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Problem 8.1 Solving the hydrogen atom in the GTO basis variationally

In Born-Oppenheimer approximation, the electronic degrees of freedom of the hydrogen
atom can be described by the following Hamiltonian in atomic units (length unit: bohr
radius aB = ~2

me2
= 0.529Å; energy unit: hartree energy Eh = e2

aB
= 27.211eV )[

−1

2
∇2 − 1

r

]
Ψ(r) = EΨ(r) (1)

The goal of this exercise is to obtain a variational estimate for the energy of the Hydrogen
atom. In order to do this we will use a basis of 4 Gaussian Type Orbitals1 (GTOs) and
construct an Ansatz of the form

Ψ(r) =
4∑
j=1

djχj(r),

with
χj(r) = e−αjr

2

(2)

and

α1 = 13.00773

α2 = 1.962079

α3 = 0.444529

α4 = 0.1219492 (3)

Using this Ansatz one may obtain a variational estimate of the energy by obtaining the
dj’s minimizing the value of 〈Ψ|H|Ψ〉 subject to the constraint 〈Ψ|Ψ〉 = 1. It is simple to
show that one is lead to a generalized eigenvalue problem of the form∑

j

Hi,j dj = ε
∑
j

Si,jdj

with H = T + A the hamiltonian in the GTO basis and S the overlap matrix. The
elements of the overlap matrix S, kinetic energy matrix T and Coulomb matrix A being

Sij =

∫
d3re−αir

2

e−αjr
2

=

(
π

αi + αj

)3/2

,

Tij = −1

2

∫
d3re−αir

2∇2e−αjr
2

= 3
αiαjπ

3/2

(αi + αj)5/2
,

Aij = −
∫
d3re−αir

2 1

r
e−αjr

2

= − 2π

αi + αj
. (4)

1Chemists call this the STO-4G method.



Problem 8.2 Hartree-Fock solution of the ground state of the helium atom
using GTOs as basis functions

The Schrödinger equation in reduced units for the helium atom is given by[
−1

2
∇2

1 −
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2
∇2

2 −
2

r1
− 2

r2
+

1

r12

]
Ψ(r1, σ1; r2, σ2) = EΨ(r1, σ1; r2, σ2) (5)

As ansatz for the ground state wave function we take a product state of two identical
single particle wave functions φ for each electron and an antisymmetric spin wave function
χ(σ1, σ2):

Ψ(r1, σ1; r2, σ2) = φ(r1)φ(r2)χ(σ1, σ2).

As before we use a finite basis set of GTOs to approximate φ(r):

φ(r) =
4∑
j=1

djfj(r) (6)

fj(r) = e−αjr
2

(7)

α1 = 0.297104

α2 = 1.236745

α3 = 5.749982

α4 = 38.216677 (8)

One can show that in this special case the Hartree-(Fock) equations in the finite basis set
are ∑

j

(tij +
∑
kl

dkdlVijkl)dj = ε
∑
j

Sijdj (9)

with overlap matrix S, non-interacting term t, and the Hartree term V

tij =

∫
d3rf ∗i (r)(−1

2
∇2 − 2

r
)fj(r) = 3

αiαjπ
3/2

(αi + αj)5/2
− 4π

αi + αj
, (10)

Vijkl =

∫
d3r

∫
d3r′f ∗i (r)f ∗k (r′)

1

|r − r′|
fl(r

′)fj(r) =
2π5/2

(αi + αj)(αk + αl)
√
αi + αj + αk + αl

.

(11)

Equation (??) is not a generalized eigenvalue equation because of the presence of the dk
and dl between the brackets on the left hand side. But we can fix dk and dl (with some
initial guess) and then determine dj. We then replace dk, dl by the solution found and
iterate the procedure until we obtain a self-consistent solution. The ground state energy
can then be calculated by

E0 = 2
∑
i,j

didjtij +
∑
i,j,k,l

Vijkldidjdkdl. (12)

Make sure that you normalize your vector d after each step, so that∑
i,j

diSijdj = 1. (13)



Problem 8.3 Hartree-Fock solution of the ground state of the hydrogen
molecule using GTOs as basis functions

We extend the previously discussed helium problem to the hydrogen molecule. As for
helium we have only two electrons occupying one orbital, thus we do not need to sum
over different orbitals µ like it is described in the lecture notes. We use the same finite
basis set as for the single hydrogen atom, but centered at the location of each nucleus RA

and RB:
fj(r) = e−αj(r−Rj)

2

(14)

α1 = α5 = 13.00773

α2 = α6 = 1.962079

α3 = α7 = 0.444529

α4 = α8 = 0.121949

R1, . . . , R4 = RA = 0

R5, . . . , R8 = RB = 1

Calculate the overlap matrix Sij and the non-interacting matrix tij by evaluating the
integrals involving Gaussian functions2.

The Hartree term V is given by

Vijkl = 2

√
(αi + αj)(αk + αl)

π(αi + αj + αk + αl)
SijSlkF0(q) (15)

with

F0(q) = q−1/2
√
π

2
erf(
√
q) (16)

q =
(αi + αj)(αk + αl)

αi + αj + αk + αl

∣∣∣∣αiRi + αjRj

αi + αj
− αkRk + αlRl

αk + αl

∣∣∣∣2 (17)

The error function erf(x) is defined by erf(x) = 2√
π

∫ x
0
dx′ e−x

′2
and is available in most

high-level programming languages.

Proceed in the same way as in the last problem to calculate the ground state energy. You
should obtain E0 = −1.07855 (nuclear repulsion +1 included!)

2http://dx.doi.org/10.1017/CBO9781139171397.006 chapter 4.8 (only accessible inside of ETH)


