 0
+0.495419 0.069616 0
+0.495265 0.070818 0
+0.495173 0.071379 0
+0.494949 0.071939 0
+0.494589 0.072306 0
+0.494078 0.072573 0
+0.492550 0.072876 0
+0.490245 0.073407 0
+0.487768 0.073830 0
+
+0.466624 0.157409 0
+0.464680 0.157234 0
+0.462423 0.157030 0
+0.459085 0.156363 0
+0.457456 0.155980 0
+0.455980 0.155364 0
+0.455466 0.154951 0
+0.455200 0.154446 0
+0.455179 0.154123 0
+0.455278 0.153708 0
+0.455486 0.153214 0
+0.455778 0.152619 0
+0.456947 0.150241 0
+0.459740 0.145130 0
+0.463044 0.139880 0
+0.466617 0.135104 0
+0.470164 0.131186 0
+0.473428 0.128408 0
+0.476286 0.126761 0
+0.478549 0.126451 0
+0.480138 0.127485 0
+0.481038 0.129691 0
+0.481163 0.133118 0
+0.480678 0.137353 0
+0.479613 0.142199 0
+0.478137 0.147294 0
+0.476526 0.152273 0
+0.475804 0.154587 0
+0.475443 0.155744 0
+0.475255 0.156280 0
+0.474938 0.156793 0
+0.474519 0.157092 0
+0.473969 0.157267 0
+0.472413 0.157300 0
+0.470050 0.157422 0
+0.467537 0.157409 0
+
+0.432201 0.236046 0
+0.430317 0.235536 0
+0.428130 0.234943 0
+0.424958 0.233706 0
+0.423420 0.233047 0
+0.422074 0.232183 0
+0.421640 0.231687 0
+0.421465 0.231144 0
+0.421501 0.230822 0
+0.421670 0.230431 0
+0.421961 0.229980 0
+0.422352 0.229446 0
+0.423916 0.227307 0
+0.427554 0.222758 0
+0.431720 0.218162 0
+0.436068 0.214079 0
+0.440241 0.210837 0
+0.443938 0.208667 0
+0.447038 0.207542 0
+0.449321 0.207629 0
+0.450706 0.208923 0
+0.451209 0.211252 0
+0.450738 0.214649 0
+0.449524 0.218735 0
+0.447634 0.223322 0
+0.445296 0.228084 0
+0.442844 0.232707 0
+0.441732 0.234861 0
+0.441176 0.235937 0
+0.440897 0.236433 0
+0.440495 0.236883 0
+0.440031 0.237105 0
+0.439460 0.237181 0
+0.437921 0.236944 0
+0.435572 0.236654 0
+0.433101 0.236204 0
+
+0.384646 0.307510 0
+0.382879 0.306681 0
+0.380828 0.305718 0
+0.377920 0.303949 0
+0.376519 0.303032 0
+0.375344 0.301949 0
+0.375002 0.301385 0
+0.374924 0.300819 0
+0.375015 0.300509 0
+0.375250 0.300152 0
+0.375615 0.299759 0
+0.376092 0.299300 0
+0.378004 0.297465 0
+0.382377 0.293618 0
+0.387277 0.289815 0
+0.392269 0.286549 0
+0.396941 0.284081 0
+0.400959 0.282586 0
+0.404208 0.282016 0
+0.406440 0.282498 0
+0.407580 0.284013 0
+0.407671 0.286394 0
+0.406617 0.289658 0
+0.404712 0.293471 0
+0.402054 0.297660 0
+0.398925 0.301943 0
+0.395707 0.306071 0
+0.394238 0.307998 0
+0.393503 0.308962 0
+0.393143 0.309402 0
+0.392669 0.309776 0
+0.392173 0.309913 0
+0.391597 0.309889 0
+0.390123 0.309388 0
+0.387861 0.308695 0
+0.385504 0.307823 0
+
+0.325404 0.369632 0
+0.323808 0.368508 0
+0.321955 0.367203 0
+0.319398 0.364956 0
+0.318178 0.363811 0
+0.317209 0.362539 0
+0.316970 0.361924 0
+0.316992 0.361354 0
+0.317135 0.361064 0
+0.317428 0.360754 0
+0.317856 0.360430 0
+0.318406 0.360061 0
+0.320607 0.358586 0
+0.325582 0.355556 0
+0.331068 0.352662 0
+0.336550 0.350312 0
+0.341581 0.348693 0
+0.345797 0.347919 0
+0.349095 0.347921 0
+0.351210 0.348784 0
+0.352070 0.350474 0
+0.351745 0.352834 0
+0.350141 0.355865 0
+0.347602 0.359290 0
+0.344257 0.362954 0
+0.340432 0.366629 0
+0.336547 0.370135 0
+0.334765 0.371778 0
+0.333874 0.372600 0
+0.333443 0.372970 0
+0.332911 0.373256 0
+0.332399 0.373305 0
+0.331836 0.373182 0
+0.330472 0.372432 0
+0.328364 0.371356 0
+0.326195 0.370088 0
+
+0.256274 0.420522 0
+0.254897 0.419138 0
+0.253300 0.417532 0
+0.251171 0.414875 0
+0.250169 0.413535 0
+0.249435 0.412114 0
+0.249307 0.411467 0
+0.249427 0.410909 0
+0.249619 0.410648 0
+0.249961 0.410394 0
+0.250438 0.410149 0
+0.251044 0.409882 0
+0.253468 0.408811 0
+0.258894 0.406691 0
+0.264799 0.404794 0
+0.270606 0.403432 0
+0.275841 0.402710 0
+0.280128 0.402680 0
+0.283376 0.403256 0
+0.285309 0.404472 0
+0.285862 0.406286 0
+0.285132 0.408554 0
+0.283026 0.411260 0
+0.279931 0.414193 0
+0.276001 0.417220 0
+0.271596 0.420174 0
+0.267161 0.422952 0
+0.265121 0.424261 0
+0.264100 0.424916 0
+0.263612 0.425206 0
+0.263038 0.425395 0
+0.262526 0.425354 0
+0.261992 0.425135 0
+0.260779 0.424160 0
+0.258890 0.422734 0
+0.256974 0.421109 0
+
diff --git a/src/segment.cpp b/src/segment.cpp
index c3ebf47955fdad20abfb13bdd85d9e9f440ff615..7375aea1294d1a3e747b4a685081ab8672fc9c88 100644
--- a/src/segment.cpp
+++ b/src/segment.cpp
@@ -18,13 +18,13 @@ Segment::Segment(std::string filename){
 	while (infile >> x && infile >> y) {
 		++count;
 		pts_.push_back({ x, y });
+	}
 
 #ifndef NDEBUG
-		for (auto& arr : pts_) {
-			std::cout << arr[0] << "\t" << arr[1] << "\t" << &arr[0] << "\t" << &arr[1] << std::endl;
-		}
-		std::cout << "Loaded Segment of " << count << " Nodes.\n";
+	for (auto& arr : pts_) {
+		std::cout << arr[0] << "\t" << arr[1] << "\t" << &arr[0] << "\t" << &arr[1] << std::endl;
 	}
+	std::cout << "Loaded Segment of " << count << " Nodes.\n";
 #endif
 	infile.close();
 }