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Problem 7.1 The Tight-Binding Model

In this exercise we will solve the tight-binding model

H =
∑
〈i,j〉,σ

(
tijc
†
i,σcj,σ + h.c.

)
(1)

on the square lattice analytically. We will assume uniform hopping amplitudes tij = −t.

Bring the Hamiltonian into the diagonal form

H =
∑
k,σ

ε(k)nk,σ (2)

and identify the dispersion relation ε(k).

Hint: Assuming the lattice has N = L × L sites with spacing a and periodic boundary
conditions, you can replace the field operators by their Fourier transforms using

ci,σ =
1√
N

∑
k

eik·rick,σ, (3)

where the lattice momenta run over N points of the Brillouin zone

k =
2π

aL
(nx, ny), nx,y = {0, . . . , L− 1}. (4)

Problem 7.2 Exact Diagonalization of 2-site Lattice Hamiltonians

The most accurate method for solving a quantum many-body problem is exact diagonal-
ization of the Hamiltonian matrix. In order to make the most out of the computational
resources available, it is very helpful to make use of all available tools for simplifying the
problem.
In this exercise we will have a closer look at the steps involved in making use of sym-
metries of the Hamiltonian. Specifically, we will construct the Hamiltonian matrix for a
few different models on a two-site lattice and break it down into blocks corresponding to
different symmetry sectors.

For each of the models described below follow these steps:

• Choose a basis adequate for the degrees of freedom involved in the problem.

• Construct the Hamitonian matrix H using the above basis.

• Identify the different symmetries of the model and organize your basis so that basis
elements corresponding to the same symmetry sector are grouped up together.1

• Diagonalize the blocks corresponding to each individual symmetry sector.
1Notice that at this point a full construction of the Hamiltonian matrix should reveal the block diagonal

structure corresponding to the different symmetry sectors.



Models

1. Spin-1/2 Heisenberg model2

H = J ~S1 · ~S2 (5)

for J = ±1. Here, the spin operators can be written in terms of the Pauli matrices
~S = ~

2
(σx, σy, σz)

T .

2. Spin-1 Heisenberg model3 Same Hamiltonian as above, but this time the ~Si
are Spin-1 operators. Hint: Express Sx,y in terms of the ladder operators S± as
demonstrated in the lecture notes.

3. Bose-Hubbard model4

H = −t
(
b†1b2 + b†2b1

)
+
U

2

2∑
i=1

ni (ni − 1) (6)

Here the two sites can be occupied by spinless bosons (b
(†)
i : bosonic annihilation

(creation) operators). As each site could hold an arbitrary number of bosons, you
have to limit the total number of particles, e.g. to Nmax = 4. Fix t = 1 and
diagonalize the system for U = −1, 1, 4. For which cases does the particle number
cut-off seem reasonable?

4. (Fermi-) Hubbard model5

H = −t
∑
σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
+ U

2∑
i=1

ni↑ni↓. (7)

Here the local degrees of freedom correspond to fermions carrying a spin-1/2.

5. t− J model6

H = −t
∑
σ=↑,↓

(
(1− n1,−σ) c†1σc2σ (1− n2,−σ) + h.c.

)
+ J

(
S1 · S2 −

n1n2

4

)
(8)

Here the local degrees of freedom correspond to fermions carrying a spin-1/2 with
the exception that double occupancies are forbidden.

2See discussion in 8.5.3 of the lecture notes
3See discussion in 8.5.3 of the lecture notes
4This is the equivalent of the Hubbard model discussed in 8.5.2 of the lecture notes in the case of

spinless bosons
5See discussion in 8.5.2 of the lecture notes
6See discussion in 8.5.4 of the lecture notes
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