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Problem 13.1 Measure the Energy of a MPS using a MPO

In this exercise we will measure the energy of a Matrix Product State (MPS) given its
Hamiltonian in Matrix Product Operator (MPO) form. An MPO is the matrix product

of four-legged matrices of the form W
σ′iσi
bi−1bi

Ô{σ
′},{σ} = W σ′1σ1W σ′2σ2 . . .W σ′LσL . (1)

In the graphical notation it is represented as below:
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Figure 35: Elements of a matrix product operator: (i) a corner matrix operator W[1]σ1σ′1
1,b1

at the left end of the chain; (ii) a

bulk matrix operator W
[ℓ]σℓσ′ℓ
bℓ−1 ,bℓ

; (iii) a corner operator W[L]σLσ′L
bL−1 ,1

at the right end: the physical indices points up and down,
the matrix indices are represented by horizontal lines.
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Figure 36: A matrix product operator acting on an entire chain: the horizontal matrix indices are contracted, and the
MPO is ready to be applied to an MPS by simple contraction of vertical (physical) indices.
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The beauty of an MPO is that it leaves the form of the MPS invariant, at the prize of an
increase in matrix size: the new MPS dimension is the product of that of the original MPS and
that of the MPO (Fig. 37).

The result can be summarized as |φ⟩ = Ô|ψ⟩ with |φ⟩ an MPS built from matrices Nσi with

Nσi
(bi−1,ai−1),(bi ,ai) =

∑

σ′i

Wσiσ
′
i

bi−1biM
σ′i
ai−1ai . (179)

If we use (additive) good quantum numbers, one can show from the sum rules at each tensor that
they are additive on the in- and outgoing horizontal bonds.

Once again, a seemingly exponentially complex operation (sum over exponentially many σ)
is reduced to a low-cost operation: the operational count is of order Ld2D2WD

2, DW being the
dimension of the MPO.
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We want to evaluate the energy expectation value of a Hamiltonian given in MPO form

〈ψ|H|ψ〉=̂ - λ ×

Figure 40: Network to be contracted to obtain the functional to be extremized to find the ground state and its energy. The
left-hand side represents the term ⟨ψ|Ĥ|ψ⟩, the right-hand side the squared norm ⟨ψ|ψ⟩.

in the end, |ψ⟩ will be the desired ground state and λ the ground state energy. The MPS network
that represents Eq. (203) is shown in Fig. 40.

The problem with this approach is that the variables (the matrix elements Mσ
aa′ ) appear in

the form of products, making this a highly non-linear optimization problem. But it can be done
iteratively, too, and this is the idea that also drives DMRG: while keeping the matrices on all
sites but one (ℓ) constant, consider only the matrix entries Mσℓ

aℓ−1aℓ on site ℓ as variables. Then
the variables appear in Eq. (203) only in quadratic form, for which the determination of the
extremum is a benign linear algebra problem. This will lower the energy, and find a variationally
better state, but of course not the optimal one. Now one continues to vary the matrix elements
on another site for finding a state again lower in energy, moving through all sites multiple times,
until the energy does not improve anymore.

Let us first consider the calculation of the overlap, while keeping the chosen Mσℓ explicit.
We find
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where

ΨAaℓ−1 ,a′ℓ−1
=
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ℓ
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As is particularly clear in the graphical representation, for obtaining the last two expressions the
same rules about smart contracting apply as for overlaps; moreover, if we move through sites ℓ
from neighbour to neighbour, they can be updated iteratively, minimizing computational cost. In
the case where sites 1 through ℓ−1 are left-normalized and sites ℓ+1 through L right-normalized,
normalization conditions lead to a further simplification, namely

ΨAaℓ−1 ,a′ℓ−1
= δaℓ−1,a′ℓ−1 ΨBaℓa′ℓ

= δaℓa′ℓ . (207)

Let us now consider ⟨ψ|Ĥ|ψ⟩, with Ĥ in MPO language. Taking into account the analysis of
Ĥ|ψ⟩ in the last section, we can immediately write
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(208)

with L and R as defined before; how such an expression can be evaluated efficiently has been
discussed previously.
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. (2)

For an efficient evaluation of above contractions use L-expressions (or equivalently R-
expressions). The L-expression is build iteratively from the left via adding a single site
in each step

ai-1
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ai´

ai

bi

ai´

ai
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Figure 39: Update from F[i−1] to F[i] by contracting with A[i]∗, W[i] and A[i]. While it makes sense mathematically to
consider the three added tensors as one object, in numerical practice, they are contracted into the network sequentially
for efficiency.

counts: first, L and R can be built iteratively in order to maximally reuse available information;
this involves an optimal arrangement of a network contraction. Moreover, the final action of L,
R andW on |ψ⟩ can also be arranged highly efficiently.

