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Exercise 9

Problem 9.1 DFT for Helium

The goal of this exercise sheet is to treat the Helium atom in density functional theory.
To this end, you will first write a Schrodinger solver as well as a Poisson solver, and then
apply these in a self-consistent procedure to Helium. Throughout this exercise sheet we
use atomic units (see exercise sheet 9).

A. Schrédinger Solver. For a spherically symmetric potential V' (r) and solution ¢(r),
the three-dimensional Schrédinger equation (—3A + V(r)) ¥(r) = ¢(r) reduces to the
radial equation

—%u”(?") + V(r)u(r) = eu(r), (1)
where u(r) = V4w ri(r).

e Implement an algorithm for finding the ground state energy and wave function of
(1) for a given potential V (r).

Hint: Use the Numerov algorithm and a bisection method (cf. Problem 2.1).

e Test your code with the [ = 0 sector of the hydrogen atom, where V (r) = —%, and
compare your result with the analytical solution eexaet = —0.5 a.u. and Uexact (1)
rexp(—r).

In part C, you will apply this code to the effective potential as given by density functional
theory.

B. Poisson Solver. The Hartree potential V},(7) satisfies the Poisson equation AV, (7) =
—4mp(7). For spherically symmetric p(r) and V4, (), this reduces to

U"(r) = —5p4m(r)
where U(r) := rVy(r)/N.

For a system of N = 1 or 2 electrons, we use the ansatz p(r) = N|io(r)|* for the
electron density, where 1) is the normalized ground state of the single-electron Schrodinger
equation with the effective potential from density functional theory (see part C below).

Equivalently,
u?(r)

' 2)

where u(r) is the ground state of (1) and normalized to norm one, [;* dru?(r) = 1. Note
that U(r) satisfies the boundary conditions U(0) = 0 and U(o0) = 1.

U'(r)=—

e Implement a solver for (2) with these boundary conditions for a given function u(r).

Hint: Use the Verlet algorithm to integrate from U(0) = 0, U(Ar) = Ar to some
Tmax > 0 (e.g., Tmax = 20). Then add a suitable multiple of the homogeneous
solution Upem () = r to fix the outer boundary condition.

e Test your code with the u(r) as obtained for the hydrogen atom in part A, and
compare your result with the analytical solution Ueact(r) = —(r + 1) exp (—2r) + 1.



C. Helium. Apply density functional theory to the Helium atom. Use the effective
potential Vg = Viua + Vi + Vie, where Viua is the appropriate nuclear potential, V4, the
Hartree potential as obtained via part B, and
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is a parametrization of the exchange-correlation potential, and determine ¢ and u(r) by
using part A.

Repeat these steps iteratively until you reach a self-consistent solution. Decrease your
step size Ar and/or increase the cut-off radius rp.x to check where your results are not
heavily depending on these constants any more.

Hint: You should obtain

e~ —0.52 a.u.

F~ —2.72 a.u.

where energy F is related to the eigenvalue ¢ by the formula

E = 2¢— /dr Vi (r)u?(r) — %/dr Vie(T)u? (7).



