
Computational Quantum

Physics

Exercise 9

FS 16
Prof. S. Huber

Problem 9.1 DFT for Helium

The goal of this exercise sheet is to treat the Helium atom in density functional theory.
To this end, you will first write a Schrödinger solver as well as a Poisson solver, and then
apply these in a self-consistent procedure to Helium. Throughout this exercise sheet we
use atomic units (see exercise sheet 8).

A. Schrödinger Solver. For a spherically symmetric potential V (r) and solution ψ(r),
the three-dimensional Schrödinger equation

(
−1

2
∆ + V (r)

)
ψ(r) = εψ(r) reduces to the

radial equation

−1

2
u′′(r) + V (r)u(r) = εu(r), (1)

where u(r) =
√

4π r ψ(r).

• Implement an algorithm for finding the ground state energy and wave function of
(1) for a given potential V (r).

Hint: Use the Numerov algorithm and a bisection method (cf. Problem 2.1).

• Test your code with the l = 0 sector of the hydrogen atom, where V (r) = −1
r
, and

compare your result with the analytical solution εexact = −0.5 a.u. and uexact(r) ∝
r exp(−r).

In part C, you will apply this code to the effective potential as given by density functional
theory.

B. Poisson Solver. The Hartree potential Vh(~r) satisfies the Poisson equation ∆Vh(~r) =
−4πρ(~r). For spherically symmetric ρ(r) and Vh(r), this reduces to

U ′′(r) = − r

N
4πρ(r),

where U(r) := rVh(r)/N .

For a system of N = 1 or 2 electrons, we use the ansatz ρ(r) = N |ψ0(r)|2 for the
electron density, where ψ0 is the normalized ground state of the single-electron Schrödinger
equation with the effective potential from density functional theory (see part C below).
Equivalently,

U ′′(r) = −u
2(r)

r
(2)

where u(r) is the ground state of (1) and normalized to norm one,
∫∞

0
dr u2(r) = 1. Note

that U(r) satisfies the boundary conditions U(0) = 0 and U(∞) = 1.

• Implement a solver for (2) with these boundary conditions for a given function u(r).

Hint: Use the Verlet algorithm to integrate from U(0) = 0, U(∆r) = ∆r to some
rmax � 0 (e.g., rmax = 20). Then add a suitable multiple of the homogeneous
solution Uhom(r) = r to fix the outer boundary condition.

• Test your code with the u(r) as obtained for the hydrogen atom in part A, and
compare your result with the analytical solution Uexact(r) = −(r+ 1) exp (−2r) + 1.



C. Helium. Apply density functional theory to the Helium atom. Use the effective
potential Veff = Vnucl + Vh + Vxc, where Vnucl is the appropriate nuclear potential, Vh the
Hartree potential as obtained via part B, and

Vxc(r) = −
(

3

2π

)2/3(
4π

3
ρ

)1/3

= −
(

3

2π2

u2(r)

r2

)1/3

is a parametrization of the exchange-correlation potential, and determine ε and u(r) by
using part A.

Repeat these steps iteratively until you reach a self-consistent solution. Decrease your
step size ∆r and/or increase the cut-off radius rmax to check where your results are not
heavily depending on these constants any more.

Hint: You should obtain

ε ≈ −0.52 a.u.

E ≈ −2.72 a.u.

where energy E is related to the eigenvalue ε by the formula

E = 2ε−
∫
dr Vh(r)u2(r)− 1

2

∫
dr Vxc(r)u

2(r).