Let us first consider building L and R. In actual applications, we will never carry out the full
network contraction that stands behind them, because in the spirit of DMRG we are looking at
blocks that are growing and shrinking in size site by site. The construction of L and R, however,
is iterative in a way that directly matches block growth and shrinkage. I will illustrate it for L,
using A-matrices; left-normalization will be exploited explicitly for further simplification at one
point only such that the formulae are generic. We start by considering the block of size 1: we
contract A[1] and A[1]† withW [1]. The block basis representation is then given by
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(195)

where we have introduced a dummy scalar F[0]a0,b0,a′0 = 1, and where a0, b0, a
′
0 can just take the

value 1; this is just to make the first step more consistent with all that follow. The resulting object
is a tensor F[1]a1,b1,a′1 , corresponding to the three legs sticking out.

We can now simply continue to contract A, A† and W on the next site, and the contraction
update reads
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∑
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′
i

a′i−1,a
′
i

(196)

and can be represented pictorially as in Fig. 39.
This construction can be calculated most efficiently by optimal bracketing as
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. (197)

Here, we have contracted the three new tensors into the network one by one, at operational
counts O(dD3DW ) in the innermost bracket, then O(d2D2D2W ) and last O(dD

3DW ). In fact, the
second operation is faster in practice, as we know that most operators in Ŵ are simply zero; the
remaining ones also often have a simple structure. Another acceleration is possible in the case
of building L from left-normalized matrices for indices bi = DW , if we build Ĥ following the
rules outlined in the previous section: we know that in this case only identities operate towards
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When the last site is added to the L-expression it is equivalent to the energy expectation
value in Eq. (2).

• We provide you with a working code heisenberg imaginary time evolution.ipynb

that calculates the groundstate of a Heisenberg chain via imaginary time evolution.
Use this code to obtain the groundstate of the Heisenberg model as a MPS state.

• In our code the energy is measured as a sum of two-site operators. We want to
measure the energy via a MPO. The Heisenberg model

H =
L−1∑
i=1

(
J

2
S+
i S
−
i+1 +

J

2
S−i S

+
i+1 + JSzi S

z
i+1

)
, (3)



can be represented in MPO language by the following operator valued matrices

Ŵ [i] =


Î 0 0 0 0
S+
i 0 0 0 0
S−i 0 0 0 0
Szi 0 0 0 0

0 (J/2)S−i (J/2)S+
i JSzi Î

 , (4)

and for the first and last site

Ŵ [1] =
[
0 (J/2)S−0 (J/2)S+

0 JSz0 Î
]
, Ŵ [L] =


Î
S+
L

S−L
SzL
0

 . (5)

Multiplication of above matrices, containing single-site operators, reveals how the
Hamiltonian in Eq. (3) emerges. Implement the above MPO in our code example
as a list of arrays.

• Measure the energy of the MPS obtained from imaginary time evolution using your
MPO. First construct the L-expression iteratively. Check that you get the same
energy as we in our sample code. When you succeed try to do the same using a
R-expression build iteratively from the right.

Problem 13.2 Iterative Ground State Search using DMRG

The imaginary time evolution we provide is slow, takes many steps to converge and is
plagued by a systematic error coming from the Trotter decomposition. In practice one
would do DMRG, which converges much faster and is also more accurate.
In the single-site DMRG algorithm1 one iteratively sweeps through the sites of the sys-
tem and for each site minimizes the total energy with respect to the single site matrix
Mσl

al−1al
. The local energy minimization is mapped onto an eigenvalue problem which can

be graphically depicted as below

- λ = 0

Figure 42: Standard eigenvalue problem for the optimization of M σℓ
aℓ−1 ,aℓ . The unknown matrix is circled on the left

network.

The optimal algorithm then runs as follows.

• Start from some initial guess for |ψ⟩, which is right-normalized, i.e. consists of B-matrices
only.

• Calculate the R-expressions iteratively for all site positions L − 1 through 1 iteratively.

• Right sweep: Starting from site ℓ = 1 through site L − 1, sweep through the lattice to
the right as follows: solve the standard eigenproblem by an iterative eigensolver for Mσℓ ,
taking its current value as starting point. Once the solution is obtained, left-normalizeMσℓ

into Aσℓ by SVD (or QR) to maintain the desired normalization structure. The remaining
matrices of the SVD are multiplied to the Mσℓ+1 to the right, which will be the starting
guess for the eigensolver for the next site. Build iteratively the L expression by adding one
more site. Move on by one site, ℓ → ℓ + 1, and repeat.

• Left sweep: Starting from site ℓ = L through site 2, sweep through the lattice to the left
as follows: solve the standard eigenproblem by an iterative eigensolver for Mσℓ , taking its
current value as starting point. Once the solution is obtained, right-normalizeMσℓ into Bσℓ
by SVD (or QR) to maintain the desired normalization structure. The remaining matrices
of the SVD are multiplied to the Mσℓ−1 to the left, which will be the starting guess for the
eigensolver for the next site. Build iteratively the R expression by adding one more site.
Move on by one site, ℓ → ℓ − 1, and repeat.

• Repeat right and left sweeps, until convergence is achieved. Convergence is achieved if
energy converges, but the best test is (using MPO) to consider ⟨ψ|Ĥ2|ψ⟩− (⟨ψ|Ĥ|ψ⟩)2 to see
whether an eigenstate has been reached; this expression should approach 0 as closely as
possible.

If we call matrices A, B, M depending on their normalization (M always being the one on the
site currently attended to), and giving them an subscript index i to label the number of updates
by the eigensolver they have undergone, the algorithm would formalize as

M0B0B0B0B0B0
diag
→ M1B0B0B0B0B0

SVD
→ A1M0B0B0B0B0

diag
→ A1M1B0B0B0B0

SVD
→ A1A1M0B0B0B0

diag
→ A1A1M1B0B0B0

SVD
→ A1A1A1M0B0B0

. . .
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where the lowest lying eigenvalue λ is the estimate for the groundstate energy. You can
recognize that we used the iteratively build L- and R-expressions from the last exercise.
The above graphical representation can be written down as an equation∑

σl,al−1,al

(
Lal−1bl−1a

′
l−1
W

σ′lσl
bl−1bl

Ralbla
′
l

)
Mσl

al−1al
− λMσl

al−1al
= 0. (6)

1Schollwöck, U. 2011, Annals of Physics, 326, 96

http://arxiv.org/pdf/1008.3477v2.pdf


For an iterative eigenvalue solver, like the Lanzcos algorithm, you only need the “matrix-
vector” product (the first part of above equation). If you decide to use the provided
scipy.sparse.linalg.eigsh keep in mind that it expects M̂ [l] to be a vector, or one-
dimensional array, not a three-dimensional array. This can be easily achieved via “com-
bining indices” Mσl

al−1al
=̂M(σlal−1al) and you can use the provided numpy.reshape function

for that.
However, Eq. (6) is only valid if we assume the MPS in a so-called “mixed canonical”
form

|ψ〉=̂Â[1]Â[2] . . . Â[l−1]M̂ [l]B̂[l+1] . . . B̂[L], (7)

where the A and B matrices are in a special canonized form such that

1

|a´ℓ〉B|aℓ〉A

Lℓ+1ℓ

bond ℓ

Figure 13: Blocks A (sites 1 through ℓ) and B (sites ℓ + 1 through L) are joined at bond ℓ. States are labelled |a ℓ⟩A and
|a′ℓ⟩B.

aℓ

a´ℓ

=

Figure 14: If two left-normalized A-matrices are contracted over their left index and the physical indices, a δ a′ℓ ,aℓ
line

results.

Eq. (60)

δa′ℓ ,aℓ = A⟨a′ℓ|aℓ⟩A =
∑

σ′ℓ ,σℓ

∑

a′ℓ−1,aℓ−1

Aσ
′
ℓ∗

a′ℓ−1,a
′
ℓ
Aσℓaℓ−1,aℓ A⟨a′ℓ−1σ

′
ℓ|aℓ−1σℓ⟩A (68)

=
∑

σℓ

∑

aℓ−1

Aσℓ†a′ℓ ,aℓ−1
Aσℓaℓ−1 ,aℓ =

∑

σℓ

(Aσℓ†Aσℓ )a′ℓ ,aℓ . (69)

Summarizing we find that the A-matrices are left-normalized:
∑

σ

Aσ†Aσ = I. (70)

A graphical representation is provided in Fig. 14: The multiplication can also be interpreted as
the contraction of A and A∗ over both σ and their left index.

Similarly, we can derive for B-matrices of blocks B built from the right that the right-
normalization identity

∑

σ

BσBσ† = I (71)

holds (usually, A and B will be used to distinguish the two cases). See Fig. 15. This means that
orthonormal states can always be decomposed into left- or right-normalized matrices in the MPS
sense and that all states constructed from left- or right-normalized matrices form orthonormal
sets, provided the type of normalization and the direction of the growth match.

Let us take a closer look at the matrix dimensions. Growing from the left, matrix dimensions
go as (1×d), (d×d2), (d2 ×d3), (d3 ×D), where I have assumed that d4 > D. Then they continue
at dimensions (D × D). At the right end, they will have dimensions (D × D), (D × d3), (d3 × d2),
(d2 × d) and (d × 1).

We can now again write down a matrix product state. Putting together a chain of length L
from a (left) block A of length ℓ (sites 1 to ℓ) and a (right) block B of length L − ℓ (sites ℓ + 1 to
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Figure 15: If two right-normalized B-matrices are contracted over their right index and the physical indices, a δ a′ℓ ,aℓ line
results.

σ1 σL

Figure 16: Representation of an open boundary condition MPS.

L), we can form a general superposition

|ψ⟩ =
∑

aℓ ,a′ℓ

Ψaℓ ,a′ℓ |aℓ⟩A|a
′
ℓ⟩B. (72)

Inserting the states explicitly, we find

|ψ⟩ =
∑

σ

(Aσ1 . . .Aσℓ )1,aℓΨaℓ ,a′ℓ (B
σℓ+1 . . . BσL)a′ℓ ,1|σ⟩. (73)

The bold-faced σ stands for all local state indices, |σ⟩ = |σ1,σ2, . . . ,σL⟩. The notation suggests
to interpret Ψ as a matrix; then the notation simplifies to

|ψ⟩ =
∑

σ

Aσ1 . . .AσℓΨBσℓ+1 . . . BσL |σ⟩. (74)

If we allow general matrices and don’t worry about left, right or no normalization, we can
simply multiply theΨ-matrix into one of the adjacent A or Bmatrices, such that the general MPS
for open boundary conditions appears (see Fig. 16):

|ψ⟩ =
∑

σ

Mσ1 . . .MσL |σ⟩ (MPS for OBC), (75)

where no assumption about the normalization is implied (which is why I call matrices M). Due
to the vectorial nature of the first and last matrices the product results in a scalar. This is exactly
the form of an MPS already discussed in the last section.

At this point it is easy to see how a matrix product state can exploit good quantum numbers.
Let us focus on magnetization and assume that the global state has magnetization M. This
Abelian quantum number is additive, M =

∑

i Mi. We choose local bases {σi} whose states are
eigenstates of local magnetization. Consider now the growth process from the left. If we choose
the states |a1⟩ to be eigenstates of local magnetization (e.g. by taking just the |σ1⟩), then Eq. (59)
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the A matrices are “left-normalized” and the B matrices “right normalized”, or in equa-
tions for A matrices ∑

a′l−1,al−1,σl

δa′l−1,al−1
A∗σla′l−1a

′
l
Aσlal−1al

= δa′l,al , (8)

and for B matrices correspondingly∑
a′l,al,σl

δa′l−1,al−1
B∗σla′l−1a

′
l
Bσl
al−1al

= δa′l−1,al−1
. (9)

You can either use the functions for canonization provided in
heisenberg imaginary time evolution.ipynb or try it yourself. 2

• Implement the “matrix-vector multiplication” from Eq. (6). Try again evaluating
the total energy with the state of our sample code
heisenberg imaginary time evolution.ipynb, but now via solving the eigenvalue
problem Eq. (6) using Lanczos. You can start with the first site, because the state
is in right-canonized form when it comes out from our imaginary time evolution.
When you get the correct total energy at the first site, try to do the same on an
arbitrary site, bringing the state in a mixed canonical form first.

• Now we have everything to implement the full DMRG algorithm. The optimal
algorithm is then:

– Use an initial guess for |ψ〉 with random matrices. You need to right-normalize
it, i.e. such that it consists of B-matrices only.

– Calculate the R-experssion iteratively for all site positions L − 1 through 1
iteratively.

– Right sweep: Starting from site l = 1 through site L − 1, sweep through the
lattice to the right as follows: solve the standard eigenproblem by an itera-
tive eigensolver for M [l], taking its current value as starting point. Once the
solution is obtained, left-normalize M [l] into A[l], such that when before you
had . . . A[l−1]M [l]B[l+1] . . . you then have . . . A[l−1]A[l]M [l+1] . . . . The remain-
ing matrices from the left-normalization are multiplied to B[l+1], such that it

2For detailed information how to do so read chapter 4.4 of
Schollwöck, U. 2011, Annals of Physics, 326, 96

http://arxiv.org/pdf/1008.3477v2.pdf


becomes the no more right-normalized M [l+1]. It willl serve as the starting
guess for the eigensolver for the next site. Build iteratively the L-expression
by adding one more site. Move on by one site, l→ l + 1, and repeat.

– Left sweep: Starting from site l = L through site 2, sweep through the lat-
tice to the left as follows: solve the standard eigenproblem by an iterative
eigensolver for M [l], taking its current value as starting point. Once the solu-
tion is obtained, right-normalize M [l] into B[l], such that when before you had
. . . A[l−1]M [l]B[l+1] . . . you then have . . .M [l−1]B[l]B[l+1] . . . . Build iteratively
the R-expression by adding one more site. Move on by one site, l→ l− 1, and
repeat.

– Repeat right and left sweeps until the energy is converged.
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